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Abstract: The c-MET proto-oncogene (MET) plays an important role in lung oncogenesis,

affecting cancer-cell survival, growth and invasiveness. The MET receptor in non-small–cell

lung cancer (NSCLC) is a potential therapeutic target. The development of high-output next-

generation sequencing techniques has enabled better identification of anomalies in the MET

pathway, like the MET exon-14 (METex14) mutation. Moreover, analyses of epidermal growth

factor-receptor (EGFR) and mechanisms of resistance to tyrosine-kinase inhibitors (TKIs) demon-

strated the importance of METamplification as an escape mechanism in patients with TKI-treated

EGFR-mutated NSCLCs. This review summarizes the laboratory findings onMETand its anoma-

lies, trial results on METex14 alterations and MET amplification in non-EGFR mutated NSCLCs,

and acquired resistance to TKI in EGFR-mutated NSCLCs. The outcomes of the first trials with

anti-METagents on non-selected NSCLC patients or those selected for METoverexpression were

disappointing. Two situations seem themost promising today for the use of anti-METagents to treat

these patients: tumors harboringMETex14 and those EGFR-sensitivemutationmutated under TKI-

EGFR with a MET-amplification mechanism of resistance or EGFR-resistance mutation.
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Introduction
Targeted therapies have profoundly modified the prognoses of lung cancers with onco-

genic mutations, achieving notably improved progression-free (PFS) and overall survival

(OS) rates compared to reference chemotherapy regimens. That is particularly true for

first- or second-line treatment of metastatic non-small–cell lung cancers (NSCLCs)

harboring an epidermal growth factor-receptor (EGFR)mutation or anaplastic lymphoma

kinase (ALK) translocation.1–5 Targeted therapies have also shown their efficacy in

patients carrying the v-RAF murine sarcoma viral oncogene homolog B (BRAFV600E)

mutation, tyrosine-protein kinase-1 protooncogene (ROS1) or rearranged-during-

transfection (RET) translocation.6–8 More recently, the efficacy of targeting the neuro-

trophic tropomyosin receptor kinase (NTRK) in all patients whose cancers express it

(making it a marker for tumor-agnostic therapy) was demonstrated.9 In other contexts,

knowledge remains more fragmented, despite a potentially oncogenic target, with thera-

pies having only modest activities. That is the case for NSCLCs expressing human

epidermal growth factor receptor-2 (HER2), Kirsten rat-sarcoma viral oncogene

(KRAS) or those with c-MET proto-oncogene (MET) protooncogene-pathway

abnormalities.10–12

The MET pathway was identified in the 1980s and its carcinogenic role in lung

cancer has been recognized since the 1990s.13,14 It is a complex pathway, poorly
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understood, with anomalies, ranging from MET overex-

pression, rare translocations, amplifications, de novo or

acquired under tyrosine-kinase inhibitors of epidermal

growth factor-receptor (EGFR) (EGFR-TKIs) and, finally,

mutations, particularly of MET exon-14 (METex14) muta-

tions. Numerous molecules targeting this pathway or its

ligand, hepatocyte growth factor (HGF), are at various

stages of development.

This review summarizes the data available on our under-

standing of the different molecular MET alterations, the

results obtained with agents targeting this pathway and the

contribution of immunotherapy to treating these patients.15,16

The MET Pathway and Its
Alterations
The MET gene is located at 7q21–q31 on chromosome 7.

