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Purpose: Ventilator-associated pneumonia (VAP) is a nosocomial infection resulting in 

significant morbidity and mortality. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus 

aureus (S. aureus) are pathogens associated with VAP. Silver (Ag) coating of endotracheal 

tubes (ETTs) reduces bacterial colonization, however titanium dioxide (TiO
2
) coating has not 

been studied.

Methods: Five types of ETT coatings were applied over silica layer: Ag, solgel TiO
2
, solgel 

TiO
2
 with Ag, Degussa P25 TiO

2
 (Degussa TiO

2
), and Degussa TiO

2
 with Ag. After ETTs were 

incubated with P. aeruginosa or S. aureus; colonization was determined quantitatively.

Results: Pseudomonas aeruginosa and S. aureus grew for 5 days on standard ETTs. Compared 

to standard ETTs, P. aeruginosa growth was significantly inhibited by solgel TiO
2
 with Ag at 

24 hours, and by Degussa TiO
2
 with Ag at 24 and 48 hours after inoculation. No significant 

difference in S. aureus growth was observed between the control and any of the five coatings 

for 5 days.

Conclusion: In vitro, solgel TiO
2
 with Ag and Degussa TiO

2
 with Ag both attenuated 

P. aeruginosa growth, but demonstrated no effect on S. aureus colonization. Further studies 

using alternative coating and incorporating UV light exposure are needed to identify their 

potential utility in reducing VAP.

Keywords: ventilator-associated pneumonia, Degussa titanium dioxide, solgel titanium dioxide, 

quantitative culture

Introduction
Ventilator-associated pneumonia (VAP) is one of the most common nosocomial infec-

tions among intensive care unit patients, which prolongs ventilation and hospitalization, 

resulting in significant morbidity, mortality and medical costs.1–3 Researchers have 

developed strategies to prevent VAP, including controlling gastric pH, intratracheal 

intubation with a high-pressure endotracheal tube (ETT) cuff, continuous subglottic 

suction to prevent microaspiration, promoting oral hygiene with chlorhexidine, and 

semi-recumbent positioning.4–9

One strategy to reduce VAP is to treat the ETT with an antiseptic agent to control 

ETT biofilm formation.10,11 A biofilm is an aggregate of a bacterial community attached 

to a solid surface and encased in an exopolysaccharide matrix, making it resistant to 

antibiotic penetration.12 Biofilm formation is most prominent in the distal third of the 

ETT and can occur as early as sixty hours following endotracheal intubation.13
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Due to silver’s antimicrobial properties, Pacheco-Fowler 

and colleagues studied chlorhexidine and Ag carbonate 

impregnated ETTs in an in vitro model and observed that 

bacterial growth of S. aureus, P. aeruginosa, and other 

organisms was attenuated.14 Similarly, Rello et al found that 

bacterial colonization was delayed for seven days in adults 

intubated with Ag-coated ETTs compared with standard 

ETTs,15 and Kollef and colleagues concluded a statistically 

significant reduction in the VAP incidence in a randomized 

multicenter trial.16

Titanium dioxide is widely used as an antimicrobial 

agent, but it is not commonly employed in the medical set-

ting. In a process known as photocatalysis, TiO
2
 is activated 

into potent oxidative species when exposed to UV light, 

with antiviral, antibacterial as well as fungicidal actions.17 

Recent, investigations have suggested that the photocatalytic 

 activity is important in destroying a range of bacteria 

 including S. aureus and P. aeruginosa in aqueous solutions.18 

 Photocatalytic activity also is implicated in the inhibition 

of biofilm formation on TiO
2
 based dental implants.19,20 In 

view of these antimicrobial actions it is plausible that TiO
2
-

 coating of ETTs, potentially in combination with UV light, 

may sterilize ETTs in patients’ airways, thereby reducing 

the risk of VAP.

We conducted a pilot study of bacterial growth 

behavior on TiO
2
-coated ETTs without UV exposure to 

evaluate the antimicrobial effect of TiO
2
 on polyvinyl 

chloride (PVC) which is used to manufacture ETTs. Initial 

experiments examined TiO
2
 without UV light exposure 

for two reasons. First, the Ag and TiO
2
 combination has 

not been studied on PVC material. Second, if the Ag and 

TiO
2
 coating has antimicrobial activity without photo-

catalysis, this would reduce potential toxicity from UV 

exposure. The objective of this study was to determine 

if TiO
2
-coated ETTs with or without Ag would reduce 

bacterial colonization by two common VAP pathogens (ie, 

P. aeruginosa or S. aureus) in an in vitro model compared 

with standard ETTs.

