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Abstract: Esophageal cancer (EC) is the sixth most deadly cancer, and its incidence is still

increasing year by year. Although the researches on the molecular mechanisms of EC have

been widely carried out and incremental progress has been made, its overall survival rate is

still low. There is cumulative evidence showing that the esophageal microenvironment plays

a vital role in the development of EC. In precancerous lesions of the esophagus, high-risk

environmental factors can promote the development of precancerous lesions by inducing the

production of inflammatory factors and the recruitment of immune cells. In the tumor

microenvironment, tumor-promoting cells can inhibit anti-tumor immunity and promote

tumor progression through a variety of pathways, such as bone marrow-derived suppressor

cells (MDSCs), tumor-associated fibroblasts (CAFs), and regulatory T cells (Tregs). The

formation of extracellular hypoxia and acidic microenvironment and the change of extra-

cellular matrix stiffness are also important factors affecting tumor progression and metas-

tasis. Simultaneously, primary tumor-derived cytokines and bone marrow-derived immune

cells can also promote the formation of pre-metastasis niche of EC lymph nodes, which are

beneficial to EC lymph node metastasis. Further research on the specific mechanism of these

processes in the occurrence, development, and metastasis of each EC subtype will support us

to grasp the overall pre-cancerous prevention, targeted treatment, and metastatic assessment

of EC.

Keywords: esophageal cancer, tumor precursor microenvironment, tumor microenvironment,

premetastatic niche

Introduction
Esophageal cancer (EC) is the sixth leading cause of cancer-related deaths and one

of the eight most common malignancies. According to different tissue subtypes, it

can be mainly divided into esophageal squamous cell carcinoma (ESCC) and

esophageal adenocarcinoma (EAC). The incidence rate of ESCC is increasing

globally, but it is rapidly rising in some European countries for EAC and has

even exceeded incidence rate of ESCC in some regions,1,2 which may be related

to different lifestyles in different countries. Although the diagnosis and treatment of

EC have been gradually improved, the five-year survival rate (19%) for EC is the

same as that for lung cancer (19%) and is second only to liver cancer (18%) and

pancreatic cancer (9%)3 according to the latest statistical analysis. This is mainly

due to the late diagnosis and metastatic tendency.4 The current standard treatments

of EC mainly include chemoradiotherapy, surgery, and endoscopic resection.5

Although the Food and Drug Administration (FDA) has approved some targeted

drugs such as programmed cell death protein 1 (PD-1) inhibitors, human epidermal
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growth factor receptor-2 (HER2), and anti-vascular

endothelial growth factor (VEGF) monoclonal antibodies

for the treatment of EC, the survival rate of most patients

with advanced EC is still low,6 which requires us to con-

duct a more systematic evaluation of the exact molecular

pathogenesis of EC in order to develop novel biomarkers

and therapeutic targets.

According to previous reports, the dynamic process of

cancer immunity includes three steps: elimination, equili-

brium, and escape.7 These steps can be corresponding to

the occurrence, development, and invasion of cancer.8

Similarly, we assume that the EC dynamic microenviron-

ment could be roughly divided into three stages: tumor

precursor microenvironment, tumor microenvironment

(TME), and pre-metastatic niche. TME is a vital space

for the metabolism of tumor cells. Nowadays, numerous

studies have shown that TME could mainly promote the

growth, proliferation, migration, and metastasis of EC.

The main components of TME are a variety of adaptive

and innate immune cells, fibroblasts, adipocytes, endothe-

lial cells, and extracellular matrix (ECM) components,

which have been extensively studied in a variety of

tumors.9–12 TME is not a fixed tumor survival environ-

ment, but a dynamic environment that is constantly remo-

deled by tumors and tumor-related cells to adapt to the

survival of tumor cells. Therefore, the tumor precursor

microenvironment and pre-metastasis niche should also

be taken seriously as the microenvironment before tumor-

igenesis and pre-metastasis, respectively. A comprehen-

sive and systematic study of this dynamic process will

not only enable us to better understand the occurrence

and development of EC but also provide us with a variety

of therapeutic targets and biomarkers, and guidance for

future diagnostic and therapeutic directions. In this review,

we summarized the main research advances in EC tumor

precursor microenvironment, TME, and premetastatic

niche.

Tumor Precursor Microenvironment
Barrett’s Esophagus (BE) Microenvironment

BE is a well-known precancerous lesion of EAC, and

high-risk environmental factors are the promoters of this

process. We also found that TME-like changes have par-

tially occurred in the BE microenvironment (Figure 1) as

follows: the production of various inflammatory factors,

immunity cell infiltration, remodeling of ECM, etc.

The tumor hypoxia microenvironment may be formed

in BE previously. Studies have shown that esophageal

ulcers and ischemia caused by reflux can result in hypoxia

in injured esophageal tissues and increase the expression

of hypoxia-induced factor 1α (HIF-1α), which regulates

the expression of VEGR and promotes angiogenesis and

ulcer healing in turn.13 However, we are not sure whether

HIF-1α is friend or foe in BE. For example, in other

studies, it has been demonstrated that HIF-1α could highly

express in metaplastic esophageal epithelial cells, never-

theless, the expression of HIF-1α did not increase further

with the progress of BE epithelial dysplasia and was not

associated with histopathological parameters or survival

rate.14 It is also worth mentioning that the level of glyco-

lytic metabolism is more significantly increased in

advanced BE cell lines than in early BE cell lines.15

However, HIF-1α is well known as the main regulator of

tumor glycolysis metabolism. This process of BE cells

continuously adapting to changes in the microenvironment

by regulating energy metabolism pathways may be the

origin of tumor aerobic glycolysis, but more evidence

would be needed to verify this hypothesis.

The production of inflammatory factors has played an

important role in the progress of BE. For example, gastro-

esophageal reflux can induce the up-regulation of inflam-

matory factors such as IL1B, IL4, and IL6. These

inflammatory factors can activate cardia stem cells by

inflammatory response and promote columnar epithelial

metaplasia in the distal esophagus.16,17 In addition, the

inflammatory factor IL-6 can significantly increase the

anti-apoptotic rate of Barrett epithelial cells in vitro through

the IL-6/STAT3 pathway.18,19 More than that, obesity,

which is a high-risk factor for BE, can also up-regulate

some inflammatory factors. Hypertrophic fat cells can lead

to tissue hypoxia, which ultimately induces the up-expres-

sion of IL-6 and tumor necrosis factor α (TNF-α),20 which
can not only mediate the up-regulation of IL-8 expression,

promote angiogenesis and migration of ECM by activating

endothelial cells21,22 but also increase the expression of

β-catenin-mediated oncogene c-myc in BE epithelial cells.-
23 It is noteworthy that TNF-α expression increases with the
progression of metaplastic-proliferative-adenocarcinoma

sequences.

Changes in the composition of immune cells are an

important feature of BE microenvironment, and the forma-

tion of immunosuppressive BE microenvironment may be

a major factor in the progress of BE. In a flow cytometric

analysis, it was found that the proportion of immune cells in

the BE microenvironment had decreased overall, and the

immune environment had changed from a T-cell-based
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microenvironment to a B-cell-based microenvironment.24

Similar to EAC, the ratio of Th1/Th2 is significantly

reduced in EC, and the Th2-based immune performance

was shown in the BE microenvironment, which may pro-

mote tumorigenesis.25,26 In addition, some studies have

reported that the expression of forkhead box P3 (FOXP3)

+, the major regulator of Tregs immunosuppressive func-

tion, was significantly up-regulated in BE tissues.27

However, in the relatively early metaplasia stage of BE,

acids and bile salts can stabilize the expression of HIF-2α in

esophageal epithelial cells, thereby upregulating pro-

inflammatory cytokines and recruiting T lymphocytes and

other lymphocytes to damage the esophagus through the

Nuclear factor-kappaB (NF-κB) pathway.28,29 In summary,

the composition of immune cells in the BE microenviron-

ment is relatively complex and constantly changing. Of

course, more researches will be needed to elucidate the

development process and mechanism from early inflamma-

tory infiltration injury to final immunosuppression.

