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Abstract: Neoadjuvant chemotherapy (NAC) largely increases operative chances and

improves prognosis of the local advanced breast cancer patients. However, no specific

means have been invented to predict the therapy responses of patients receiving NAC.

Therefore, we focus on the alterations of tumor tissue-related microenvironments such as

stromal tumor-infiltrating lymphocytes status, cyclin-dependent kinase expression, non-

coding RNA transcription or other small molecular changes, in order to detect potentially

predicted biomarkers which reflect the therapeutic efficacy of NAC in different subtypes of

breast cancer. Further, possible mechanisms are also discussed to discover feasible treatment

targets. Thus, these findings will be helpful to promote the prognosis of breast cancer patients

who received NAC and summarized in this review.
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Introduction
Breast cancer is the most prevalently diagnosed cancer and the leading cause of

cancer deaths for females.1 Apart from the traditional surgical plus adjuvant

therapies, neoadjuvant chemotherapy (NAC) has been increasingly applied.

Patients, especially the cohort of triple negative breast cancer ones who have

undergone NAC turn out to have incredibly well pathologic complete response

(pCR) rates. But those who reach to chemoresistance after NAC could suffer from

a much harder time for survival, particularly in the first 3 years.2

In order to assess early responses to NAC of primary breast cancers, quantitative

ultrasound (QUS), texture and molecular features alter in the first place, which are

hopefully used to guide the treatment planning of refractory patients.3 Several

studies indicated that the presence of tumor after NAC drawing support from

histopathological examination of the tumor bed could be the golden standard as

well as pCR rate. Further surrogate biomarkers could be applied for evaluating the

outcomes defined by Chevallier’s system following neoadjuvant settings.4

Fine-needle aspiration cytology is considered as an accurate technique per-

formed by experienced cytologists to assess the existence of breast cancer.5 The

core breast biopsy used to be a traditional examination technique to identify the

initial diagnosis of breast lumps. Fortunately, this critical technique is able to

accurately predict pathologic responses after NAC.6

In previous studies, biomarker changes before and after NAC were claimed to

have great clinical relevance to age or grade impacts.7 For example, ER and Ki-67

status were reported to possess obvious changes after NAC treatments in breast
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cancer patients. CYP1B1 was reported to be associated

with taxane hypersensitivity.8 In locally advanced breast

cancer, carbonic anhydrase IX (CAIX) significantly

reacted to the paclitaxel plus sunitinib therapy.9

However, there was a report noted that the expression

of βIII-tubulin protein, MDR1 protein, TACC3 and CAPG

gene, multigene models (20- and 26-gene),and mRNA

were not predictive markers for differentiating treatment

benefits between ixabepilone and paclitaxel in early-stage

breast cancer.10 Few circulatory molecules were found to

be probable biomarkers to forecast the effects and efficacy

of NAC systemically.11 Therefore, we focus on the altera-

tions of tumor tissue-related to microenvironments such as

stromal tumor-infiltrating lymphocytes status, cyclin-

dependent kinase expression, non-coding RNAs transcrip-

tion or other small molecular changes, to detect potentially

predicted biomarkers reflecting the therapeutic activities of

NAC in different subtypes of breast cancer (Table 1).