It is comprised of ~125 kb and 21 exons.17,18 MET is

a heterodimer tyrosine-kinase receptor with extracellular,

transmembrane, juxtamembrane and kinase domains.19,20

MET binding to its exclusive ligand, HGF, leads to homo-

dimerization and phosphorylation of the intracellular tyrosine

residues.18 Receptor activation stimulates downstream signal-

ing pathways, such as extracellular signal-regulated kinase

(ERK)/mitogen-activated protein kinase (MAPK), phosphati-

dylinositol 3-kinase-Akt (PI3K)/protein kinase B pathways

and JAK/STAT (Janus kinase/signal transducer and activator

of transcription).20 Those pathways are known to be involved

in cell proliferation, migration, motility angiogenesis, survival

and the epithelial-to-mesenchymal transition.21,22

During embryogenesis, MET and HGF favor the for-

mation of trophoblasts and placental hepatocytes.23 In

adults, the two proteins are strongly expressed in a wide

variety of tissues and can be regulated positively in

response to a tissue lesion.18

Deregulation of the MET pathway in oncology can be

manifested in several ways: genetic mutation, amplifica-

tion, rearrangement or overexpression of proteins. Other

than NSCLC, breast, colon, kidney and stomach cancers

overexpress MET. MET amplification is found in colon,

esophageal and stomach cancers.24–28

Overexpression
Overexpression of MET or its ligand HGF, without ampli-

fication or mutation, is possible. This overexpression

seems to induce activation independent of the MET ligand,

phosphorylation and activation of downstream signaling

pathways.29

Immunohistochemistry (IHC) is able to detect MET or

HGF overexpression with several antibodies that are com-

mercially available.

Rearrangement
The firstMET rearrangement was described in the 1990s with

the tryptophan (TRP) gene.30 Other rearrangements have

since been found, notably in NSCLCs: kinesin family mem-

ber 5B (KIF5B), F-actin–capping proteins bind in a Ca2+

(CAPZA2 (2)), cluster of differentiation 47 membrane pro-

tein (CD47 (2)), testin (TES), caveolin-1 (CAV1), integrin

subunit alpha-9 (ITGA9), human leukocyte antigen (HLA-

DRB1), transcription factor EC (TFEC), cortactin-binding

protein-2 (CTTNBP2), ankyrin-1 (ANK1), steroidogenic

acute regulatory-related lipid-transfer domain containing

three N-terminal–like proteins (STARD3NL).31

Amplification
Amplification is an increased gene-copy number (GCN),

linked to the focal duplication of a gene via breakage–

fusion–bridge mechanisms.32 A higher GCN can also be

secondary to polysomia of chromosome 7 (caused by chro-

mosomal duplication, for example).33,34 MET amplification

deregulates theMETsignaling pathway by overexpression of

the protein and constitutive activation of kinases.33 The

number of MET copies can be evaluated by fluorescence

in situ hybridization (FISH) or quantitative polymerase

chain reaction. When using FISH, the MET/CEP7 (centro-

meric portion of chromosome 7) ratio remains unchanged,

whereas, with amplification, the MET GCN increases at the

expense of the number of centromeres, which results in

a higher MET/CEP7 ratio.33

New techniques of hybridization capture-based next-

generation sequencing (NGS) can analyze gene amplifica-

tions. The GCNmodifications can be identified by comparing

tumor sequences in targeted regions to a normal diploid

sample.35 Unlike FISH, NGS and multiplex polymerase

chain reaction are able to analyze in parallel other genes of

interest to look for concomitant alterations having a clinical

impact.36

No international consensus has been reached on theMET/

CEP7 ratio threshold enabling characterization of a real

amplification. Camidge et al proposed a classification

scheme with several MET/CEP7-ratio categories (low,

1.8–2.2; intermediate, >2.2 and <5; and high, ≥5) but another
classification (which changed the intermediate class to >2.2

and <4; and high to ≥4) has been applied in clinical settings

when treating patients with MET inhibitors.37 Other scores
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exist: ≥5MET signals per cell (Capuzzo scoring system) and

aMET/CEP7 ratio ≥2 (PathVysion).38,39 Their harmonization

seems essential to enable comparisons among studies and

available data.