The transformation of the ECM is also a major feature

of changes in the BE microenvironment. Matrix metallo-

proteinases (MMPs) are enzymes involved in inflamma-

tion, ECM remodeling, and tumor metastasis. Previous

studies have shown that MMP-7 in BE epithelial cells

could stimulate stromal cell migration and invasion and

remodel the microenvironment under the regulation of

PI3-K kinases.30 In addition, MMP9 and MMP13 are

also up-regulated in BE.31 It is noteworthy that MMP13

is more highly expressed in BE, while MMP-9 is more

highly expressed in EAC. Once BE is converted to EAC,

the expression ratio of MMP13/MMP9 in epithelial cells is

significantly decreased. The study on the transition

mechanism may be helpful in exploring novel therapeutic

targets.

Figure 1 Immune landscape in Barrett’s Esophagus. Influenced by environment factors, several immune cells and cytokines are involved in the progress of BE

microenvironment. Cytokines IL-1B, IL-4, and IL-6 can activate cardiac stem cells to promote columnar metaplasia. Cytokine IL-6 can promote the anti-apoptosis of

Barrett epithelial cells through the IL-6/STAT3 pathway. TNF-α can promote angiogenesis and the expression of oncogene c-myc by upregulating the expression of IL-8 and

β-catenin, respectively. The proportion of overall immune cells and the ratio of Th1/Th2 in the BE microenvironment decreased significantly. MMP-7, MMP-9, and MMP-13

are up-regulated in BE epithelial cells and can promote cell migration and matrix remodeling.
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The BE microenvironment is also a complex inflamma-

tory microenvironment. In the process of exploring its

mechanism of inflammation microenvironment, the view-

point is put forward of anti-inflammatory treatment of

BE,22,27 but the exact effect and specific mechanism need

to be further clarified. The above discussions show that BE,

as a precancerous lesion of EAC, is inextricably linked with

EAC in the microenvironment. In-depth exploration and

application of BE microenvironment in different stages

will be a powerful method to prevent EAC.

Esophageal Squamous Epithelium Dysplasia (ESD)

Microenvironment

In a multi-region whole-exome sequencing, it was found that

atypical proliferative epithelial cells have polyclonality, sig-

nificant heterogeneity, and severe mutations similar to ESCC

cells,32 and a large amount of evidence indicates that ESD is

a precursor lesion of ESCC.33 Smoking, drinking, and eating

very hot food or beverages are high-risk environmental fac-

tors for ESCC.34 Although there are few studies on ESD

microenvironment, we can still find some valuable informa-

tion about that. For example, it was reported that glucose

transporter 1 (GLUT-1), an important glycolytic pathway

enzyme, is highly expressed not only in ESCC tumor cells

but also in tumor precursor cells.35 Similar to the above-

mentioned BE, this may indicate that ESD cells also

continuously adapt to changes in the microenvironment by

transforming energy metabolism pathways. The occurrence

of glycolysis and local inflammatory reactions will promote

the oxygen consumption of the precursor microenvironment

and the accumulation of acidic metabolites.36 Under acidic

conditions, mutations and heterogeneity of ESD cell may

increase again, and further lead to the accumulation of carci-

nogenic mutations.37 With the accumulation of carcinogenic

mutations, the cell polyclonality also evolves, which

increases the oxygen energy supply burden in the interstitial

space, leads to a vicious cycle of hypoxia and acidic micro-

environment, and eventually results in the occurrence of

cancer and the formation of TME. The cumulative process

of carcinogenic mutations is extremely long, which may also

be the reason for the relatively long period of precancerous

lesions.38 However, more evidence will be needed to prove

the evolution of this cycle. Finally, the occurrence of EC is

the result of the interaction between the precancerous micro-

environment and ESD. At present, there are many studies on

the high-risk factors of ESCC, ESD itself and post-cancer,

and we also should pay attention to the research on ESD

microenvironment. This will be a powerful weapon for our

cancer prevention.

In short, the occurrence of cancer as a continuous and

uninterrupted process, we should pay attention to all stages

of its occurrence and development, and prevention as the

“biblical” of humans against disease should receive more

attention. At this time, the abundant signal molecules

produced by the tumor precursor microenvironment and

precursor cell interactions, as well as cell composition and

function changes, have become our favorable biomarkers

and targets for preventive treatment.

Tumor Microenvironment
As the oncogenic mutation of tumor precursor cells con-

tinues to accumulate, the precancerous lesions further

develop into cancer. Cancer tissues continue to deteriorate

by interacting with TME and eventually lead to the occur-

rence of metastasis. In the following, we will review the

research progression on the interaction between the main

components of TME and EC tissue (Figure 2).

Hypoxia, Acidosis, and Nutrient Depletion are the

Basic Characteristics of TME

Hypoxia and acidosis are common phenomenon in TME

and can cause a series of metabolic changes in tumors.

When we talk about the hypoxic microenvironment, the

famous Warburg effect and HIF-1 should be mentioned.

Under hypoxic conditions, prolyl-hydroxylase 2 (PHD-2)

cannot hydroxylate HIF-1α, which blocks the degradation

of HIF-1α.39,40 The Warburg effect means that even in a

microenvironment with sufficient oxygen, tumor cells

obtain energy mainly through glycolysis rather than oxi-

dative phosphorylation.41 This metabolic transformation is

caused by the HIF-1 transcriptional regulatory factors,

which up-regulate GLUTs, hexokinase isoform 2 (HK2),

pyruvate kinase isoform M (PKM) and other key factors of

glycolytic metabolism, so as to transform the cancer meta-

bolism into a mainly aerobic glycolytic metabolic

pathway.40–42 The theory is also applicable to EC. For

instance, GLUT-1 highly expressed in ESCC tumor cells

and pre-cancerous tissues of dysplasia,35 in order to

improve the efficiency of glucose transport in response to

hypoxia microenvironment. PKM2, an important enzyme

that converts phosphoenolpyruvate to pyruvate during gly-

colysis, can promote the aerobic glycolysis metabolism of

ESCC under the regulation of the mTOR pathway.43

Another consequence brought about by glycolysis is

the accumulation of its metabolite lactic acid in cells.44 In
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order to prevent intracellular pH imbalance, tumor cells