Imaging Examination as One of the

Criteria for Evaluating Treatment

Outcomes
Previous evidences investigated the accuracy of MRI in

evaluating residual tumor sizes in breast cancer patients

after NAC, and the results supported the use of MRI to

guide the following surgical planning, especially in HR-

subtype of breast cancers.12,13

It is obvious that after NAC, the inner microenviron-

ment of breast cancer patients will develop several

changes which could be seen by traditional anatomical

imaging or the newly improved MRI method. Besides,

assessments of responses to NAC in breast cancer patients

is helpful to early identification of non-responders,14 thus

providing alternative treatment options to those patients

suffering from poorer prognosis.15

Dynamic Contrast Enhanced MRI

(DCE-MRI)
The breast DCE-MRI, with its high sensitivity and spe-

cificity, shows greater values in mammography than

ultrasound. The principle of this approach is that the

feature of having an enhancing curve, together with

being morphologic, helps to differentiate malignant

lesions from the benign ones.16 Vignati and al., applied

breast DCE-MRI to 24 breast cancer patients receiving

NAC (8 responders and 16 non-responders) and discov-

ered that the vascular volume of breast cancer had

significant differences between the situations before and

after NAC for responders (median=1.71cc) and non-

responders (median=0.41cc) by calculation from auto-

matic vascular maps (P=0.003).17 Meanwhile, a study

of 38 breast cancer patients with NAC demonstrated

that tumor heterogeneity changes measured by quantita-

tive DCE-MRI had potentials to predict pathologic

responses of breast tissues to NAC.18

Diffusion-Weighted MRI
In contrast with DCE-MR, DW-MRI is more sensitive to

the changes of cell density, membrane integrity and tissue

microstructure caused by the changes in water motions.

Breast cancers present high signal intensity images in

DW-MRI, for the inflexibility of cancer lumps with sub-

dued signal loss from Brownian motion. Besides, a breast

cancer mice model evaluated the application of DW-MRI

as a reliable approach for the early measurement of

response to chemotherapy.19 To further confirm the

advantages of DW-MRI, Galban and al., collected 39

locally advanced breast cancer patients with NAC and

proved DW-MRI to be a predictive biomarker of NAC

assessments.20 MRI could be fully used to measure the

shrinkage of tumor,21 therefore, in addition to distin-

guishing its density, DW-MRI is also an alternative

choice to measure its sizes with repeatable and reprodu-

cible analysis of apparent diffusion coefficient (ADC).22

Pickels and al., emphasized the significance of DW-MRI

in predicting NAC responses from data of 10 patients,

and found that DW-MRI delivered obvious increases or

reductions in the mean (normalized) ADC at the first

cycle time (P=0.005) or the second cycle time

(P=0.004) of NAC treatments.23

18F-FDG PET/CT
PET/CT may trace tumor perfusion and angiogenesis in

response to chemotherapy treatments. Previous studies

have investigated 46 patients and demonstrated that early

changes in blood flow detected by a short dynamic 18F-

FDG PET/CT could be a biomarker of prognosis of triple-

negative breast cancer with NAC.24 Simultaneously, in

HER2 negative breast cancer subtype, a multicenter ran-

domized Phase II neoadjuvant trial (n=59) confirmed that

the early reduction in SUVmax (63.0% in pCR group

comparing to 32.9% in non-pCR group; P=0.003) on 18F-

FDG PET/CT 15 days after NAC was probably a potential

predictor to the pCR rate in patients.25
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Table 1 Potential Predictors of Neoadjuvant Chemotherapy Response for Breast Cancer Patients

