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Objective: The aim of this study was to explore the signatures of oral microbiome

associated with OSCC using a random forest (RF) model.

Patients and Methods: A total of 24 patients with OSCC were enrolled in the study. The

oral microbiome was assessed in cancerous lesions and matched paracancerous tissues from

each patient using 16S rRNA gene sequencing. Signatures of mucosal microbiome in OSCC

were identified using a RF model.

Results: Significant differences were found between OSCC lesions and matched paracan-

cerous tissues with respect to the microbial profile and composition. Linear discriminant

analysis effect size analyses (LEfSe) identified 15 bacteria genera associated with cancerous

lesions. Fusobacterium, Treponema, Streptococcus, Peptostreptococcus, Carnobacterium,

Tannerella, Parvimonas and Filifactor were enriched. A classifier based on RF model

identified a microbial signature comprising 12 bacteria, which was capable of distinguishing

cancerous lesions and paracancerous tissues (AUC = 0.82). The network of the oral micro-

biome in cancerous lesions appeared to be simplified and fragmented. Functional analyses of

oral microbiome showed altered functions in amino acid metabolism and increased capacity

of glucose utilization in OSCC.

Conclusion: The identified microbial signatures may potentially be used as a biomarker for

predicting OSCC or for clinical assessment of oral cancer risk.

Keywords: oral squamous cell carcinoma, microbiome, random forest machine learning,

predicted functions

Introduction
Oral cancer is a fatal malignancy and the sixth most common cancer worldwide.

Oral squamous cell carcinoma (OSCC) is the most frequently occurring oral cancer,

accounting for over 90% of all oral cancers.1 In recent years, the incidence of

OSCC has shown an increasing trend, which constitutes a major global health

problem. OSCC is associated with a high rate of relapse, unpredictable metastasis

and oral maxillofacial damage.2,3 The 5-year survival rate of patients with OSCC is

approximately 50–60%.3

Mounting evidence supports the association between oral microbiome and

OSCC. It has been suggested that the oral microbiome plays a role in the develop-

ment of oral cancer.4–6 There are three potential mechanisms by which the oral

microbiome is involved in the pathogenesis.6 Firstly, oral bacteria can induce

chronic inflammation. Inflammatory mediators produced from the oral mucosa
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promote cell hyper-proliferation, mutagenesis, oncogene

activation and angiogenesis, leading to carcinogenesis.

Secondly, certain oral bacteria are directly involved in

the development of OSCC through enhancing cell prolif-

eration, causing cytoskeletal rearrangement and activation

of NF-κB pathways, and inhibiting cellular apoptosis.

Finally, some metabolites from oral bacteria were shown

to possess carcinogenic potentials.6

A number of bacteria from the oral microbiome have been

shown to be associated with OSCC. The relative abundance of

Fusobacterium sp., Porphyromonas gingivalis, Streptococcus

sp., Peptostreptococcus sp., and Prevotella sp. are increased in

OSCC.7,8 Zhao et al reported significant enrichment of

Fusobacterium, Dialister, Peptostreptococcus, Filifactor,

Peptococcus, Catonella, and Parvimonas in OSCC patients

compared with matched controls using linear discriminant

analysis (LDA) effect size (LEfSe) analysis.9 In a prospective

study, involving examination of mouth swab microbiome,

Parvimonas micra and Neisseria sicca were associated with

reduced risk of oral cavity cancer.10 The identified OSCC

associated oral bacteria, however, vary among studies. This is

partially attributable to the variations between studies with

respect to the sample types used for the analysis of oral micro-

biome. There are substantial variations in the composition of

the oral microbiome between various sample types including

tissue, saliva, and mouth swab.11 Few studies have character-

ized the OSCC related oral microbiome from tissue, which is

closely associated with oral mucosa.

Features of the oral microbiome associated with OSCC

have been explored by comparing OSCC patients with healthy

controls, or by comparing tumor sites with the surrounding

normal tissue.9,10 It has been alerted microbial diversity and

a distinctive profile of the oral microbiome in OSCC.8–10

Many bacteria of the oral microbiome are enriched or depleted

in OSCC.8,9 Recent studies have also revealed that the collec-

tive behaviors of the microbial community are more closely

related to the development of cancer in comparison with

individual bacteria genera.12 To further explore how the oral

microbiome is involved in the carcinogenic process, it is of

importance to identifying signatures discriminative for the

OSCC associated oral microbiome. The random forest (RF)

method is a machine learning program capable of identifying

an optimal set of variables with high discriminative power

from a large number of dependent or independent variables. It

is known for its ability to render complex dependency patterns

between the outcome and the covariates.13 The method has

been widely used to identify microbial signature for colorectal

carcinoma, gastric cancer, and pancreatic cancer.14–16 In this

study, we applied the RFmodel to explore the signatures of the

OSCC associated oral microbiome and validated these in an

independent cohort.