trigger the proton transport mechanism to maintain the

intracellular environment.45 Carbonic anhydrase IX

(CAIX) is a target gene of HIF-1α, which mainly main-

tains the pH value of cells under hypoxic conditions. It is

found that its expression increased in ESCC, and CAIX

can also promote the migration and metastasis of ESCC

cells while maintaining intracellular pH stability.46

Elevated CAIX expression is predictive of greater aggres-

siveness and shorter survival of EC.47,48 In addition, a

recent EC study found that the vacuolar H + -adenosine

triphosphatase (ATPase) subunit V0C (ATP6V0C), whose

main function is to maintain a constant pH and induce

acidification of organelles, can interact with PKM2 to

upregulate the expression of glycolytic enzymes and

increase extracellular acidification rate.49 Finally, the accu-

mulation of metabolites and the depletion of interstitial

nutrients pose great challenges for immune cells to play

an anti-tumor role in TME, but cancer cells themselves are

not affected by microenvironment selection.40

Importantly, as a crucial intermediate molecule in the

regulation of tumor metabolism, HIF-1α also plays tumor-

promoting functions in many different types of tumors,

including EC, such as inducing and regulating

angiogenesis,50,51 promoting tumor growth, proliferation,

recurrence and metastasis and remodeling ECM. First, the

regulation of HIF-1α on angiogenesis in esophageal tissues

has been reported in the BE microenvironment.13 In EC,

HIF-1α protein expression is also significantly correlated

with VEGF protein expression and related to poor prog-

nosis of EC.52–54 Secondly, as a key transcription factor in

tumor cells, HIF-1 can specifically bind to various other

promoters to regulate the progress of EC. For example, it

can bind to the SP1 promoter and regulate its transcription

program in order to enhance the ability of ESCC cells to

migrate and invade and promote tumor recurrence and

metastasis.55 Other studies have mentioned that it also

could bind to the hypoxic response element, which located

at the upstream of the Insulin-like growth factor binding

protein 3 (IGFBP3) transcription initiation site, and then

induce continuous translation of IGFBP3 mRNA44 and

promote ESCC cell growth and proliferation through the

insulin-like growth factor-independent pathway.56 Finally,

it can also directly bind to the promoter-specific hypoxic

response element of ECM metalloproteinase inducer

(EMMPRIN), and further promote EC cell migration and

epithelial–mesenchymal transition (EMT).57 In addition,

another effect of HIF-1α is to inhibit E-cadherin and

increase the expression of MMP-2 to stimulate EC infil-

tration and metastasis,58 and its mechanism may be related

to the upstream regulation of Nuclear factor erythroid-2-

related factor 2 (an important cytoprotective factor).59 The

Figure 2 Immune landscape of ESCC tumor microenvironment.
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consistency of these results shows that HIF-1α also has

a regulatory effect on ECM components in EC TME. In

summary, overexpression of HIF-1 can be produced for

EC through a variety of regulatory mechanisms and is

closely related to a variety of adverse prognostic factors

such as tumor invasion depth, lymph node metastasis, and

resistance to chemoradiation.60,61 However, some studies

have shown that HIF-1α has different effects on the prog-

nosis of ESCC and EAC, respectively.62 This suggested

that more detailed and precise researches were required on

different cell and molecular subtypes.

In recent years, researches have particularly focused on

extracellular vesicles (EVs). The EVs in tumor TME play

an important role in the information transmission and

material exchange of tumor cells and mediating the local

or remote mutual regulation of cancer cells. Studies have

shown that tumor cells can release more EVs in TME

under hypoxic conditions.63 According to the latest

ESCC miRNA expression profiling analysis, the miRNAs

in EVs secreted by ESCC cells would change significantly

under hypoxic conditions. A total of 10,810 miRNAs were

detected in EVs. Fifty miRNA was up-regulated and

34 miRNA was down-regulated significantly in hypoxic-

treated cell lines, and these differentially expressed

miRNAs are mainly involved in cancer-related and phos-

pholipase D signaling pathways.64 Base on the studies of

kidney cancer and breast cancer cells, it was speculated

that the enhanced phospholipase D activity was necessary

for stable expression of HIF-1 and HIF-2 and aerobic

glycolysis of cells.65–67 Exosomes are special types of

EVs with a diameter of 50–200nm. In previous studies,

ESCC cell exosomes cultured under hypoxic conditions

could promote the proliferation and invasion of endothelial

cells in vivo and in vitro, and show significant angiogenic

effects compared with non-hypoxic conditions.68 ESCC-

derived exosomes can also promote the expansion of PD-1

+ TAM and the expression of CD206 to promote the

progress of ESCC.69 In addition to the study of the number

and general function of exosomes, we are also committed

to the study of the contents of exosomes such as miRNA,

DNA, or protein molecules. For example, high expression

of exosomal microRNA-21 in ESCC can significantly

reduce the sensitivity of cisplatin to chemotherapy70 and

promote tumor cell migration and invasion.71,72 Exosome

microRNA-212 can promote the movement and invasion

of ESCC cells by promoting EMT and degrading ECM.73

Studies of exosomes in EC have been reported in detail in

several reviews.74–76 Although many studies have proved

that exosomes have great potential as markers for early

diagnosis, treatment, or assessing prognosis in EC, there is

no standard method for the isolation and purification of

exosomes, and the functional mechanism of their inclusion

bodies is not fully understood. In summary, anoxic micro-

environment is the basis of important mechanisms of

action in many tumors. Many targeted studies on HIF

and its regulatory pathways, key enzymes of glycolysis,

proton transport-related pathways, or exosomes have been

actively carried out,77–79 but there is still a huge gap in this

field (Table 1).

Myeloid Cell Line is an Important Regulatory Cell

Population for TME

MDSCs

Table 2 MDSCs are immature bone marrow cells produced

under persistent inflammatory conditions such as cancer,

chronic disease, or persistent infection.80 MDSC can be

mainly divided into two subgroups: polymorphonuclear

(PMN)-MDSC and monocyte (M)-MDSC.81 The morpho-

logical and phenotypic characteristics of PMN-MDSC are

similar to neutrophils, while M-MDSC is similar to

monocytes.82,83 Numerous studies have proven that

MDSCs have a powerful inhibitory effect on tumor immu-

nity, including inhibition of T cell activity84 and NK cell

function,85 induction of Tregs activation,86 promotion of

fibroblasts to CAFs,87 and tumor resistance. High infiltra-

tion of MDSCs is a poor prognostic marker for many types

of tumors.81,88,89

On the one hand, the interaction of cytokines with

MDSCs plays a key role in the progress of EC. These

cytokines mainly include IL-4, IL-6, IL-8, IL-13, and so

on. For example, tumor-associated gene MAEL is over-

expressed in EC tissues and up-regulates the inflammatory

factor IL-8 to promote the recruitment of PMN-MDSCs in

tumor tissues for tumor-promoting, while the up-regulated

PMN-MDSCs can promote MAEL expression through the

TGF-β/Smad pathway.90 In addition, Th2-derived cyto-

kines IL-4, IL-6, and IL-13 can significantly enhance the

immunosuppressive function of MDSCs in EC by indu-

cing the expression of arginase-1 (ARG1).81,89,91 On the

other hand, the heterogeneity of MDSCs is also paid

special attention. A study found that MDSCs with high

CD38 expression in EC had stronger activated T cell

immunosuppressive and tumor-promoting functions, and

the anti-CD38 monoclonal antibody Daratumumab could

inhibit esophageal tumor cell growth in vitro and in vivo.92

At present, Daratumumab has been clinically used to treat
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multiple myeloma with acceptable safety and efficacy.93

Therefore, the application of this drug in EC may be a

promising treatment direction. The functional research of

MDSCs in different subgroups may become a novel devel-

opment direction.

Tumor-Associated Macrophages (TAMs)

Macrophages can differentiate into two cell types with

completely different functions: tumor suppressor macro-

phages (M1) and tumor-promoting macrophages (M2).