NAC Strategy Subtypes

of Breast

Cancer

Potential Predictors Effects Outcomes

NA NA IL-6,IL-8,MMP9 positive clinical response

NA NA tPAI-1 negative clinical response

NA NA CD34+ CECs positive clinical response

NA early stage HMGB1 positive clinical

response,

prognosis

NA ER+ IGF-1R negative pCR

taxane-based stage II–III NCS-1 positive pCR

NA locally

advanced

KLF4 negative pCR

anthracycline-based NA serpinB3 positive survival

NA early PKCeta negative prognosis

NA locally

advanced

osteopontin positive prognosis

anthracycline-based NA Smac positive DFS and OS

NA stage II–III HGF positive RFS

NA NA threonine, glutamine, isoleucine and linolenic acid positive response

TAC or TAC-NX TNBC SPARC,MMP9,VEGF positive pCR,prognosis

docetaxel TNBC IMP3+, AKT/KIF14 negative chemosensitivity

NA NA miR-222, miR-29a, miR-34a, miR-744 negative chemosensitivity

NA HR- miR-221 positive chemosensitivity

NA TNBC miR-21 with miR-155 negative prognosis

cisplatin/doxorubicin-based TNBC miR-145-5p/TGFβR2 negative pCR,prognosis

NA TNBC TP53, PIK3CA, CDKN2A mutations negative DFS,recurrence

docetaxel/capecitabine ER-/PR- Ki-67 negative response

anthracycline-taxane-based NA SIRT5 positive prognosis

NA NA SPAG5 negative prognosis

NA TNBC JAK2-JAK1/STAT3 negative prognosis

NA leaner

patients

γ-H2AX negative pCR

NA GS+ TNBC TNFalpha positive pCR

platinum TNBC BLM, FANCI positive pCR

anthracycline and

cyclophosphamide

basal CK5/6 negative chemosensitivity

(Continued)
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Other Factors
The performance of MRI in breast cancer with NAC partly

depends on the molecular subtypes, which tends to be

more accurate under the circumstance of more aggressive

cancer types than those less aggressive ones.26 While in

HER2 negative cancers, it is worse in HR positive cancers

than the negative ones.27 Plenty of studies were conducted

to investigate other parameters which were correlated with

NAC responses. Background parenchymal enhancement

(BPE) on breast MRI,28 Diffuse optical spectroscopic

imaging (DOSI) parameters of MRI,29 chemical exchange

saturation transfer (CEST)30 were all associated with

tumor responses to NAC in breast cancer patients.

Furthermore, a study of 64 patients undergoing NAC for

breast cancer proved that functional tumor volume (FTV)

by breast MRI was a potential assessment for recurrence-

free survival (HR=8.71, 95% CI: 2.86–25.5;

P≤0.00015).31 Besides, thanks to the property of the high

speed of the computation, the in silico Pathway Activation

Network Decomposition Analysis (iPANDA) introduced

by Ozerov and al., could be a scalable and robust method

for stratifying breast cancer patients based on sensitivity to

NAC.32

Small Molecular Changes with the Use of

NAC
Changes in Subtypes

In the process of neoadjuvant therapy, small molecule

changes may provide new breakthroughs in researching

how to acquire better prognosis and survival (Figure 1).

Nolen and al., demonstrated that elevated serum levels

of IL-6, IL-8, MMP-9 (P≤0.05) and reduced serum level

of tPAI-1(P≤0.05) before the initiation of NAC were asso-

ciated with improved clinical response.33 The study by Ali

and al., also showed that CD34+ circulating endothelial

cells (CECs), in relation to tumor angiogenesis, might

predict preoperative chemotherapy response in breast can-

cer patients.34 The chemo-induced increase HMGB1, gen-

erally considered to be released by dying cells, in plasma

observed in surviving patients might be associated with

a higher degree of cell death in response to therapy than in

non-surviving patients. Changes of plasma HMGB1 could

Table 1 (Continued).

NAC Strategy Subtypes

of Breast

Cancer

Potential Predictors Effects Outcomes

anthracycline and

cyclophosphamide

luminal CK18 negative chemosensitivity

NA residual CDK9 positive OS

paclitaxel followed by

5-fluorouracil, epirubicin and

cyclophosphamide

NA C2P-RS based on CDK1 and CDK2 positive pCR

anthracycline and taxane NA the ratio of CDK1 transcript to HSP90AA transcript positive pCR

epirubicin/docetaxel-based NA inter-a-trypsin inhibitor, a-1-antichymotrypsin and a-2-HS

glycoprotein, N-glycoproteome profile (AHSG, APOB, C3, C9,

CP and ORM1

positive RFS

NA stage II–III gamma-synuclein positive response

taxane ER- β III-tubulin,CIP2A positive response

NA ER+ FOXA1 negative response,

chemosensitivity

NA NA pS6, pJAK2–mTOR, JAK/STAT negative chemosensitivity

NA NA TILs positive pCR,DFS,OS

Abbreviations: NAC, neoadjuvant chemotherapy; CECs, circulating endothelial cells; IGF-1R, insulin-like growth factor receptor 1; NCS-1, neuronal calcium sensor-1;