Mutations
METex14 mutations provoke the suppression of the juxta-

membrane domain or abnormal splicing leading to the

suppression of the juxtamembrane domain that prevents

the degradation of the MET receptor, which leads to

increased MET-receptor activity. There can be punctual

mutations at the Y1003 catalytic site (Sema-3C, encoded

by exon 2) and the juxtamembrane (encoded by exons 14

and 15) domains. In NSCLCs, punctual MET mutations

are often situated in the extracellular or juxtamembrane

domains (exon 14).40 The first NSCLC patients with

METex14 mutations were described in 2005.41

In the absence of mutation, the introns adjacent to

METex14 in the premessenger RNA (pre-mRNA) are

spliced, which gives rise to an mRNA containing METex14

that becomes the functional MET receptor. METex14 codes

for a part of the of the juxtamembrane domain containing

Y1003, the binding site of E3 ubiquitin ligase c-Cbl (proto-

oncogene Casitas B-lineage lymphoma). Ubiquitination

marks the MET receptor for degradation.42 These mutations

lead to METex14 skipping, which yields a truncated MET

receptor lacking a Y1003 c-Cbl–binding site. The loss of that

site leads to less ubiquitination of the MET protein and its

degradation, and prolonged MET activation that favors the

tumor oncogenicity.43 MET overexpression detectable by

IHC for it may detect the degradation of the protein.

METex14 alterations are highly variable and represent

a diagnostic challenge. Substitutions or insertions of bases at

splice sites in introns 13 and 14, respectively at 3′ and 5′

termini, for example.42–45 METex14 mutations are mutually

exclusive from other mutations, suggesting its role as a true

oncogenic driver. Based on an analysis of 933 non-squamous

NSCLCs, no patient with aMETex14 mutation had any other

associated oncogenic abnormality.45,46

Epidemiology of the MET Pathway
in NSCLC
MET Overexpression
Its frequency ranges between 22% and 75%, depending on

the series.47–52 MET overexpression is considered a poor-

prognosis factor.48,52 A meta-analysis including 18 studies

(5516 NSCLC patients) showed that MET overexpression

was associated with a significantly increased risk of death

(hazard ratio (HR): 1.52 [95% confidence interval (CI):

1.08–2.15]).52 Another meta-analysis of 4454 NSCLC

patients (based on 22 studies) confirmed that IHC MET-

positivity was significantly associated with worse OS (HR:

1.55 [95% CI: 1.10–2.18]).53

Rearrangements
The prevalence ofMET rearrangement is unknown. Based on

a series of 2410 NSCLC patients, that rate was 0.04% (one

patient with MET–ATXN7L1 (ataxin-7-like protein-1)

fusion).54

Amplification
De Novo Amplification

The reported frequency of de novo MET amplification in

NSCLCs ranges from 1%–5%, depending on the level of

preselection, the assay and the positivity threshold

applied.4,38,46,55,56 No consensus has yet been reached on

the definition of MET positivity based on GCN. Different

classification thresholds among studies has complicated

comparisons of reported MET-amplification/GCN gain rela-

tive to the underlying frequency.47–49,57 These amplifications

are more frequent in poorly differentiated adenocarcinomas

with a poor prognosis.

A few meta-analyses on the prognostic role of MET

amplification in NSCLC have been published.52,58,59 Ameta-

analysis of 21 studies that had enrolled 7647 patients showed

thatMET amplification was associated with shorter OS (HR:

1.45 [95% CI: 1.16–1.80]). Subgroup analyses based on

histology and ethnicity indicated that MET amplification

was significantly associated with shorter survival, especially

for patients with adenocarcinomas (HR: 1.41 [95% CI: 1.-

11–1.79]) and of Asian ethnicity (HR: 1.58 [95% CI:

1.32–1.88]).58

Amplification as a Resistance Mechanism

in Tumors Becoming EGFR-Mutated

Under TKIs
MET amplification represents a mechanism of acquired resis-

tance in 5–20% of patients, whose NSCLCs harbor EGFR

mutations and were treated with EGFR-inhibitors, particularly

after first-line third-generation therapy.60–65 In the AURA3

trial of 83 patients who cancers progressed on second-line

osimertinib, 19% exhibited MET amplification.66 When osi-

mertinib was given as a first-line therapy, MET amplification

was themost common resistancemechanism, found in 15% of
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patients by NGS of circulating-tumor DNA analysis.