M1 macrophages play a role in tumor rejection as “classic”

activated macrophages, while M2 macrophages can pro-

mote tumor progression. M2 macrophages can be activated

and promoted by tumor cell Th-2 cytokines such as IL-4 and

IL-13.94,95 TAMs are M2-like macrophages, and some of

them overexpress CD163, CD206, and CD204. The pro-

gression of EC can be promoted by TAMs through inducing

tumor-associated lymphangiogenesis,96 tumor cell prolif-

eration and invasion,97 and EC immune escape.95 It has

been also demonstrated that TAMs infiltration in EC TME

was a predictor of poor prognosis.98,99

The complexity of the interaction between TAMs and

cancer cells also reveals its importance to cancer cells, and

the expression of various cytokines is an important way for

TAMs to participate in tumor regulation. For instance, sev-

eral studies by Naoki et al have shown that in vitro cultured

ESCC cell lines, Growth Differentiation Factor 15 (GDF15)

derived from TAMs and tumor cells could indirectly acti-

vate TGF-βRII receptors in cancer cells, thereby inducing

PI3K/Akt and MEK/Erk pathways and increase ESCC cell

proliferation and migration.100,101 In addition, TAM-like

peripheral-blood monocyte (PBMo)-derived macrophages

were found in co-culture to express IL-8 and phosphorylate

the Akt and Erk1/2 pathways by binding to CXCR1,

Table 1 The Role of Hypoxia and Acidosis in the TME of Esophageal Carcinoma

Entry Cancer

Type

Finding Effects on

Tumors

Ref.

Hypoxia

and acidosis

ESCC Induction of high expression of GLUT-1 in response to hypoxia and insufficient energy

supply

Acceleration [35]

ESCC Regulation of the expression of the key aerobic glycolytic enzyme PKM2 through the

mTOR pathway

Acceleration [43]

ESCC The induction of high expression of CAIX maintains intracellular pH stability and

promotes tumor cell invasion and migration

Acceleration [46–48]

EC ATP6V0C up-regulates glycolytic enzyme expression and increases extracellular

acidification rate through interaction with PKM2

Acceleration [49]

ESCC,

EC

HIF-1α and VEGF synergistically induce angiogenesis Acceleration [50–54]

ESCC HIF-1α specifically binds to the SP1 promoter and regulates its transcription program,

thereby enhancing migration and invasion

Acceleration [55]

ESCC HIF-1α can bind to the hypoxic response element upstream of the IGFBP3 transcription

initiation site, and then induce continuous translation of IGFBP3 mRNA and promote

growth and proliferation through the insulin-like growth factor-independent pathway

Acceleration [44,56]

EC HIF −1 directly binds to specific hypoxic response elements of the EMMPRIN promoter to

promote EC cell migration and epithelial-mesenchymal transition

Acceleration [57]

EC HIF-1α can stimulate EC infiltration and metastasis by inhibiting E-cadherin and promoting

MMP-2 expression

Acceleration [58]

ESCC Up-regulation of exosomes in ESCC promote angiogenesis and PD1 + TAM expansion Acceleration [64,68,69]

ESCC MicroRNA-21 in exosomes induces chemotherapy resistance, promotes migration and

invasion

Acceleration [70–72]

ESCC MicroRNA-212 in exosomes promotes epithelial-mesenchymal transition and ECM

degradation

Acceleration [73]
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CXCR2 expressed in ESCC cell lines and to promote tumor

migration and invasion.102 It is also noteworthy that CD204

+ subtype TAM shows a significant tumor-promoting effect

in EC. In previous report, CD204 + macrophages in ESCC

tissues were closely related to microvessel density, clinical

stage, vascular invasion, depth of tumor invasion,

lymph node metastasis, and disease-free survival.103

Simultaneously, Cyr61, an angiogenesis inducer of the

CCN protein family,104 can be expressed in ESCC cells

and TAMs, which can not only promote macrophage migra-

tion through the MEK/ERK pathway but also promote

CD204 expression in macrophages.105 CD204 + TAM can

also increase the expression of tumor suppressor protein

annexin A10 (ANXA10) in cancer cells, and promote the

proliferation of ESCC cells through phosphorylation of Akt

and Erk1/2 pathways.106 The high expression of ANXA10

in cancer cells has been found to promote cancer cell growth

and proliferation in a variety of tumors including lung

cancer,107 ovarian cancer,108 and prostate cancer.109

Indeed, various secreted factors such as Cyr61,105

GDF15,100,101,110 TGF-βRII,100,111,112 and ANXA10106

have been reported to be associated with poor prognosis

of ESCC. This series of studies revealed that TAMs could

promote ESCC progression through strong secretory func-

tions, and demonstrated the huge potential of TAMs-related

pathways and molecules as novel therapeutic targets and

biomarkers. Meanwhile, CD204 + subtypes of TAMs show

more obvious tumor-promoting effects, which requires

further studies on the specific mechanism of the interaction

between TAMs of different functional subgroups and tumor

cells. In addition, TAMs of different subtypes have been

reported to have different tumor-promoting effects on EAC,

but the specific mechanism remains to be studied in the

future.113

Mature Dendritic Cells (DCs)

DCs can not only secrete cytokines to regulate immune

function in TME but also induce adaptive immunity

through its powerful antigen-presenting ability, exerting

immune-stimulating effect further. DCs present in

Table 2 The Role of Myeloid Cells in the TME of Esophageal Carcinoma

Entry Cancer

Type

Finding Effects on

Tumors

Ref.

MDSCs EC The tumor-associated gene MAEL over-expresses and up-regulates IL8 to recruit PMN-

MDSCs, while the recruited PMN-MDSCs can up-regulate MAEL expression through the

TGF-β/Smad pathway

Acceleration [90]

EC Th2 derived cytokines IL-4, IL-6 and IL-13 can significantly enhance the immunosuppressive

function of MDSCs in EC by inducing the expression of ARG1

Acceleration [81,89,91]

EC MDSCs overexpressing CD38 have stronger activated T cell immunosuppressive and tumor-

promoting functions, and this effect can be inhibited by CD38 monoclonal antibody

Daratumumab

Acceleration [92]

TAMs ESCC GDF15 derived from TAMs activate TGF- βRII receptor in cancer cells to induce the PI3K/

Akt and MEK/Erk pathways to increase proliferation and migration

Acceleration [100,101]

ESCC Macrophage-derived IL-8 binds to CXCR1 and CXCR2 of ESCC cells and phosphorylates

Akt and erk1/2 pathways to promote tumor migration and invasion

Acceleration [102]

ESCC Cyr61 can be expressed in ESCC cells and TAMs, which promotes macrophage migration and

CD204 expression in macrophages through the MEK/ERK pathway

Acceleration [105]

ESCC CD204+TAM induced increased expression of ANXA10 in cancer cells and promoted ESCC

cell proliferation through phosphorylated Akt and erk1/2 pathway

Acceleration [106]

EAC Different TAMs subpopulations play diverse tumorigenic functions in EAC Acceleration [113]

DCs EC LAMP-3 can be expressed instantaneously when the DC is mature and can be regarded as a

specific marker of mature DC, indicating a good prognosis

Inhibition [115–117]

EC DC vaccine can improve the cytotoxicity of CTL and indirectly exert anti-tumor effect Inhibition [126–128]

Han et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Cancer Management and Research 2020:125864

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


esophageal tissue belong to Langerhans cells, which are

bone marrow-derived dendritic cells.114 When DCs cap-

ture antigens and mature, lysosomal-associated membrane

glycoprotein 3 (LAMP-3) is significantly up-regulated.

LAMP-3 can transiently express and participate in the

loading and transport of MHC class II peptides to the

cell surface.115,116 Therefore, it can be regarded as a spe-

cific marker of mature dendritic cells. In an analysis of

specimens from 80 postoperative patients with EC, it was

found that CD8 + T cells clustered around LAMP-3 DC

and formed LAMP-3 DC-CD8 + T cell clusters. In the

same pathological stage, the 5-year survival rate of

patients with high infiltration of LAMP-3 was higher

than with low infiltration of LAMP-3.117 However, the

expression of LAMP-3 in non-DC cells has different clin-

ical results, and many reports have shown that the expres-

sion of LAMP-3 in non-DC (including EC) is closely

related to poor prognosis.118–121 This may be related to

the activation of its downstream signaling pathway.