HGF, hepatocyte growth factor; SPAG5, sperm-associated antigen 5; BLM, Bloom helicase; FANCI, Fanconi anemia complementation group I; RFS, relapse-free survival, NA,

not available.
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be a potential biomarker to predict clinical responses to

NAC in breast cancer.35 Wachter and al., analyzed the

association between pCR and CK5/6 or CK18 in a group

of breast cancer patients undergoing NAC containing

anthracycline and cyclophosphamide, and indicated that

CK5/6 mainly predicted resistance to NAC in a basal

subtype while CK18 predicted resistance to NAC in

a luminal phenotype.36

In HR± breast cancers, a viewpoint claims that reduced

insulin-like growth factor receptor 1 (IGF-1R) was related

to pCR rate of NAC treatments, and thus therapies targeting

IGF-1R would be an alternative choice to those who

express IGF-1R.37 For stage II–III breast cancer patients,

the high surviving expression was associated with pCR of

NAC.38 As to the pCR of taxane-based NAC, the role of the

elevated neuronal calcium sensor-1 (NCS-1) was valued.39

For locally advanced breast cancer patients, pCR rate of

NAC was inhibited by an overexpression of KLF4.40

Collie and al., described that serpinB3 status might

predict survival in breast cancer patients with anthracy-

cline-based NAC.41 Studies suggested that an early

increased HMGB142 or reduced PKCeta levels43 indicated

better prognosis in early breast cancer patients receiving

NAC. Prognosis of locally advanced breast cancer patients

undergoing NAC appeared to be significantly related to

osteopontin.44 Evidences also indicated that low surviving

or high Smac expression in breast cancer patients treated

with anthracycline-based NAC was obviously related to

longer DFS and OS.45 Meanwhile, high serum hepatocyte

growth factor (HGF) levels were related to longer relapse-

free survival in stage II–III breast cancer receiving NAC.46

Identifying the small-molecular metabolites that are sen-

sitive to pathological modifying by means of Metabolomics

(or metabolite profiling), integration nuclear magnetic reso-

nance spectroscopy (NMR) with liquid chromatography-

mass spectrometry (LC-MS). Wei and al., observed altered

metabolites of threonine, glutamine, isoleucine and linolenic

acid in serum for predicting response to NAC.47

Triple negative breast cancer is not an unfavorable

breast cancer because the rate of pCR after NAC is

approximately 40%. This type of breast cancer has

a high chemosensitivity. Regarding this subtype, the find-

ings by Lindner and al., indicated that high expression of

SPARC in the primary tumor induced a higher possibility

of achieving a pCR after TAC or TAC-NX treatments.48

Moreover, IMP3+ (an oncofetal protein) along with KIF14

expression in tumors contributed to poor outcomes for the

occurrence of chemoresistance to NAC in TNBC.49,50

NAC drugs 
accumulation

breast cancer cells

NAC drugs

vessels

deliver to BC cells

4—8 cycles

vessels

IL-6,IL-8,MMP9,VEGF,serpinB3 upregulation

tPA-1,PKCeta downregulation CD34+ CECs

HMGB1

NCS-1

KLF4IGF-1R

thr,glu,ile,LNA

SPARC

breast cancer cells

better clinical 
response,
pCR rate

Figure 1 Possible responses to neoadjuvant chemotherapy in breast cancer cells and serum. After standardized NAC regiments, serum IL-6, IL-8, MMP9, VEGF, serpinB3

upregulation and tPAI-1, PKCeta downregulation with CD34+ CECs accumulation are positive predictors for better clinical responses. IGF-1R, KLF4 reduction and NCS-1,

SPARC, threonine, glutamine, isoleucine and linolenic acid alteration will predict fine pCR rate.