Patients and Methods
Patients and Sample Collection
A total of 24 patients at different stages of OSCC were

enrolled in the study (Table 1). The OSCC stages were classi-

fied according to the American Joint Committee on Cancer

(AJCC) staging manual (8th edition).17 Of these patients, 19

were male. The average age of patients was 61.1 ± 12.4 years.

None of the enrolled subjects had history of betel chewing, or

history of diabetes mellitus or other severe complications

including heart, liver, or renal failures. These patients had

not taken antibiotics for at least two weeks immediately prior

to sampling. Tissues from the site of tumor and paracancerous

tissue from 2 cm outside the edge of the tumor were sampled.

The paracancerous tissues are histologically normal. All sam-

ples were stored at –80°C until further processing. This study

was approved by the Research Ethics Committee of Qingdao

Municipal Hospital, China. Prior to sample collection, written

informed consent for the study was obtained from all partici-

pants. All experiments were performed in accordance with

approved guidelines and regulations of the institution.

Analyses of the Oral Microbiome
To analyze the microbial communities of the oral mucosa,

genomic DNAwas extracted from the oral mucosa samples

as previously reported.18 The variable V3–V4 region of the

16S rRNA gene was PCR amplified with primers 341F/806R

to generate the amplicon libraries. Sequencing was per-

formed on an Illumina PE250 platform (Illumina, Hayward,

CA, USA). A total of 16,333,787 paired-ends reads were

obtained. After quality control and filtration, 2,163,267 reads

were produced with an average of 45,068 reads per sample.

The reads were analyzed using UPARSE.19 Following global

trimming at 250 nucleotides, reads were dereplicated, and

singletons were discarded. Subsequently, reads were clus-

tered into operational taxonomic units (OTUs) assuming

97% identity. Chimeric reads were then removed.

Taxonomy assignment was performed using UClust.20

Analyses of alpha and beta microbial diversity were con-

ducted as described previously.18 Comparisons of the relative

abundance of taxa between groups were performed using

version 1.0 of LEfSe.21 A LDA value greater than 3 with

a p value less than 0.05 was considered to be statistically

significant. To analyze the correlation network, Spearman
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correlation coefficients were computed between the genera.

Correlations that had an absolute Spearman coefficient value

greater than or equal to 0.6 with a p value less than 0.05 were

transformed into links between two genera in the genus net-

work. Cytoscape v3.7.1 was then used to construct network

figures. PICRUSt (v1.1.1) was used to predict the functions

of the microbial community according to the reference data

set of GreenGenes 16S rRNA database (v13.5).22 The accu-

racy of the predicted functions was assessed by the nearest

sequenced taxon index (NSTI). The predicted functions were

categorized with KEGG orthology. STAMP (v2.1.3) was

used to compare functional differences between cancerous

and paracancerous groups.23

Statistical Analyses
To identify microbial signatures capable of distinguishing

cancerous lesions from paracancerous lesions, a RF model

was built using the AUC-RF algorithm.24 The input variables

comprised the relative abundance of taxa. A taxon was

included only if it was present in more than 20% samples

and had a relative abundance of greater than 0.05%. A 20-

times repeated 10-fold cross-validation of the RF model was

performed. The performance of the RF model was demon-

strated by receiver operating characteristic (ROC) curve

analysis.25 Validation of OSCC associated bacteria was

explored in an independent cohort in Shanghai (China) with

80 samples, of these, 40 samples were from OSCC surface

lesion and 40 samples were from anatomically matched nor-

mal sites (BioProject accession number: PRJNA362794).9

The Mann–Whitney U-test was performed to detect sig-

nificant differences in alpha diversity or relative abundance

between disease groups. Significant P values were corrected

for multiple testing using the Benjamini-Hochberg procedure,

with a cut-off false discovery rate (FDR) – adjusted P value

lower than 0.1.26Constrained PCoA is aflexiblemethodwhich

allows for constrained ordination on the basis of any distance

or dissimilaritymeasure.27 It was performed inR to explore the

influence of clinical stage on the microbiome of OSCC.