Moreover, that percentage is expected to be higher in tissues,

because of the underestimation of gene amplification in

plasma.67 Consistent with those findings, the results of several

preclinical and clinical studies demonstrated that the

combined use of MET inhibitors, osimertinib and other

EGFR-TKIs can potentially overcome the resistance in osi-

mertinib-resistant EGFR-mutant NSCLC lines with MET-

gene amplification.68–70

Mutations
The frequencies of METex14 mutations was 1.7–4.3% in

metastatic lung adenocarcinomas, according to NGS

analyses.46–48,55,58 METex14-skipping mutations tend to be

more frequent in relatively elderly populations and mutually

exclusive of other lung cancer-driver mutations.71,72

METex14-skipping mutations have been identified across dif-

ferent major histological subtypes of lung cancers, eg adenos-

quamous (8.2%) or sarcomatoid subtypes (7.7%),

adenocarcinomas (2.9%) and squamous-cell carcinomas

(2.1%).72,73

Anti-MET Therapies
The MET pathway can be targeted via several mechanisms.

Anti-MET therapies are divided among selective TKIs, non-

selective (also known as multitarget) TKIs and antibodies

directed against MET or its ligand HGF.74 Table 1 sum-

marizes the molecules being evaluated as NSCLC treat-

ments. TKIs can be separated into three types according to

their binding mechanisms and their conformations.75,76 TKI

types I and II are ATP-competitive MET inhibitors but with

different selectivities, conformations and binding sites.

Those two groups include the majority of TKIs currently

used or being developed, such as crizotinib, capmatinib and

savolitinib (type I) or cabozantinib, merestinib and glesatinib

(type II). Tivantinib is an exception because its activity is

only partially linked to MET inhibition (with non-

ATP–competitive binding; other mechanisms are involved,

eg, microtubule rupture and blocked assembly).77 Type III

TKIs bind to allosteric sites distinct from the ATP-binding

site. At present, no type III inhibitor has been developed for

use in oncology.75

Therapies Developed for Non-Selected

or Selected MET-Overexpression Patients
Anti-MET results obtained for NSCLC patients not selected

for a MET pathway anomaly have been disappointing, even

when they were analyzed as a function of their IHC-detected

MET expression.

The GO27820 study evaluated onartuzumab (Genentech,

Inc, South San Francisco, CA), a recombinant, fully huma-

nized, monovalent monoclonal antibody that binds to the

extracellular domain of MET, in combination with first-line

platinum-based doublet chemotherapy, in patients with squa-

mous cell NSCLCs. Its results were considered negative,

with median PFS at 4.9 months in both treatment arms. For

patients whose cancers expressed IHC-detected MET, med-

ian PFS lasted 5.0 and 5.2 months, respectively, in the onar-

tuzumab or placebo arms.12 In another Phase II trial,

onartuzumab in combination with chemotherapy comprised

of platinum salt–pemetrexed–bevacizumab in patients with

non-squamous NSCLC (GO27281) did not reach its princi-

ple objective, with median PFS at 5.0 months vs 6.8 months

for the placebo arm. In patients with IHC MET-positive

expression, median PFS was 4.8 (95% CI: 3.7–6.2) months

for onartuzumab recipients vs 6.9 (95%CI: 4.9–10.9)months

for the placebo arm, with an unstratified HR of 1.71.78

The combination of erlotinib and onartuzumab, tested in

two studies, did not prolong PFS or OS in the general

NSCLC population or those with MET overexpression.79,80

Crizotinib (PF-02341066, Xalkori, developed by

Pfizer; 200 mg twice daily) was evaluated in combination

with dacomitinib (NCT01121575; maximum tolerated

dose: 30 mg once daily) in a Phase I study on 70 patients

were treated during the dose-escalation (n=33) and expan-

sion phases (n=37). Grade-3 or −4 treatment-related

adverse events occurred in 43% of patients.81 The crizoti-

nib–dacomitinib combination had limited antitumor activ-

ity against advanced NSCLC and was associated with

substantial toxicity. Further assessment of that combina-

tion was not pursued.