Abbreviations: NAC, neoadjuvant chemotherapy; BC, breast cancer; CEC, circulation endothelial cells; pCR, pathologic complete response.
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Serum MMP-9, VEGF and secreted protein acidic and rich

in cysteine (SPARC) were promising biomarkers to predict

responses to NAC and prognosis of TNBC patients.51,52

miRNA Alternation
MicroRNAs (miRNAs) are 20–25 nucleotides single-

stranded, non-coding RNAs that involve numerous biolo-

gical processes in various cancers. Hopefully, changes of

miRNAs resulted from NAC treatments in breast cancer

patients may play a promising role in future precisive

medicine for breast cancer.53

RNA disruption is a reduction of tumor RNA integrity

followed by the application of NAC in breast cancers. It

has a positive relevance to elevated DFS as well.54 The

study conducted by Toomey and al., investigated the use

of RNA Disruption Assay (RDA) score and they found

that RDA score would be a novel, early, on-treatment

approach to guide subsequent system therapies after

NAC, owing to its specially speculative and predictive

role in pCR rates and prognosis of HER2+ breast cancer.55

Previous data presented that several chemo-resistant

miRNAs including miR-222, miR-29a, miR-34a, miR-744

and so on exhibited significantly higher expressions in post-

NAC breast tumor cells than pre-NAC tumors.

Simultaneously, relatively high expressions of miR-222,

miR-29a and other 5 miRNAs were associated with non-

responders to NAC therapy.56 Moreover, for breast cancer

patients receiving previous NAC with different levels of

plasma miR-221, their overall response rates varied. And

higher miR-221 level, as a chemosensitivity biomarker, was

more frequently found in HR- patients.57 The serum miR-21

together with miR-155which were poor prognostic predictors,

endured obvious suppressions by NAC therapy especially in

TNBC, thus being potential biomarkers for outcomes of

patients with NAC.58,59 Besides, miR-145-5p was reported to

discriminate between pCR and non-pCR TNBC patients with

cisplatin/doxorubicin-based NAC, and miR-145-5p was pro-

ven to impair cell proliferation partly by targeting TGFβR2.60

Besides, some researches explored the specific function

of circulating tumor DNAs in TNBC patients with residual

tumors after NAC. TP53 mutations, PIK3CA mutations,

CDKN2A mutations were the three most prevalent pre-

dictors for inferior DFS and rapid recurrence in breast

cancer patients.61

Ki-67
Ki-67 is a well-known proliferation marker, even reported as

a continuous marker,62–64 in breast tumors or even locally

advanced breast cancer.65 With the development of treat-

ment strategies such as NAC, endocrine therapy and chemo-

endocrine therapy, the Ki-67 index presents a significant

reduction to estimate the decreased proliferation index of

individual tumors.66,67 Interestingly, Enomoto and al., found

Ki-67 suppression only in those patients who attained clin-

ical response and who were ER positive subgroup after

NAC.68 Ohno and al., observed that Ki-67 may be useful

in identifying responses to preoperative docetaxel/capecita-

bine therapy in early-stage breast cancer.69 Also, with the

help of Ki-67 status, NAC was reported to be more effective

in ER-/PR- and high Ki-67 breast cancer patients.11

Therefore, reexamining the Ki-67 level after NAC might

be useful to optimize the appropriate following systemic

therapy and achieve better prognosis.70

Gene-proteins in the prediction to
NAC response
Gene
Although with increasing effects of recent therapies, Toi