Data Availability
The next-generation sequencing datasets have been sub-

mitted to NCBI (https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA597251/). The BioProject accession number is

PRJNA597251.

Table 1 Clinical Characteristics of 24 Patients with Oral Squamous Cell Carcinoma

Patients Sex Age Location of Tumor cTNM Clinical Stage Smoking Status Alcohol Consumption

1 M 53 Mouth-floor T2N0M0 II NS N

2 F 80 Cheek T2N1M0 III NS N

3 F 47 Tongue T2N2M0 IV NS N

4 M 83 Tongue T2N0M0 II FS N

5 M 60 Oropharynx T2N0M0 II CS D

6 M 54 Gingiva T2N0M0 II FS D

7 F 62 Tongue T1N0M0 I NS N

8 M 66 Cheek T2N0M0 II FS D

9 M 59 Tongue T3N0M0 III CS D

10 M 68 Gingiva T2N0M0 II CS N

11 M 68 Tongue T2N0M0 II NS N

12 M 75 Tongue T2N1M0 III NS N

13 M 42 Tongue T2N1M0 III FS N

14 M 63 Tongue T2N1M0 III NS D

15 M 59 Cheek T2N0M0 II FS D

16 F 74 Tongue T2N0M0 II NS N

17 F 54 Gingiva T2N0M0 II NS N

18 M 81 Cheek T2N0M0 II FS D

19 F 63 Cheek T1N1M0 III NS N

20 F 56 Tongue T1N0M0 I NS N

21 M 42 Tongue T1N0M0 I CS N

22 M 74 Cheek T1N0M0 I NS D

25 M 47 Tongue T2N1M0 III CS N

26 M 58 Cheek T2N0M0 II FS D

Abbreviations: M, male; F, female; NS, non-smoker; CS, current smoker; FS, former smoker; D, alcohol drinker; N, non-alcohol drinker.
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Results
Differences in Microbial Community

Between Cancerous and Paracancerous

Tissues
The microbial community between the cancerous lesions (C)

and matched paracancerous tissues (P) was compared in 24

patients. Both Chao1 and Shannon indices which estimate the

biodiversity of microbiome, were not significantly different

between group C and group P (P > 0.05 for both) (Figure 1A

and B). On multiple linear regression analyses, the alpha

diversity indices of the microbiome showed no association

with age, sex, smoking, alcohol consumption, degree of differ-

entiation, or clinical stage in either group C or group

P. Principal coordination analyses (PCoA) showed that the

microbial community structure of group C was distinct from

that of group P (P = 0.048) (Figure 1C). Constrained PCoA

analyses were performed to explore the influence of clinical

stage on the OSCC microbiome. The results demonstrated an

apparent separation between the clinical stage I, II, and III in

group C, especially between stages II and III. This suggested

the progression of OSCCwas associated with alteration of oral

mucosa microbiome (Figure 1D). In group P, however, the

microbial community structure was not discernible in the plots

between stages (Figure 1E).

Altered Composition of the Microbiome

in OSCC
Compositional analyses showed the phyla of Proteobacteria,

Firmicutes, Bacteroidetes and Fusobacteria were dominant

in the microbiome of both groups (Figure 1F). The relative

abundance of Firmicutes, Bacteroidetes, Fusobacteria, and

Spirochaeteswas increased in cancerous lesions. Differences

with respect to the relative abundance of Fusobacteria

(9.80% vs 1.70%) and Spirochaetes (3.63% vs 0.18%) were

statistically significant using Mann–Whitney U-test (P =

0.043 and 0.032, FDR-adjusted P = 0.089 and 0.083, respec-

tively). The abundance of Proteobacteria, Actinobacteria,

andCyanobacteria in cancerous lesions was lower compared

to paracancerous tissues. The differences of relative abun-

dance of Actinobacteria (0.77% vs 1.78%) and

Cyanobacteria (0.23% vs 1.33%) were statistically signifi-

cant (P = 0.021 and P = 0.013, FDR-adjusted P = 0.067 and

0.051, respectively). At the genus level, LEfSe analyses

identified 15 genera which had a LDA score >3.0

(Figure 2A). The relative abundance of Fusobacterium,

Treponema, Streptococcus, Peptostreptococcus, Carno

bacterium, Tannerella, Parvimonas, and Filifactor were

increased in cancerous lesions (Figure 2B). Of these,

Fusobacterium had the highest LDA score. In contrast, the

relative abundance of Streptophyta, Brevundimonas,

Paenibacillus, Microbacterium, Desulfovibrio, Mucisp

irillum, and Arthrobacter were decreased in cancerous

lesions (Figure 2C).