Material and methods
Solgel TiO2 synthesis
Sols of TiO

2
 were made using a method adapted from Mills 

and colleagues.21 A solution of 10 mL titanium isopropoxide 

(AC19470 98+%; Acros Organics, Geel, Belgium) in 2.32 g 

glacial acetic acid (A465-250; Fisher Chemical, Pittsburgh, 

PA), was stirred into 60 mL deionized water acidified with 

0.59 g concentrated nitric acid (S719721; Fisher Chemical). 

The reaction solution was then heated rapidly and held at 

80°C for 8 hours. The solution was concentrated by heating 

at 150°C to 11 wt% TiO
2
 followed by dilution with ethanol 

(AC61510; Acros Organics) to obtain a translucent white sol 

containing 6 wt% TiO
2
 sol.

Endotracheal tubes
The inner lumens of the ETTs were first coated with silica 
(SiO2) which served as a passivating layer to prevent the 
TiO2 from degrading the polyvinyl chloride (PVC) and to 
improve surface wettability by the subsequently applied 

TiO
2
 coatings. The SiO

2
 layer was applied using a nebulizer 

spray of 15 wt% colloidal SiO
2
 in deionized water through 

the ETT, through a custom-designed nozzle, for 1 minute 

with an air flow rate of 10 liters per minute. The ETT was 

then dried with 85°C air for 1 minute.

The respective TiO
2
 and Ag treatments are summarized 

in Table 1. Five types of coatings were applied over the SiO
2
 

layer (Figure 1): 1) solgel TiO
2
, 2) solgel TiO

2
 with Ag, 

3) Degussa TiO
2
 (Evonik Degussa, Parsippany, NJ, USA), 4) 

Degussa TiO
2
 with Ag, and 5) Ag (not shown in Figure 1). 

Each of the coating solutions A–D had 0.19 wt% TiO
2
 on a 

dry weight basis. Water and ethanol were used as solvents 

in variable ratios for each solution. Solgel TiO
2
 was used 

for solutions A and B, while C and D solutions consisted 

of solgel and Degussa TiO
2
 in the ratio 20:80 wt/wt. Silver 

nitrate (AgNO
3
) was added to solutions B and D. For solution 

E, AgNO
3
 0.1 wt% was mixed in ethanol-water (50:50 

wt/wt). Two types of TiO
2
 coatings were applied; solgel 

Table 1 Coating solutions with their respective titanium dioxide and silver treatments

Tube Solution TiO2 source Solvent AgNO3: TiO2 (mol%)

1 A Solgel Water: Ethanol (60:40) 0

2 B Solgel Water: Ethanol (60:40) 5.6

3 C Solgel: Degussa (20:80) Water: Ethanol (3:97) 0

4 D Solgel: Degussa (20:80) Water: Ethanol (5:95) 5.6

5 E No TiO2 Water: Ethanol (50:50) 0.1wt% AgNO3

Abbreviations: Ag, silver; AgNO3, silver nitrate; Degussa TiO2, Degussa P25 titanium dioxide; TiO2, titanium dioxide.
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Figure 1 Standard endotracheal tubes were coated with a passivating layer of colloidal 
silica and served as controls. Five types of coatings were applied over a silica layer; 1. 
solgel titanium dioxide without silver, 2. solgel titanium dioxide with silver, 3. Degussa 
titanium dioxide without silver, 4. Degussa titanium dioxide with silver and 5. silver only 
(not shown).

to increase adherence to PVC for substrate depositition 

and Degussa TiO
2
 for potentially high photocatalytic 

 performance. Since Degussa TiO
2
 suspensions had very 

poor adhesion to the ETTs, they were mixed with a small 

amount of sols of solgel TiO
2
. After TiO

2
 coating, the ETTs 

were dried with 85°C air for 1 minute, followed by further 

drying in an air-circulating oven at 100°C for 15 minutes, 

then packed while warm.

Preparation of P. aeruginosa
Freeze-dried P. aeruginosa (ATCC #25668; American Type 

Culture Collection, Manassas, VA, USA) was rehydrated 

with nutrient broth in aliquots to be stored at -80°C. After a 

loopful of frozen bacteria was plated and incubated, a single 

colony was inoculated into 4 mL tryptic soy broth (TSB) and 

incubated overnight at 37°C. The following day, the turbid 

bacterial broth was vortexed and inoculated. To determine the 

exact inoculums, 100µL of bacterial broth was serially diluted 

with phosphate-buffered saline (PBS), then optical density 

was measured to obtain 108 colony forming units/milliliter 

(CFU/mL).

Preparation of S. aureus
Frozen S. aureus (ATCC #25923) was rehydrated with TSB 

in the same fashion as P. aeruginosa, and stored at -80°C. 