Antigen presentation function is one of the major func-

tions of DCs cells, and the application of vaccines based

on DCs antigen presentation function in cancer has been

widely studied. However, these studies are only performed

primarily in patients with prostate cancer, melanoma, renal

cell carcinoma, and glioblastoma nowadays.122 For exam-

ple, Sipuleucel-T is the first antigen-presenting cell-based

therapeutic cancer vaccine approved by the FDA and has

been used clinically for prostate cancer treatment.123 The

DCs vaccine in EC has also been partially reported.124,125

It was shown that the strategy of using DCs loaded with

autologous tumor RNA to improve the cytotoxic response

was effective in the treatment of EC.126 Another in vitro

experiment confirmed that DC vaccine could activate

SART1 peptide-specific CTLs,127 nevertheless, exact clin-

ical efficacy and survival benefits have not been observed

in clinical trials. However, in a Phase I clinical trial of 40

EC patients, the 1-year (82.1% vs 50.0%, P=0.04) and

2-year (67.8% vs 33.3%, P=0.04) survival rates of DC

vaccine combined with radiotherapy were significantly

improved compared to patients not receiving the DC vac-

cine therapy.128 This result confirms its reliability and

therapeutic potential from a clinical perspective. These

contradictory results may suggest that it was needed to

develop individualized treatment standards for patients and

prepare higher quality DC vaccines. The role of DC vac-

cine in the treatment of EC needs to be determined by

further researches.

Tumor-Infiltrating Lymphocytes (TILs) are Important

Components of Anti-Tumor Immunity

TILs are the crucial components of tumor antagonism in

TME, including T lymphocytes, B lymphocytes, and NK

cells. Most of TILs are associated with good prognosis in a

variety of solid tumors such as EC,129–132 melanoma,133

breast cancer,134 and gastric cancer.135 In the following,

we will explain the main types of TILs in EC and their

research progression (Table 3).

T Lymphocytes

CD8+T Lymphocytes. CD8 + T lymphocytes are essential

immune components which exert anti-tumor cell immu-

nity. The primary cells differentiated and matured into

cytotoxic T lymphocytes after interacting with DCs, CD4

+ T cells, and NK cells, and mediated their cytotoxic

response through the perforin-granzyme pathway and

FASL pathway. CD8 + T cells have also been proven to

be positive predictors of both ESCC136 and EAC,137 and T

cell suppression is an important mechanism for tumor

immune escape. Previous studies have shown that the

expression of indoleamine 2,3-dioxygenase (IDO) in

ESCC was associated with decreased the number of CD8

+ TILs infiltration and poor prognosis.138,139 This may be

due to IDO-mediated tryptophan catabolism, thus suppres-

sing T lymphocyte proliferation.140 In addition, it has been

reported that CAFs and microvascular endothelial cells

were the major IDO expressing cells in the ESCC

interstitial.141 This finding indicates that IDO and its path-

way may become new therapeutic targets and prognostic

markers.

The exploration of immune checkpoints has always

been the focus of our research. PD-1 is mainly expressed

on the surface of activated T cells and can bind to pro-

grammed death ligand-1 (PD-L1) expressed in tumor cells

to make tumor cells escape from the cytotoxicity of

CTL.142 In ESCC, multiple studies including a meta-ana-

lysis have shown that the increased expression of PD-L1

was associated with poor prognosis,143–146 while a study

of EAC seemed to suggest that upregulation of PD-L1 was

conversely a favorable prognostic factor.147 Certainly,

more studies are required to confirm the exact effect of

PD-L1 expression in EAC, and it is also essential to

conduct more research on PD-1/PD-L1 inhibitors in

ESCC and EAC. So far PD-1/PD-L1 inhibitors have

been applied clinically in more than 10 tumors. In a recent

Phase III clinical trial148 and previous Phase II clinical
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trials,149 the results consistently showed that pembrolizu-

mab (anti-PD-1 antibody) can improve OS in patients with

advanced ESCC. Based on these results, the clinical appli-

cation of pembrolizumab in patients with relapsed metas-

tasis or locally advanced ESCC has been approved by the

FDA. Simultaneously, several phase III clinical trials

exploring the application of such drug in other indications

of EC are also ongoing.150 Other immunotherapy strate-

gies based on CD8 + T cells in EC are also promising. For

example, the cytotoxicity of T lymphocytes can be

enhanced by an exogenous pathway, such as the aforemen-

tioned DCs vaccine. Or develop other immune checkpoint

inhibitors, such as PD-L2 and CTLA-4.151 This will be the

direction of researches for EC treatment.

Th17 Lymphocytes. Th17 lymphocyte is a branch of CD4 +

helper T cells, and its main effector molecule is IL-17.

However, the role of Th17 lymphocytes in antitumor immu-

nity remains controversial. A meta-analysis showed that IL-

17A overexpression was significantly associated with poor

prognosis in liver cancer and non-small cell lung cancer, but

IL-17A expression was associated with a significant

improvement in overall survival (OS) in patients with

ESCC.152 Similarly, we found in chemotaxis analysis that

IL-17A expressed by Th17 cells can induce ESCC cells to

produce chemokines such as CCL20, CXCL-9, CXCL-10,

and CXCL13, thereby chemotactic effector T cells, DCs, B

cells, and NK cells migrate to ESCC tissue and then exert

antitumor effect.153,154 In addition, Chen et al showed that

the expression of chemokines such as CCL17, CCL20, and

CCL22 in EC TME is up-regulated and can bind to CCR4

and CCR6 expressed by Th17 lymphocytes to induce Th17

lymphocytes infiltration.155 In other studies, cytokines and

chemokines can also promote the differentiation and expan-

sion of Th17 lymphocytes in ESCCTME, and the increase of

Th17 lymphocytes is positively correlated with more lymph

node metastasis and later clinical stages.156 However, studies

in another EAC have found that IL-17A could activate

MMP-2 and MMP-9 through the ROS/NF-κB signaling

Table 3 The Role of Lymphocytes in the Tumor Microenvironment of Esophageal Carcinoma

Entry Cancer

Type

Finding Effects on

Tumors

Ref.

CD8

+T

cell

ESCC,

EAC

The infiltration of CD8+ T cells in both ESCC and EAC predicted a favorable prognosis. Inhibition [136]

ESCC IDO may inhibit T lymphocyte proliferation by mediating tryptophan catabolism Acceleration [138–

140]

ESCC PD-L1 expressed in tumor cells binds to PD-1 on the surface of T cells to escape CTL cytotoxic

effects

Acceleration [143–

146]

EAC Upregulation of PD-L1 in EAC is a favorable prognostic factor Inhibition [147]

Th17

cell

ESCC IL-17A induced tumor cells to produce chemokines such as CCL20, CXCL-9, CXCL-10, and

CXCL13, thereby recruiting effector T cells, DCs, B cells, and NK cells

Inhibition [153,154]

ESCC Th17 cell infiltration and amplification is promoted by chemokines such as CCL17, CCL20 and

CCL22 and is associated with poor prognosis

Acceleration [155,156]

EAC IL-17A activates MMP-2 and MMP-9 through the ROS/NF-κB signaling pathway Acceleration [157]

Tregs / FOXP3 may play an immunosuppressive role by directly inhibiting the IL-2 gene or by promoting

the expression of CTLA-4 and CD25

Acceleration [158]

ESCC IL-33 promotes the expression of CCL2 through the NF-κB pathway, thereby recruiting Treg

cells to promote tumor progression

Acceleration [165,166]

B cell EAC Breg cell interacts with Treg, MDSC, TAM and other immune cells to promote tumor growth Acceleration [168,169]

NK

cell

EC Co-inhibitory receptor Tim-3 is highly expressed in NK cells and is associated with NK cell

dysfunction

Acceleration [174]

ESCC The co-cultured NK cells had a strong cytotoxic effect on ESCC cells expressing the NK cell

activated receptor

Inhibition [175]
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pathway. MMPs can catalyze the degradation of ECM and

promote the migration and metastasis of cancer cells.157 The

above results indicate that the role of Th17 lymphocytes is

still controversial. Therefore, we need further research to

clarify the role of Th17 lymphocytes, especially the role of

Th17 lymphocytes in different pathological types of EC.