and al., recognized the necessity to incorporate biomarkers,

which enables researchers to further classify conventional

subtypes by methods including genetic mutations and epi-

genetic phenotypes in order to realize better planning of

treatment. It is also crucial to analyze tumor biology parti-

cularly the tumor development in the metastasis process and

the clonal selection by the treatment in clinical settings.71

The researchers exhibited that the response of anthra-

cycline-taxane-based chemotherapy may be influenced by

SIRT5 through Rho pathway. SIRT5 upregulation in var-

ious degrees may be specific to certain histological sub-

types, and SIRT5 mRNA in high level may imply the good

prognosis.72 The findings by Abdel and al., showed that

gene copy number aberration, transcript and protein on

sperm-associated antigen 5 (SPAG5) were connected

with poor prognosis, such as TP53 mutation, PAM50-

LumB phenotype, and PAM50-HER2 phenotype. As pre-

dictive markers in breast cancer, both SPAG5 transcript

and protein may be the key point for chemo-response.73

Compared to TNBC untreated with chemotherapy,

the treated group showed greater frequency of amplifica-

tion on JAK2. Balko and al., reported that combining

JAK2-specific inhibitors with chemo-agents could delay

the progression in TNBC with the aid of JAK1/STAT3-

independent signaling program derived by JAK2.74

Barba and al., found that the predictive meaning of γ-
H2AX might be different based on the Body Mass Index
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(BMI) status in TNBC. In leaner patients, γ-H2AX upre-

gulation seems to be correlated with lower pCR rate,

while, in heavier patients, the differences in pCR rates

based on γ-H2AX levels did not make significant

senses.75 Bardia and al., explored a TNFα-based gene

expression signature associated with pCR and confirmed

a biomarker-driven targeted therapy approach for

selected patients with GS-positive TNBC.76

Both of the genes, which are Bloom helicase (BLM) and

Fanconi anemia complementation group I (FANCI), could

increase the amount of DNA and expressed in the platinum-

sensitive with TNBC. Among them, BLM overexpression

promoted DNA damage and upgraded sensitivity to

cisplatin.77

Cyclin-Dependent-Kinase Expression
It is well known that CDK4/6 inhibitors block the phos-

phorylation of retinoblastoma tumor suppressor proteins,

thereby preventing the progress of the cell cycle.

Nowadays, there are three selective CDK4/6 inhibitors

(Palbociclib, Ribociclib and Abemaciclib) approved by

the FDA and EMA for the treatment of breast cancer

with HR+/HER2-.78 With the help of CDK1 and CDK2

to establish the cell cycle profiling risk score (C2P-RS),

Kim and al., indicated a positive association pCR and the

predictive model in breast cancer patients received NAC

by paclitaxel followed by 5-fluorouracil, epirubicin and

cyclophosphamide (P-FEC).79 Schlafstein and al., ana-

lyzed the residual breast cancer after NAC and found

that the expression of CDK9 was discovered to be

a promising positive indicator to the improved 3 years

OS.80 Moreover, the ratio of CDK1 transcript to

HSP90AA transcript was significant in the predictor of

pCR for patients receiving NAC.81 Besides, quinone

oxidoreductase 1 (NQO1) was observed to rise in terms

of the residual breast tumor tissues after NAC.82

Serum Proteins
The role of serum proteins pattern to predict chemo-sensibility

has been extensively studied in the field of breast cancers.

Prediction of the responses to NAC tends to improve effective

treatment strategies of advanced breast cancer patients.

It was the very first time for Michlmayr and al., to study

the complement cascade alterations by NAC in breast cancer.

When patients were treated by epirubicin/docetaxel-based

NAC, activation of complement component C3 occurred,

followed by modulations of protein spots 195 and 529 in

C3, as well as inter-a-trypsin inhibitor, a-1-antichymotrypsin

disease 
progression

NAC drugs 
accumulation

breast cancer cells

NAC drugs

vessels

deliver to BC cells

4—8 cycles

breast cancer cells

TP53,PIK3CA,
CDKN2A mutation

low BLM,FANCL

CDK5/6,CDK18,NQO1

DNA damage
SPAG5 
mutation

JAK2

SIRT5

Nucleus

CDK1/HSP90AA

mTOR

Rho

JAK1/STAT3

TGFbR2

miR-145-5p

KIF14

IMP3+
Akt

miR-155

CDK9
decreasion

miR-21

CDK1-CDK2

miR-222,miR-
29a,miR-

34a,miR-744

Cytoplasm

Figure 2 Several genetic, miRNA changes and pathways in breast cancer cells after neoadjuvant chemotherapy.