Frozen S. aureus was inoculated into 50 mL TSB in a 

flask, and incubated overnight at 37°C. Turbid S. aureus 

 bacterial broth was transferred to a 50 mL sterile culture 

tube, centrifuged for 15 minutes, and the supernatant was 

discarded. A concentrated broth was made by the addition of 

1 mL of TSB to the pellet of S. aureus. Optical density was 

measured to obtain 109 CFU/mL for ETT inoculation.

Bacterial inoculation of ETTs
Each ETT was marked at 4 cm intervals for later division 

into six equal pieces, then immersed in 75% alcohol for 

15 minutes to sterilize, rinsed with 20 mL 0.9% sterile saline, 

and air dried. After sterilization, each ETT was cut into six 

pieces, sealed on one end with Tegaderm® (3M, St. Paul, 

MN), filled with either 8 µl of P. aeruginosa broth plus 

800 µl TSB or 100 µl S. aureus broth plus 700 µl TSB, 

then sealed with Tegaderm. All ETT pieces were placed in 

a 2 liter dry flask and agitated at 37°C overnight. On the 

following day, the bacterial fluid was drained from each 

ETT piece.

Peroxidase assay after coating ETTs
Colorimetric measurement was used to detect whether TiO

2
 

on ETTs generated peroxidase as part its antimicrobial 

 property. EM Quant Peroxide Test Strips (EMD Chemicals 

Inc. Gibbstown, NJ, USA) which measure peroxidase 

between 1–100 parts-per million were used. Trypic soy broth 

800 µL was placed on the TiO
2
-coated ETT for 24 hours at 

37°C in the dark. Following incubation, the colorimetric 

strip was dipped into the TSB and the value of peroxidase 

production was determined.

Observation of bacterial growth
Bacterial inoculated ETT pieces were placed in an incubator 

to simulate the in vitro human trachea with no ambient 

light, a relative humidity of 90%, temperature of 37°C 

and at standard atmospheric pressure. Bacterial growth 

was observed for 24, 48, 72, 96, 120, and 144 hours after 

 inoculation on the standard and five test ETTs. The inner 

surface of bacteria was collected by washing with 0.5 mL of 

sterile PBS and swabbing every 24 hours after inoculation. 

The collected fluid was serially diluted and plated on tryptic 

soy agar for incubation overnight at 37°C. Colony counts 

were expressed as CFU/mL, and each experiment was 

repeated four times.
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Statistical analysis
Data were reported as mean ± standard error of mean (SEM). 

Bacterial colony counts were analyzed using Mann–Whitney 

U test comparing coated ETTs with standard ETTs. A P-value 

of  0.05 was considered statistically significant.

Results
The coating was slightly opaque using solgel TiO

2
 compared 

with Degussa TiO
2
. Samples with Ag-containing coatings 

appeared dark due to the reduction of AgNO
3
 to Ag. The coating 

was particulate in appearance to the naked eye and peeled off 

while collecting the bacteria by mechanical force. Peroxidase 

production was not detected on TiO
2
-coated ETTs.

Pseudomonas aeruginosa
Growth peaked at 72 hours and continued for 144 hours on 

standard ETTs. Pseudomonas aeruginosa growth was more 

robust on Ag-coated ETTs compared to standard ETTs at 

120 hours (P = 0.04) and 144 hours (P = 0.06) despite initial 

slow growth in the first 24 hours (Figure 2). There was no differ-

ence in P. aeruginosa growth over 144 hours among standard, 

solgel TiO
2
 and Degussa TiO

2
-coated ETTs (Figure 3). 

Compared to standard ETTs, solgel TiO
2
 with Ag inhibited 

P. aeruginosa growth at 24 hours (P = 0.02), and Degussa TiO
2
 

with Ag inhibited P. aeruginosa growth at 24 and 48 hours after 

inoculation (P = 0.02 and P = 0.02, respectively) (Figure 4).

Staphylococcus aureus
Growth was observed up to 144 hours. Staphylococcus aureus 

growth peaked at 48 hours after inoculation on both standard 

and Ag-coated ETTs without a difference over 144 hours 

(Figure 5). Furthermore, there was also no difference in 

S. aureus growth over 144 hours between standard, solgel 

TiO
2
 and Degussa TiO

2
-coated ETTs (Figure 6). Compared to 

standard ETTs, neither solgel TiO
2
 with Ag nor Degussa TiO

2
 

with Ag showed a difference in S. aureus growth over a 144 

hour period except solgel TiO
2
 with Ag at the 144 hour point 

after inoculation in which there was a significant attenuation of 

S. aureus growth compared to the standard ETT (Figure 7).

Discussion
Clinically, VAP is diagnosed after patients have been 

mechanically ventilated for more than 48 hours similar to 

the duration of bacterial growth in our simulated model. 