Tivantinib (formerly ARQ 197; ArQule, Woburn, MA;

Daiichi Sankyo, Tokyo, Japan) a non-ATP–competitive

small-molecule MET inhibitor (TKI) was evaluated in

three trials (NCT00777309, MARQUEE, ATTENTION) in

combination with erlotinib, as second- or third-line therapy

for advanced NSCLC.82–84 None of the three trials obtained

positive results. The ATTENTION study was stopped, after

307 patients had been randomized, as recommended by the

Safety Review Committee because of the very different

between-group frequencies and impacts of interstitial lung

disease: 14 (three deaths) tivantinib recipients and six (0

deaths) placebo-group patients.84

Cabozantinib, an available oral TKI active against MET

and vascular endothelial growth-factor–receptor-2 (VEGFR2),
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RET, ROS1, tyrosine-protein kinase receptor (AXL), tyrosine-

protein kinase KIT (KIT), and tyrosine kinase with immuno-

globulin and EGF homology domains (TIE2/TEK), was tested

alone and combined with erlotinib, as second- or third-line

therapy for NSCLCs. That study included 125 patients: 42

assigned to receive erlotinib, 40 cabozantinib and 43 the com-

bination. PFSwas significantly longer for the cabozantinib (4.3

months, HR: 0.39 [80% CI: 0.27–0.55]; P=0.0003) and erloti-

nib plus cabozantinib arms (4.7 months, HR: 0.37 [80% CI:

0.25–0.53]; P=0.0003) than erlotinib alone (median: 1.8

months). For the 74/125 patients with IHC-detected MET-

positive expression, median PFS lasted 1.8months for patients

randomized to erlotinib vs 5.0 months for patients given cabo-

zantinib alone or in combination. This agent is not currently

being evaluated in any study.85

An ongoing phase II study (NCT03539536) is evaluat-

ing telisotuzumab vedotin (ABBV-399), an anti-MET anti-

body, as second-line therapy for NSCLCs, especially IHC

MET-positive NSCLCs, as assessed by an AbbVie-

designated IHC laboratory or known documented MET-

gene amplification.

The results with anti-MET agents have been disap-

pointing in patients with tumors overexpressing MET.

Notably, onartuzumab, tivantinib and cabozantinib yielded

negative findings (Table 2).

MET Rearrangement
At this time, no molecule is being developed to overcome

this anomaly. However, published case reports have

described crizotinib efficacy against NSCLCs harboring

a KIF5B–MET rearrangement.86

MET-Amplified NSCLCs
De Novo Amplification

Results obtained with agents tested in patients with this

genetic abnormality are summarized in Table 2. In the two

arm, non-comparative phase II METROS trial, among the

16 patients withMET amplification (Camidge-classification

intermediate for 14 patients or high for 2) treated with oral

crizotinib (250 mg twice daily), the objective response rate

(ORR) was 31.3% (95% CI: 5.2–71.4), with respective

median PFS and OS at 5.0 (95% CI: 2.7–7.3) and 5.4

months (95% CI: 3.4–7.4).87 The AcSé phase II trials on

25 crizotinib-treated patients with MET amplification

(GCN>6), the ORR was 16%, and the respective median

PFS and OS were 3.2 (95% CI: 1.9–3.7) months and 7.7

(95% CI: 4.6–15.7) months.88

Tivantinib also yielded disappointing results for

patients with MET amplification (defined as GCN>4):

median PFS last 3.6 months for those given the erloti-

nib–tivantinib combination, as for those taking erlotinib

alone.83 Other molecules, like tepotinib or capmatinib, are

being tested to treat this anomaly.

Table 1 Agents Being Evaluated as Treatments for Non-

Small–Cell Lung Cancers

Inhibitor Compound Drug Target Company

Type

Multikinase

Ia Crizotinib MET, ALK, ROS1 Pfizer

II Cabozantinib MET, RET, KIT, AXL, VEGFR2 Elexis

II Glesatinib MET, AXL, TIE2, VEGFR Mirati

Therapeutics

II Merestinib MET, AXL, ROS1, TIE2, DDR,

FLT3, RON, MERTK,

MKNK1/2

Lilly

II S49076 MET, AXL, FGFR1,2,3 Servier

II Foretinib MET, RON, MERTK, VEGFR2 GSK

Selective MET

Ib AMG337 MET Amgen

Ib Savolitinib MET AstraZeneca

Ib Tepotinib MET Merck

I Tivantinib Arqule

I Bozitinib

(PLB1001)