Abbreviations: NAC, neoadjuvant chemotherapy; BC, breast cancer.
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and a-2-HS glycoprotein.83 N-glycoproteome profile (AHSG,

APOB, C3, C9, CP and ORM1) were confirmed to identify

sensitive responders to DC+AC NAC in breast cancer and to

predict RFS.84 In stage II to III locally advanced breast

cancers, combination of gamma-synuclein and other biomar-

kers may speculate responses to NAC.85 At the same time,

overexpression of class III β –tubulin (β III-tubulin) and

CIP2A may serve as a positive prediction to responses in

taxane-based NAC for ER- breast cancer patients.86,87

FOXA1 expression before NACwas correlated with poor

chemo response in ER± as well as luminal A and B breast

cancer patients (P=0.002, 0.001, and 0.049 respectively).

There is also a significant correlation between the change in

FOXA1 staining position and chemo-sensitivity after NAC

(P=0.024). Thus it was decided that FOXA1 expression

might independently predict chemosensitivity to NAC in

ER± breast cancer patients.88

Signal Pathways
In the study of the prognosis of NAC for breast cancer,

signaling pathways are a new choice and the key point for

many researchers.

The phenomenon of chemo-sensitivity in patients treated

with docetaxel mediated by increasingly low expression of

KIF14, which might be descended with AKT activity, finally

led to pro-survival pathways downgraded.50

The study by Jhaveri and al., exhibited that the increase

in the expression with pS6, pJAK2, pSTAT3 and IL6 existed

in IBC and IDC treated with NAC. Both pS6 and pJAK2

active status in IBC may imply dual targeting of mTOR and

JAK/STAT pathways, and these findings inferred a potential

mechanism following NAC.89(Figure 2)

Tumor-Infiltrating Lymphocytes (TILs)
The number of circulating endothelial progenitor cells is