Tregs. Tregs are a subset of CD4 + helper T cells, which

are distinguished from other lymphocytes mainly by the

expression of CD25 and Foxp3. Tregs can promote tumor

progression by inhibiting the maturation of antigen-pre-

senting cells (APC), reducing the secretion of cytokines

and killing effect of CTL cells, and promoting

angiogenesis.158–160 Many studies have reported that

Foxp3 expression was increased in EC and closely related

to poor prognosis.161–164 One of the specific mechanisms

may be that FOXP3 directly inhibited the IL-2 gene and

promoted the expression of CTLA-4 and CD25.158 It is

also reported that IL-33 is highly expressed in ESCC

tumor tissues, and IL-33 can promote CCL2 expression

through the NF-κB pathway, thereby recruiting Tregs to

promote tumor progression.165,166 The current therapeutic

strategies targeting Tregs signaling pathways are quite

promising. Researches on candidate target inhibitors such

as CD25, CTLA-4, CCR4, and IDO-1 are underway,158

but their complex interactions in EC need further

exploration.

B Lymphocytes

Most TILs-related studies currently focus on T lympho-

cytes, while relatively little attention has been paid to the

tumor immune function of B lymphocytes. B lymphocytes

are another major component of TILs. They mainly exert

antitumor immunity by secreting specific antibodies, pre-

senting antigens to T cells, or directly killing cancer cells.

Studies have shown that B lymphocytes can exert the

above-mentioned tumor immune effects through the

CCL19, 21/CCR7 axis, and CXCL13/CXCR5 axis,167 but

their specific effects in different cancer types and different

stages have yet to be explored. In EC, studies have shown

that infiltration of B cells and T cells in tumor tissues

indicated a better prognosis.131 However, specific subgroup

analysis showed that the regulatory B cell (Bregs) subgroup

in peripheral blood can promote the growth and prolifera-

tion of EAC tumors.168 Bregs are a subset of lymphocytes

that can be activated in TME and interact with immune cells

such as Tregs, MDSCs, and TAMs to promote tumor

growth.169 There is no doubt that the study of this subgroup

is a promising future direction. The targeted therapy

designed for B cells is mainly concentrated in the field of

B cell malignancies. Ibrutinib is a BTK (part of B-cell

receptor signaling pathway) inhibitor approved for the treat-

ment of B-cell malignancies.170 In addition, this drug can

also increase the antitumor effect by inhibiting IL-2-indu-

cible T-cell kinase (an important enzyme in Th2 cells),

thereby changing the ratio between Th1 and Th2 cells.171

Importantly, Ibrutinib showed a significant increase in anti-

tumor efficacy when combined with PD-1/PD-L1 inhibi-

tors. However, the biological function of B lymphocytes in

TME of EC is relatively insufficient. The related mechan-

ism needs to be further explored, which will become a new

direction for the treatment of EC.

Natural Killer Cell (NK Cell)

NK cells are very important cells, which are involved in

anti-tumor immunity and related to the good prognosis of

EC.131,172 Impaired NK cell activity is one of the dominat-

ing mechanisms for tumor immune escape. Studies have

shown that in EC TME, the expression of co-suppressor

receptor Tim-3173 in NK cells was up-regulated, and NK

cells overexpressing Tim-3 appeared to be dysfunctional

and suggested poor prognosis.174 The increase of Tim-3 is

related to the increase of the inflammatory factor TNF-α
induced by the NF-κB pathway,174 but the related mechan-

ism remains to be further studied. Tim-3 related pathway

inhibitors based on NK cell immune activity may be a

promising therapeutic direction for EC. In addition, it is

shown in previous studies that NK cells expanded and co-

cultured with special cells could achieve high proliferation

and high cytotoxicity. These NK cells have a stronger

cytotoxic effect on ESCC cells expressing NK cell activa-

tion receptor NKG2D,175 which provides a basis for the

clinical application of NK cells. Of course, more biologi-

cal functions of NK cells need further research.

Tumor Stromal Cells are Imperative Supporters for

TME

Tumor mesenchymal cells mainly include three types of

mesenchymal stem cells (MSCs):176 normal mesenchymal

stem cells, tumor-associated mesenchymal stem cells, and

CAFs. The role of MSCs in tumors is still controversial, but

their supportive role in tumor progression is dominant.177,178

The results of two studies in EC also show that MSCs

promote progression of tumor in vivo,179,180 which is

a promising therapeutic direction, but the research on its

specific mechanism and related effects need to be further

studied.
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CAFs, as the major components of TME interstitial cells,

play a vital role in the process of remodeling TME and

promoting the progression of many types of tumors.181–183

Similarly, CAFs can remodel TME through various mechan-

isms such as promoting angiogenesis, secreting cytokines,

inducing EMT, recombining matrix components, and recruit-

ing inflammatory cells to promote EC progression.184,185 In

the EC field, multiple studies have consistently shown that

CAFs were predictors of poor prognosis.186–189 Common

effector molecules expressed by CAFs, including platelet-

derived growth factor receptor (PDGFRα), PDGFRβ,
smooth muscle actin (SMA), fibroblast activating protein

(FAP), fibroblast-specific protein-1 (FSP1), etc.190 More spe-

cifically, SMA is associated with ESCC T stage progression,

lymph node metastasis, and poor prognosis; FSP1 is asso-

ciated with lower survival rates; PDGFRβ expression is

associated with poorly differentiated tumors; FAP expression

is associated with increased frequency of deaths.186 In addi-

tion, IL-6 cytokines secreted by FAP + CAFs not only

promote ESCC cell growth and migration, EMT, and the

occurrence of drug resistance191,192 but also recruit FoxP3

+ T cells193 and induce M2 polarization of TAMs194 to

promote tumor immunosuppression. The tumor-promoting

effect of IL-6 has been detected in the BE microenvironment

mentioned above,18,19 and it is a vital cytokine in multiple

progression processes of EC. In addition, other signaling

pathways have also been studied. The urokinase plasminogen

activator (uPA) secreted by CAFs promotes the progression

of ESCC through the PI3K/AKTand ERK pathways.195 The

high expression of the transcription factor Twist1 in CAFs

promotes the secretion of CXCL12 itself and the EMT pro-

cess of EC cells through the ERK/AKT pathway.196,197 Two

other important signaling molecules are hepatocyte growth

factor HGF and transforming growth factor β (TGF-β), both
of which are closely related to tumor cell invasion and

metastasis. It has been confirmed that CAFs could express

HGF and TGF-β1, and they promoted the progression and

metastasis of EC through the HGF/Met198 and TGFβ1/Smad

pathways,199,200 which were associated with poor prognosis

of EC.201 Moreover, the mechanism by which TGFβ1 and

HGF play a role is related to the angiogenic effect of

EGFR.202,203 Due to the extensive expression of HGF and

TGFβ in tumor stroma, targeted therapy for corresponding

pathways has been widely studied.204–206 The treatment

direction of EC has a guiding role. In addition, other ther-

apeutic strategies against CAFs, such as infrared photoim-

munotherapy targeted therapy strategies for FAP + CAFs,

have also been proven to be effective.207 Infrared

photoimmunotherapy is a combination of a specific mono-

clonal antibody and a photosensitizer and can produce great

cytotoxicity on cells expressing specific antigens.208 Of

course, the current research is still inadequate. CAFs show

a strong tumor-promoting effect. The researches on the target

of CAFs expression molecules and their corresponding path-

ways will be our new study direction (Table 4).