The growth of P. aeruginosa was consistent with the find-

ings of other investigators under comparable conditions 

when monitoring growth in the first 24 hours.22,23 An initial 

suppression of P. aeruginosa in Ag-coated ETT was also 
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Figure 2 Characterization of P. aeruginosa growth on polyvinyl chloride endotracheal 
tubes over a 144-hour period. Comparison of standard and silver only coated en-
dotracheal tubes. There was less P. aeruginosa growth on silver-coated endotracheal 
tubes at 24 hours (P  0.01), but more growth at 120 hours (P = 0.04) and 144 hours 
(P = 0.06) compared to standard endotracheal tubes.
Notes: Mean ± standard error of mean, *P  0.05 compared to standard endotra-
cheal tube. N = 4.
Abbreviation: CFU, colony-forming units.
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Figure 3 Characterization of P. aeruginosa growth on polyvinyl chloride endotracheal 
tubes coated with titanium dioxide over 144 hour period. Comparison of standard, 
solgel titanium dioxide and Degussa titanium dioxide endotracheal tubes. 
P. aeruginosa growth was not statistically significant at all time points.
Notes: Mean ± standard error of mean, N = 4.
Abbreviation: CFU, colony-forming units.
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observed in sections of intraventricular tubing impregnated 

with Ag.23 Moreover, our experience was similar to results of 

others who observed an undulating pattern of bacterial growth 

over a 50 hour period in Ag-coated ETTs.24 The second  

P. aeruginosa growth peak observed in Figure 2 was thought 

to be an experimental variation due to the small sample size.

A similar growth pattern on Ag-coated ETT was also 

observed in a study evaluating the growth of P. aeruginosa and 

S. aureus on PVC even in the presence of antimicrobials. Both 

P. aeruginosa and S. aureus produce a biofilm; its robustness 

is strain dependent.25–27 Biofilm generating species of S. aureus 

exhibit accelerating growth kinetics in the first 6 days in animal 

models. Furthermore, these strains form microcolonies on cath-

eter substrates that serve as sites of biofilm formation.28 Thus, 

it is likely that S. aureus growth was probably blunted in our 

model until a glycocalyx developed, then growth proceeded 

in the presence of nutrients and favorable conditions.

The antimicrobial properties of Ag result from Ag ions 

binding to bacterial sulphydryl- or histidyl-containing 

 proteins, which disrupt transmembranous energy metabolism 

and electrolyte transport systems.29 Because the cell wall 

composition and thickness vary between gram positive and 

gram negative bacteria, silver’s antimicrobial effect may be 
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Figure 4 Characterization of P. aeruginosa growth on polyvinyl chloride endotracheal 
tubes coated with titanium dioxide with silver over a 144-hour period. Comparison 
of standard, solgel titanium dioxide with silver, and Degussa titanium dioxide with 
silver endotracheal tubes. P. aeruginosa growth was inhibited significantly by solgel 
titanium dioxide with silver at 24 hours and by Degussa titanium dioxide with silver 
at 24 and 48 hours, respectively.
Notes: Mean ± standard error of mean; *P  0.05 compared to standard endotra-
cheal tube, # P  0.05 compared to standard endotracheal tube. N = 4.
Abbreviation: CFU, colony-forming units.

greater in P. aerugionsa than in S. aureus during the initial 

phase of bacterial multiplication.

The characteristics of discolored Ag-coated particles 

were not analyzed in this experiment. However, AgNO
3
 is 

known to undergo photochemical reduction to metallic Ag 

upon exposure to light as described by the reaction:

2AgNO
3
 → 2Ag + 2NO

2
 + O

2

This leads to the tiny particles precipitation of Ag that 

appears black or brown. Future studies are needed to define 

the specific mechanism involved in the antimicrobial proper-

ties of Ag as well as the physiological impact of discolored 

Ag. Silver nitrate was not expected to react with SiO
2
 under 

ambient conditions, since SiO
2
 is quite nonreactive.

Application and treatment of ETTs with these chemicals 

may also change the surface charge and hydrophobicity, as 

in this study, thus changing the PVC characteristics from 

hydrophobic to hydrophilic.