correlated with NAC response.90 In details, reports discov-

ered that the high peripheral lymphocyte count was

a positive predictor of NAC effectiveness, while low per-

ipheral neutrophil counts might result in a favorable DFS.91

Among breast cancer patients who receivedNAC, immune

responses like tumor-infiltrating lymphocyte (TIL) counts was

associated with high-grade, ki67, and HR- breast cancer.92,93

High levels of TIL were observed in TNBC patients and were

associated with pCR in ER- breast cancers.94–97

TILs can be classified into two subgroups: lymphocytes

infiltrating the tumor stroma (stromal TILs) and lympho-

cytes infiltrating the tumor epithelial cells (intra-tumoral).98

Both of them were associated with pCR in HER2+ and

TNBC breast cancers.95,99,100 The Breast International

Group 02–08 trial indicated that each 10% elevation in

intra-tumoral and stromal TILs was respectively related to

17% and 15% reduced relapse risk (adjusted P=0.1 and

P=0.025), 27% and 17% reduced death risk (adjusted

P=0.035 and P=0.023) in node-positive, ER-/HER2- breast

cancer patients.101 Interestingly, sTILs alone may be an

essential evaluation in the assessment of pCR rates to

NAC and prognosis in HER2+ breast cancers.100,102

The majority of TILs are T lymphocytes, and

B lymphocyte infiltrations are less common.103 Abundant

counts of CD8+ TILs were verified to be associated with

improved prognosis and prolonged survivals of less aggressive

breast cancer subtypes with over 1300 cases.104 The presence

of FOXP3+ sTILs, instead of the intra-tumoral FOXP3+ TILs,

was reported to be able to forecast a poor prognosis, and the

CD8+/FOXP3+ TIL ratio (CFR) can be invented to identify

well responders to NAC in breast cancers, especially in

TNBC.95,105 The increasing pCR rates and better RFS were

obviously relevant to high changes of CFR in breast cancer

patients with NAC,106 especially in HR+/HER2-

subgroups.107

In contrast, γδ TILs were responsible for poor prog-

nosis in another study.108 Similarly, programmed death

(PD)-1+ TILs were observed to result in inferior OS in

luminal B and basal-like breast cancer types.109

Therefore, lymphocyte-predominant breast cancer

(LPBC) mainly had an increased pCR rates in HER2+ and

TNBC cases undergoing anthracycline and taxane based

NAC treatments.110,111

Besides, a profile including 7270 samples reflected that

higher fraction of M0 macrophages and activated mast cells

were independently associated with worse DFS (HR=1.66,

95% CI: 1.18–2.33) or OS (HR=1.71, 95% CI: 1.12–2.61) in

ER+ or ER+/HER2- tumors and worse DFS (HR=5.85, 95%

CI: 2.20–15.54), OS (HR=5.33, 95% CI: 2.04–13.91) in

HER2+ tumors.112

Despite of the helpful role of TILs in stratifying prog-

nostic breast cancer subgroups and in guiding future ther-

apy decisions, a standard definition of TILs is still under

confirmation. There is a lot to solve until they are applied

in routine clinical practices. Therefore, TILs are emerging

biomarkers mediating tumor response to NAC treatments.

Discussion
Surgery was the vital therapy for breast cancer patients in the

past decades. With the development of technologies, NAC

raises its significant power in the treatment of breast cancer.
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If breast cancer patients have one of the following conditions,

neoadjuvant therapy is usually recommended: 1) the mass is

larger than 5cm;2) being axillary lymph node metastasis;3)

Her-2± subtype breast cancer;4) triple negative breast can-

cer;5) the proportion of primary tumor to breast is large but

patientswhowish to retain the breast. The positive lymph node

after NAC was used to be considered as the predictor for the

development of metastasis in breast cancer patients and for the

following choices for therapy strategies.113,114 Unfortunately,

no specific biomarker for predicting the clinical response to

NAC has yet been defined.

Background parenchymal enhancement (BPE) on

breast MRI was described as an independent marker for

breast cancer risk assessment, diagnosis, and treatment.

However, BPE is influenced by endogenous and exogen-

ous hormone levels, so its application in breast cancers

may be somehow limited.115 Therefore, researches tried to

find that PET/CT imaging features might be potential

predictors of pCR rate of NAC in locally advanced breast

cancer patients,116 but the cost and inconvenience hindered

its way to be used broadly. Simultaneously, an increasing

number of scientists are endeavoring to find the breaking

points in cancerous treatments by investigating the tumor

microenvironments, such as surrounding immune cells,

adipocytes, secreted small molecules and so on.117

Therefore, we summarized the alterations of microenvir-

onments related to tumor tissue to reflect the NAC response,

such as the changes in the stromal tumor-infiltrating lympho-

cytes status, cyclin-dependent kinase expression, non-coding

RNAs transcription or other small molecular. We aim to detect

potentially predicted biomarkers to reflect the therapeutic

activities of NAC in different types of breast cancer.

Therefore, it will be possible to promote the prognosis of breast

cancer patients who receivedNAC bymonitoring the response

predictors.

Conclusion
After overviewing relevant studies, it is concluded that cellular

and molecular changes (such as stromal tumor-infiltrating

lymphocytes status, cyclin-dependent kinase expression, non-

coding RNAs transcription) in tumor microenvironments are

potential predictors to reflect the NAC response of breast

cancer patients, which will be helpful to optimize the thera-

peutic strategy of breast cancer patients.
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