ECM is a Complex and Integral Part of TME

A tumor cell population is dynamically changing that con-

tinuously reshapes TME to adapt to its own progression.

Matrix reprogramming is an important part of TME

reconstruction,209 and the role of CAFs is essential for

ECM reconstruction.181,210 As the original “soil” for the

survival of tumor and other cells, a variety of ECM proteins

contained in ECM, such as type I collagen, Fibronectin

(FN),211 and Tenascin-C (TNC), can be up-regulated in

tumor.212 Type I collagen is the most abundant protein of

ECM and its role in tumors is still controversial,213 but it is

increasingly believed that it played a major role in promot-

ing tumor progression.214 In a recent ESCC study, cancer

cells can produce cancer-derived type I collagen and inhibit

tumor growth in contrast to previous studies which discov-

ered that CAFs-derived collagen fibers could promote

tumor growth,215 and these two type I collagens appear to

have different molecular weights.216 This result gives us

new insights and treatment directions for EC. Fibronectin

(FN) is a high-molecular-weight glycoprotein component

of the ECM. It has been reported that the high-matrix FN

environment could promote the movement and migration of

ESCC cells through a series of signaling pathways.217 TNC

is an ECM protein secreted by tumor cells and myofibro-

blasts. It mainly promotes the movement and invasion of

cancer cells by inhibiting cell adhesion.218 Studies have

shown that the expression of TNC in ESCC was signifi-

cantly correlated with the expression of C4.4A, which was a

glycolipid-anchored membrane protein associated with

poor prognosis in many human malignancies.218 In addi-

tion, TNC expressed in ESCC can also improve cancer stem

cell characteristics and promote EMT-like changes through

the Akt/HIF-1α axis.219 It is a predictor of poor prognosis in
ESCC and a possible target for treatment.190 In addition, the

high expression of the gene ADAM12-L in ESCC can

promote the activation of focal adhesion kinase (FAK),

and then promote cancer cell metastasis and migration

through the FAK/JNK/c-Jun axis.220 Lysyl oxidase (LOX)

also plays an important role in ECM reconstruction. The

LOX protein family includes LOX and LOX-like 1–4
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(LOXL1–4), whose main function is to maintain the home-

ostasis of the ECM by catalyzing the oxidative deamination

of lysine in matrix proteins.221,222 Current studies in ESCC

have shown that expression of LOX,223,224 LOXL4,225 and

5-LOX226,227 was elevated and predicted shorter survival

and poor prognosis for patients. Its specific mechanism is

not clear. The unique mechanism of action of different LOX

proteins is our future research direction.

MMPs play an important role in tumor ECM remodel-

ing, which can promote tumor spread and metastasis

mainly by regulating the degradation and remodeling of

matrix protein networks. MMPs include matrix proteases,

collagenases (MMP-1, -8, and -13), and gelatinases

(MMP-2 and MMP-9) according to their structural and

functional specificity.228,229 Studies have found that the

expression of apurinic/apyrimidinic endonuclease (APE1)

was abnormally increased in EAC cell lines and induced

ARF6 activity in a redox-dependent manner to up-regulate

MMP-14 (also known as membrane-type matrix metallo-

proteinase MT1-MMP).230 The increased expression of

MMP-14 can activate MMP-2 and then mediate ECM

degradation,231 thereby promoting tumor migration. In

addition, a number of other studies have shown that

MMP-2,232,233 MMP-3,234 MMP-7,235 MMP-9,232,236

MMP-12,237 MT2-MMP,238 and MMMP-16 (namely

MT3-MMP)239 all play negative regulatory roles in the

process of EC through their different mechanisms.

Among the nearly 30 different subtypes of MMPs,

MMP-2 and MMP-9 are most closely related to EC. The

MAPK pathway seems to be the core mechanism regulat-

ing MMP-2 and MMP-9 expression.209,240 In short, ECM

is a space for information exchange and growth between

tumor cell subgroups in tumors. It contains a large number

of signal pathways and involves hundreds of signal mole-

cules. Our current research is still the tip of the iceberg

(Table 4).

The Interaction Between Immune Cells is an Indirect

Promoter of Tumor Progression

In this complex network mechanism of tumor microenvir-

onment, there is also important information exchange

between each immune cell apart from the interaction

between various immune cells and esophageal cancer

cells, which indirectly promotes the progress of esophageal

cancer (Figure 3). For example, a variety of cytokines (IL-4,

IL-6, IL-13) derived from Th-2 can promote the recruitment

Table 4 The Role of CAFs and ECM in the Tumor Microenvironment of Esophageal Cancer

Entry Cancer

Type

Finding Effects on

Tumors

Ref.

CAFs ESCC FAP+ CAFs-derived IL-6 promoted EMT and drug resistance, recruited FoxP3+ T cells, and

induced M2 polarization of TAMs

Acceleration [191–

194]

ESCC uPA secreted by CAFs promotes ESCC progression through the PI3K/AKT and ERK pathways Acceleration [195]

EC The high expression of Twist1 in CAFs promotes the secretion of CXCL12 and EMT through

the ERK/AKT pathway

Acceleration [196,197]

ESCC HGF expressed by CAFs promotes progression and metastasis through the HGF/Met pathway Acceleration [198]

ESCC TGF-β1 expressed by CAFs promotes tumor progression through the TGF-β1/Smad pathway Acceleration [199,200]

ECM ESCC Cancer cells can produce cancer-derived type I collagen with a molecular weight different from

CAFs-derived collagen and inhibit tumor growth

Acceleration [216]

ESCC High matrix FN environment promotes movement and migration of ESCC cells Acceleration [217]

ESCC TNC can also improve cancer stem cell properties and promote EMT-like changes through the

Akt/HIF1α axis

Acceleration [219]

ESCC High expression of ESCC cell gene ADAM12-L can promote FAK activation and promote cancer

cell metastasis and migration through FAK/JNK/c-Jun axis

Acceleration [220]

ESCC Increased expression of LOX, LOXL4 and 5-LOX is associated with poor prognosis Acceleration [223–

227]

EAC Elevated APE1 expression can induce ARF6 activity and up-regulate MMP-14, and up-regulation

of MMP-14 can activate MMP-2 to mediate ECM degradation

Acceleration [230,231]
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of MDSCs in the tumor microenvironment of EC81,89,91 and

the polarization of macrophages into M2 macrophages.94,95

In addition, as an important component of TME, CAFs can

also promote the development of ESCC by secreting cyto-

kines such as IL-6 to recruit Tregs193 and promote the

polarization of M2 macrophages.194 Moreover, MDSCs,

especially MDSCs with high expression of CD38, can

strongly inhibit the cytotoxic effect of activated T cells in

EC.92 The activity of NK cells is also inhibited by MDSCs

through inhibiting NK cell perforin, instead of granular

enzyme through direct contact-dependent pathway.85

Other functions of MDSCs include inducing the activation

of Tregs,86 promoting the differentiation of CAFs,87 etc. The

activated Tregs can further inhibit the antigen-presenting

cells and reduce the secretion of cytokines, thereby indir-

ectly reducing the cytotoxic effect of CTL.158–160

Additionally, the activation of the immune system mediated

by both the familiar specific and non-specific immune sys-

tems plays a crucial part in antitumor immunity. For exam-

ple, as the main cellular component of antitumor immunity,

CTL can be activated by DCs, CD4+T cells, B cells, or NK

cells and other immune cells, so as to further exert its

cytotoxic effect. The infiltration of B cells, NK cells or

DCs has also been reported to predict a good prognosis in

EC.117,131,167,172 Therefore, it is not hard to draw the con-

clusion that there exists a balance and antagonism between

anti-tumor immunity and pro-tumor immunity. With the

progress of tumor, the balance of tumor immunity gradually

shifted to the direction of anti-tumor immunity and finally

became completely unbalanced. Therefore, the enhance-

ment of anti-tumor immunity and the weakening of anti-

tumor immunity will be a promising therapeutic develop-

ment direction. However, for esophageal cancer, especially

for different subtypes of EC (ESCC and EAC), the specific

Figure 3 Immune landscape of immune cell interactions.
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mechanism and degree of these interactions at different

stages of the tumor remain to be explored.