Microbial Signatures Associated with

OSCC
To determine microbial signatures capable of discriminating

cancerous lesions from paracancerous tissues, an RF classify-

ing model was built with the AUC-RF algorithm. The results

showed a minimal set of 12 bacteria genera that maximally

differentiated cancer sites from paracancerous sites. It con-

tainedMicrobacterium, Streptococcus, Brevundimonas, Pepto

streptococcus, Streptophyta, Paenibacillus, Actinomyces,

Parvimonas, Mucispirillum, Arthrobacter, Rhizobium and

Fusobacterium (Figure 3A and B). Most of these (10/12)

have been identified to have a LDA value > 3.0 by the

LEfSe analyses, including four genera (Fusobacterium,

Parvimonas, Peptostreptococcus and Streptococcus) enriched

in cancerous lesions and six depleted genera (Arthrobacter,

Brevundimonas, Microbacterium, Mucispirillum, Paeni

bacillus, and Streptophyta). RF models trained with this opti-

mal set of features resulted in an out-of-bag error rate of

33.33%. To assess the model classifying accuracy, a 20-

times repeated 10-fold cross-validation was performed. The

AUC value from cross-validations was 0.82 [95% confidence

interval (CI): 0.70–0.94] (Figure 3C). This set of 12 genera

was further validated in an independent Chinese Shanghai

cohort with AUC of 0.69 (95% CI: 0.54–0.80) (Figure 3D).

The results suggested that these oral mucosal bacteria asso-

ciated with OSCC may predict the risk of OSCC.

Co-Occurrence Network in OSCC
The co-occurrence network differed substantially between

cancerous lesions and paracancerous tissues (Figure 4).

The network was simplified in group C with a decreased

number of nodes (Table 2). The network density and

average degree were also lower in group C, which demon-

strated a reduction in the network complexity. The cluster-

ing coefficient of the network was lower, leading to an

increased number of components and more fragmented

sub-networks in group C (Figure 4).
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Predicted Functions of the OSCC

Microbiome
Functional capacities of the OSCC microbiome were pre-

dicted using PICRUSt. Compared with paracancerous tis-

sues, the average relative frequencies of pathways related

to metabolism, especially amino acid metabolism, were

decreased at KEGG levels 1 and 2 (Figure 5A and B).

Furthermore, reduced relative frequencies in OSCC were

found for pathways of KEGG level 3 related to amino acid

metabolism including phenylalanine metabolism, trypto-

phan metabolism, arginine and proline metabolism, valine,

leucine and isoleucine degradation, lysine degradation and

tyrosine metabolism (Figure 5C). Nevertheless, the rela-

tive frequencies of methane metabolism, glucose-related

Figure 1 Profiles of the oral microbiome in OSCC. The alpha diversity was estimated using Chao1 (A) and Shannon (B) indices. PCoA plots for comparing community

structure between paracancerous and cancerous tissues (C), between clinical stages in cancerous tissues (D) and paracancerous tissues (E). The composition of microbiome

at the phylum level was compared between paracancerous and cancerous tissues (F). (P) paracancerous tissues; (C) cancerous tissues.
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metabolism, such as phosphotransferase system (PTS) and

glycolysis, were significantly enriched in cancer lesions

(Figure 5D). These alterations suggested functional disor-

ders of amino acid metabolism and increased capacity of

glucose utilization in the microbiome of OSCC. To vali-

date these results, the predicted functions were compared

between two randomized groups. The results showed no

significant differences between two groups at KEGG

levels 1–3 (Supplementary Table 1).