This study demonstrated that the addition of TiO
2
 

 significantly augmented the antibacterial effects of Ag on 

P. aeruginosa during the first 72 hours, but had no effect on 

S. aureus. In our limited study, TiO
2
 photocatalysis was not 

observed as determined by the release of hydrogen peroxide 
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Figure 5 Characterization of S. aureus growth on polyvinyl chloride endotracheal 
tubes coated with silver only over a 144-hour period. Comparison of standard and 
 silver only coated endotracheal tubes. There was no difference in S. aureus growth 
between standard and silver coated endotracheal tubes at any time point over 144 
hours compared with standard endotracheal tubes.
Note: N = 4.
Abbreviation: CFU, colony-forming units.
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Figure 6 Characterization of S. aureus growth on polyvinyl chloride endotracheal 
tubes coated with titanium dioxide only over a 144-hour period. Comparison of 
standard, solgel titanium dioxide and Degussa titanium dioxide endotracheal tubes. 
There was no difference in S. aureus growth in the titanium dioxide-coated groups 
compared to standard endotracheal tubes at any time point. 
Note: N = 4.
Abbreviation: CFU, colony-forming units.
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Figure 7 Characterization of S. aureus growth on polyvinyl chloride endotracheal 
tubes coated with titanium dioxide with silver over a 144-hour period. Comparison 
of standard, solgel titanium dioxide with silver and Degussa titanium dioxide with 
silver endotracheal tubes. There was no difference in S. aureus growth in the titanium 
dioxide with silver-coated groups compared to standard endotracheal tubes except 
at 144 hours with solgel titanium dioxide with silver endotracheal tubes.
Note: N = 4.
Abbreviation: CFU, colony-forming units.

as a part of reactive oxygen species. Silver and TiO
2
 might 

have reacted with each other releasing Ag ion, and this 

 reactant might have a synergistic antimicrobial effect even 

in a dark environment without photocatalysis.

In contrast, Yao showed that application of thin films 

of Ag and TiO
2
 for sterilization purposes on silicone cath-

eters promptly eliminates S. aureus within 90 minutes 

without TiO
2
-photocatalysis. They also showed inhibition 

of growth of Escherichia coli (E. coli) and P. aeruginosa, 

although they only observed growth for 24 hours.30 Li and 

colleagues demonstrated that AgNO
3
 and TiO

2
 pulverized 

to surgical masks reduced E. coli and S. aureus by 100%. 

In Li’s study, Ag plus TiO
2
 pulverized masks were 

exposed to UV-C irradiation prior to bacterial inoculation.31 

 Pseudomonas aeruginosa behaves very differently in the ini-

tial phase of bacterial attachment to the surface compared to  

S. aureus. Rogers and colleagues demonstrated that S. aureus 

 multiplies and produces a biofilm on the surface that thickens 

 monotonically, becoming hard during growth and softening 

during starvation. In comparison, P. aeruginosa showed 

much less reproducible behavior; the organism was loosely 

adhered and detached from the surface after several hours 

in vitro.32 Until P. aerugionosa attachment is established, 

this initial motile motion phase may be inhibited or delayed 

by synergistic bactericidal activity of Ag and either form of 

TiO
2
 as we demonstrated.

Our study has several limitations. First, it was conducted 

in an in vitro model that was designed to replicate the 

human tracheal environment. However, the results may not 

be applicable to the in vivo setting where other factors may 

impact the ETT surface such as frequent suctioning, nebulizer 

therapy or host factors. Second, the concomitant use of Ag 

and TiO
2
 would seem to be marginally effective against VAP 

if it does not inhibit a common cause of VAP (ie, S. aureus). 

Third, minimizing the particulate surface that facilitates 

bacterial binding could be effective by reducing the surface 

area for bacterial adherence and growth. Fourth, the coating, 

peeled off under mechanical stress, could be dislodged by a 

suction catheter and produce potentially harmful Ag particles 

in the human airway and lung parenchyma. Nevertheless, 

titanium dioxide is known to be safe in humans and is used 

in such products as cosmetics, toothpaste, and sun screen. 

Hence, the combination of Ag and TiO
2
 needs to be evaluated 

in a clinical setting. Lastly, this study did not directly evaluate 

the attractive feature of TiO
2
 photocatalysis. The potency of 

TiO
2
 either individually or in combination with Ag needs to 
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be examined in conjunction with photocatalysis. However, 

exposing tracheal mucosa to UV light involves potential 

toxicity. This potential risk and, more importantly, its clinical 

feasibility, need to be ascertained in future studies.

Conclusion
One strategy to reduce the incidence of VAP is to pretreat ETT 

with an antiseptic agent to reduce or delay bacterial biofilm 

formation. The use of TiO
2
 with Ag-coated ETTs effectively 

inhibited P. aeruginosa growth, but not S. aureus growth, in 

an in vitro model of a human trachea environment.
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