Premetastatic Niche
Metastasis is the leading cause of cancer death and the final

stage of cancer development. Metastasis is a step in which

circulating tumor cells colonize other tissues or organs and

become diffuse tumor cells. However, only 0.01% of circu-

lating tumor cells were reported to successfully colonize and

develop into spreading tumor cells.241,242 The main reason is

that circulating tumor cells are severely affected by the local

microenvironment. The well-known “seed and soil” hypoth-

esis can help us understand this tumor metastasis process:

tumor cells in situ (“seeds”) tend to settle on specific target

organs (“soil”). The target organ microenvironment is

formed before tumor cell metastasis and facilitates the colo-

nization and metastasis of tumor cells, which is the pre-

metastatic niche. The formation mechanism of the niche

before metastasis mainly includes the following points: 1)

Primary tumor secretion factors: tumor-derived secretion

factors,243 EVs,244 etc. 2) Bone marrow-derived cell infiltra-

tion: MDSCs,245 Tregs or Th cells,246 TAMs,247 CAFs,248

etc. 3) Remodeling of the matrix microenvironment.249

Although research on the ecology before metastasis has

been gradually paid attention to, its relationship with EC is

still insufficiently understood.

It is well known that lymph nodes are the most common

metastatic organs of EC, and lymphnodemetastasis is themost

important prognostic factor of EC.250 Several studies have

shown that this is closely related to the dense lymphatics and

special lymphatic drainage directions in the anatomy of the

esophagus.251,252 However, EC lymph node metastasis is not

simply a process of direct cancer cell migration. Otto et al253

reported that the lymph node niche has changed significantly

before EC lymph nodemetastasis. And another previous study

found that ESCC could inhibit the cytotoxicity of lymphocytes

in lymph nodes through factors other than metastasis.254 Both

of these results have hinted at the existence of the lymph node

pre-metastasis niche in EC. Otto et al253 also showed that the

immune status of lymph nodes in patients with pN0 and pN1

was completely different. The lymph nodes in pN0 group

showed obvious immune activation, while the non-metastatic

lymph nodes in pN1 showed reduced immune response. A

clear pattern of immune response activation was observed in

the pN0 group. In contrast, lymph nodes in the pN1 group

exhibited significant suppression patterns such as reduced

immune response, decreased proliferation, and increased apop-

tosis. This finding is of great significance. It is assumed that in

the relatively early stage of EC, tumor antigen drainage to

lymph nodes led to the development of anti-tumor immunity.

However, with the immune regulation of tumor secretion

factors and the recruitment of immunosuppressive cells, the

immune status of the lymph nodes can be transformed from an

anti-tumor response to a tumor-promoting mode until the first

colonization of the tumor cells, the formation of micro-metas-

tases. It has also been found in previous studies that melanoma

cells injected directly into lymph nodes can induce CD8 +

cytotoxic T cell responses and exert anti-tumor immunity.255

Similarly, the formation of advanced micro-metastasis also

implies the formation of an immunosuppressivemicroenviron-

ment in lymph nodes.256,257 In summary, the formation of the

microenvironment before lymph node metastasis is the only

precondition for lymph node metastasis. The study of its

mechanism about action can not only provide us with new

therapeutic targets to prevent cancer metastasis but also find

biomarkers before lymph node metastasis. Guide the scope of

lymph node dissection during surgery, whichwill be one of the

development directions of our treatment.

Conclusion
In this review, we divide the dynamic evolution of the

microenvironment into three stages: tumor precursor

microenvironment, TME, and premetastatic niche. The

related research progression in EC is reviewed separately.

Under high-risk environmental factors, such as gastroeso-

phageal reflux, drinking, smoking and eating overheated

food, metaplasia, and dysplasia can occur in normal eso-

phageal epithelium. At the same time, environmental fac-

tors have also led to a partial remodeling of the epithelial

microenvironment. Mild atypical epithelial hyperplasia

can continuously accumulate malignant mutations and

form the tumor precursor microenvironment under the

induction of high-risk environmental factors. When it

reaches a certain stage (with the removal of atypical

hyperplasia in patients with high-risk environmental fac-

tors still irreversible), the tumor precursor cells and micro-

environment can form a vicious cycle. For example, ESD

can increase epithelial cell mutation and heterogeneity in

an acidic microenvironment, and the increase in mutations

promotes the formation of a highly proliferative state of

cells and can produce more acidic metabolites, thereby

forming a vicious cycle and eventually leading to the

appearance of cancer. Therefore, the formation of malig-

nant microenvironment changes dynamically with the

change of precancerous cells in the microenvironment,

which has also been confirmed in a small amount of
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relevant literature on breast ductal carcinoma in situ

microenvironment.258,259 After tumorigenesis, tumors and

tumor-related cells can remodel the distal metastatic envir-

onment by remote regulation such as secretion of cyto-

kines or exosomes to prepare for metastasis while tumor

cells continue to reshape TME. In EC metastasis, we

mainly explored the microenvironment of lymph node

metastasis and demonstrated that the pre-metastatic ecol-

ogy of lymph nodes occurred before tumor cell coloniza-

tion. All in all, understanding the entire dynamic evolution

of the microenvironment is important for tumorigenesis

and development. Of course, research on TME is helpful

for targeted treatment of cancer. However, the study of the

early tumor precursor microenvironment will become an

important direction for cancer prevention, and the study of

the pre-metastasis niche will become an important method

of re-evaluating treatment strategies and preventing metas-

tasis. Research at these stages is equally significant.

Some aspects need to be pointed out that may guide the

future development of the EC field. 1). Regarding the EC

precursor microenvironment, most of the current studies

focus on the microenvironment of EAC precancerous lesion

(BE), while little is known about the microenvironment of

ESCC precancerous lesion. 2). We mainly discussed the asso-

ciations between primary but not secondary ECmicroenviron-

ment and tumor. The significance of secondary EC for this

study lies in: whether there are some differences between the

microenvironment of secondary EC and that of primary EC.

More importantly, when other tumor cells colonize the esopha-

geal tissue, whether the premetastatic niche of the esophagus

has formed and plays a role in the process of secondary

metastasis. 3).With respect to TME,most of the current studies

focus on ESCC or all types of EC. However, it is essential to

separate studies on ESCC and EAC, andmore attention should

be paid to the research on EAC. In general, TME is a relatively

complex, wide-ranging, and promising field. However, there

are still a lot of gaps in the field of EC. More research and

exploration in this area is essential and critical for us to further

elucidate the occurrence and development of EC.
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