Discussion
Our results demonstrated significant differences in the β-
diversity (including PCoA and constrained PCoA analysis)

of the oral microbiome between cancerous and paracancerous

tissues. These findings indicate altered community structure of

the oral microbiome in cancerous lesions. However, the α-

diversity including Chao1 and Shannon indices showed no

significant differences. Consistent with our results, previous

studies have found no significant differences in α-diversity

between cancerous lesions and paratumoral mucosa in patients

with colorectal cancer.28 Constrained PCoA analyses demon-

strated an apparent separation among the different clinical

stages in cancerous lesions of OSCC. It should be noted that

the sample size in different stages was small. Thus, the

observed association between variations of the oral micro-

biome and cancer progression needs to be demonstrated in

studies with a large sample size. Nonetheless, in a previous

study, the oralmicrobiome in patientswith stage IVOSCCwas

different from that in healthy controls.29 The microbiome

communities showed a progressive shift with the progression

Figure 2 LEfSe analyses of microbiome composition between paracancerous and cancerous tissues. Bacteria genera enriched in cancerous tissues had a positive LDA score,

while those depleted had a negative score. Bacteria with LDA scores >3 are shown (A). Relative abundance of genera enriched in cancerous tissues (B). Relative abundance
of genera enriched in paracancerous tissues (C). *P < 0.05; **P < 0.01; ***P < 0.001. All FDR-adjusted P values were <0.05.
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ofOSCC stage.29 Thesefindings are consistent with our results

wherein the community structure of the oral microbiome was

found to changes with the stages of OSCC, indicating the

potential involvement of the oral microbiome in cancer

progression.

In recent studies, microbial signatures identified using RF

machine learning algorithm were used to predict different

diseases.14–16 The identified signatures can be viewed as

a minimized representation of the microbial community for

exploring mechanisms of microbial dysbiosis and targets for

manipulating the dysbiotic microbiome. In a study by

Zackular et al, the final numbers of colon tumor were quanti-

tatively predicted on the basis of the initial composition of the

gut microbiome using RF algorithm.30 In another report,

a minimal set of 22 viral genera were identified that

differentiated CRC patients from controls and predicted

CRC outcomes.14 An RF model for predicting exacerbation

of radiation-induced mucositis was generated using oral

microbiome, it showed a high predictive accuracy (AUC =

0.89).31 Currently, few studies have been conducted to identify

the microbial signature in OSCC. Our study revealed an RF

model consisting of 12 relevant bacteria with differential

abundance between the cancerous lesions and paracancerous

tissues of OSCC. The trained model was capable of predicting

OSCC with considerably high accuracy (AUC = 0.82).

Moreover, the validation in an independent cohort showed

a moderate accuracy. Monitoring the composition and abun-

dance of these 12 bacteria may help predict the risk of OSCC,

facilitate early diagnosis and treatment of OSCC and help

improve the prognosis of OSCC.

Figure 3 Identification of microbial signature associated with OSCC. The random forest model was constructed using AUC-RF algorithm based on bacteria which were

present in more than 20% samples and had a relative abundance of over 0.05%. The model containing 12 genera was selected as the optimal model based on the highest

OOB-AUC value obtained from the backward elimination process performed using the AUC-RF algorithm with the median decrease Gini (MDG) importance measure (A).

MDG of selected genera in the optimal set (B). The ROC curve of the optimal model for classifying cancerous tissues from paracancerous tissues (C). The ROC curve of

validation in a independent cohort in Shanghai (D).
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In our study, the LDA scores of 15 genera were >3.0

when comparing the oral microbiome of cancerous lesions

with that of paracancerous tissues. Furthermore, these

bacteria showed differential abundance between the two

groups, suggesting a close association between these bac-

teria and OSCC. The majority (10/12) of bacteria in the

optimal set identified by RF analyses were contained in

these 15 bacteria genera. The highly consistent results

between these analyses demonstrate that variations of the

optimal set of bacteria reflect the dysbiotic features of the

oral microbiome associated with OSCC, accounting for

remarkable capacity of the set to discriminating OSCC

from normal tissues. Of the optimal set of bacteria,

Fusobacterium, Parvimonas, Peptostreptococcus and

Streptococcus were enriched in cancerous lesions. The

association of these four bacteria with OSCC has been

reported. It has been found an increase in the abundance

of Fusobacteria in OSCC, especially in the late stage.11,32

A significant enrichment of Fusobacterium,

Peptostreptococcus, Peptococcus and Parvimonas in

OSCC surface lesions has been demonstrated.9,33

Variations in the abundance of Peptostreptococcus and

Parvimonas in the salivary microbiome have been

observed between normal individuals, oral precursor

lesion and cancer patients.34 Infection with S. anginosus

occurs frequently in OSCC.35 Species of these genera have

been isolated from the oral tumor and metastatic lymphatic

nodes.36,37 These results support a close association

between these enriched bacteria and OSCC. In addition,

these enriched bacteria may have carcinogenic potential.

Previous studies have shown that F. nucleatum may induce

tumorigenesis through the inflammatory NF-κB signaling

pathway.38,39 F. nucleatum expresses the adhesion mole-

cule FadA which binds to E-cadherin on epithelial cells,

inhibiting its tumor-suppressor activity.40 Streptococcus

spp. possesses alcohol dehydrogenase activity leading to

production of the carcinogenic acetaldehyde, which is

potentially involved in the occurrence of oral cancer.41

These findings suggest that our RF analyses identified

a group of bacteria with carcinogenic potentials enriched

in OSCC. In addition to these bacteria, we also found

depletion of six bacteria genera in OSCC. Further studies

are required to unravel the causes of variations in the

abundance of these bacteria and their roles in

carcinogenesis.

Bacterial interaction is a determinant of the home-

ostasis of the microbiome. Studies have shown reduced

network complexity in peritumoral or tumoral tissues of

the stomach in comparison with normal gastric

mucosa.42 In our study, strongly interacted genera were

picked up according to |r| ≥0.6 to construct microbial

Figure 4 Correlation network in paracancerous tissues (A) and cancerous tissues

(B). The correlation coefficient was calculated with Spearman’s rank correlation

test (|r| ≥0.6). Cytoscape was used for network construction.

Table 2 Features of Co-Occurrence Network of the Oral

Microbiome

Parameters P (n = 24) C (n = 24) P values

Clustering coefficient 0.694±0.273 0.474±0.345 3.55E-04

Connected components 2 2 –

Average degree 13.970±7.606 7.935±6.222 6.83E-06

Number of nodes 66 62 –

Average Shortest Path Length 1.764±0.486 3.255±0.779 1.34E-17

Degree Centrality 0.215±0.117 0.130±0.102 9.46E-05

Closeness Centrality 0.601±0.131 0.334±0.135 1.34E-17

Betweenness Centrality 0.024±0.030 0.039±0.060 0.785

Notes: –, not applicable; P, paracancerous tissues; C, cancerous tissues.
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network. Our results demonstrated a simplified micro-

bial network in cancerous lesions of OSCC, with the

reduction in the number of nodes, network density,

average degree, and clustering coefficient in cancer

sites, suggesting fragmented and simplified network.

These findings indicated the loss of certain bacterial

interactions in OSCC, leading to disruption of the home-

ostasis of oral microbiome. However, a recent study

found increased network complexity in OSCC.9 The

contradictory results may be attributed to the difference

in the cut-off value of correlation coefficient used bac-

terial species for the construction of microbial network.

The functional profile in the cancer-associatedmicrobiome

shows substantial changes. In a previous study, the functions

related to protein and amino acid metabolism (such as valine,

leucine and isoleucine, phenylalanine, tyrosine and tryptophan

biosynthesis) showed an inverse association with OSCC

progression.29 Similar resultswere obtained in a study of saliva

metabolomics wherein phenylalanine metabolism was found

down-regulated in OSCC.43 Consistent with this, in our study,

the functional prediction of oral bacterial communities showed

a significant decrease in genes involved in amino acid meta-

bolism (such as phenylalanine metabolism, tryptophan meta-

bolism, arginine, and proline metabolism) in OSCC lesions.

However, methane metabolism and glucose-related metabo-

lism (such as PTS and glycolysis) were significantly enriched

in cancer lesions. Tryptophan metabolism is associated with

the evasion of immune surveillance by cancer cells.44

Figure 5 Differential functions predicted using PICRUSt between paracancerous and cancerous tissues. The function of metabolism at level 1 in KEGG pathway (A) and

amino acid metabolism at level 2 (B). The decreased (C) or increased (D) relative frequency of functions of amino acid metabolism at level 3 in cancerous tissues.

Differences between groups in the predicted functions were compared using STAMP. Statistical differences are considered when P < 0.05.
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Decreased levels of tryptophan were shown to promote the

generation of immune-suppressive T cells promoting cancer

development.45 Cancer cells appear to utilize glycolytic meta-

bolism for energy production and precursors for the increased

rate of anabolic processes.46 These suggest the gene functional

disorders of amino acid metabolism and increased capacity of

glucose utilization in the microbiome are associated with

OSCC.

In summary, this study revealed dysbiosis in OSCC fea-

turedwith functional and compositional changes.We identified

a microbial signature comprising 12 bacteria associated with

OSCC, which may be used as a biomarker for clinical predic-

tion of the risk ofOSCC. Further studies are required to explore

the potential clinical application of the microbial signature.
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