CBT

SAR125844

II MK-8033 MET/RON MSD

Ib Capmatinib MET Novartis

I JNJ-61,186,372

(OMO1)

MET Janssen

Anti-MET Antibody

Onartuzumab Genentech

Emibetuzumab Lilly

ABT-700 AbbVie

Tesolituzumab

vedotin (ABBV-

399)

AbbVie

JNJ-61,186,372 Janssen

Anti-HGF Antibody

Rilotumumab Amgen

Ficlatuzumab Aveo

Abbreviations: ALK, anaplastic lymphoma kinase; DDR, discoidin domain-receptor

tyrosine kinase; FGFR, fibroblast growth factor receptors; FLT-3, FMS-like tyrosine

kinase-3; HGF, hepatic growth factor (MET ligand); MER, myeloid-epithelial-

reproductive;MERTK, MER tyrosine-kinase receptor;MKNK1/2, MAP kinase-interacting

serine/threonine-protein kinase 1/2; RON, Recepteur d’Origine Nantais kinase or macro-

phage stimulating-1 receptor MST1R; ROS1, tyrosine-protein kinase-1; TAM, tyrosine-

protein kinase receptor (TYRO3), tyrosine-protein kinase receptor (AXL) and (MER)
receptor tyrosine kinase subfamily; VEGFR, vascular endothelial growth factor receptor.
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Amplification as a Resistance Mechanism
Several TKIs with anti-MET activity have been evaluated

in this context (Table 3). According to a phase I trial

combining crizotinib and erlotinib, respective maximum

tolerated doses were 150 mg twice daily and 100 mg/

day.89 However, no ongoing clinical trial is testing this

combination therapy. In a phase II study that combined

cabozantinib (40 mg/day) and erlotinib (150 mg/day) for

patients with EGFR-mutated tumors that progressed under

EGFR-TKI, ORR was 10.8% for the 37 analyzable

patients, none of whom had MET amplification.90

The combination of emibetuzumab and erlotinib versus

erlotinib alone as first-line therapy for EGFR-mutated

metastatic NSCLC, without selection according to MET

status, yielded respective negative outcomes for its princi-

pal criterion (PFS) of 9.3 vs 9.5 months. Exploratory

analysis of patients with MET-high expressing tumors

(IHC MET 3+) showed that PFS was prolonged by 15.3

months (combination: 20.7 months vs 5.4 months, HR:

0.39 [90% CI: 0.17–0.91]).91

The combination of tepotinib plus gefitinib versus pla-

tinum–pemetrexed chemotherapy in patients with EGFR-

mutated but EGFRT790M-negative, IHC MET 2+/3+ or

with MET amplification (GCN≥5 and/or MET/CEP7 ratio

≥2) that progressed under TKI, respective median PFS

lasted 21.2 vs 4.2 months (HR: 0.13 [90% CI: 0.04–0.43]),

and median OS of 37.3 vs 13.1 months (HR: 0.08 [90%

CI: 0.01–0.51]).92 ORR was also higher for the

combination, respectively: 66.7% vs 42.9%. Patients with

MET-amplification experienced ≥15% grade ≥3 treatment-

related adverse events (increased amylase or lipase) in

both arms. A new phase II study is now underway.

The tivantinib plus erlotinib combination had an ORR of

6.7% in a Japanese phase II study that had enrolled 45 patients

with advanced EGFR-mutated NSCLC with acquired resis-

tance to gefitinib or erlotinib and MET expression.93 Half the

patients enrolled in that study were EGFRT790M-positive and

48.9% had highMETexpression (IHCMET 2+/3+), including

the three responders with both genetic anomalies.

In a phase Ib/II study on EGFR-TKI–pretreated

patients, with EGFRT790M-negative and MET amplifica-

tion-positive (GCN≥6) NSCLCs, the gefitinib–capmatinib

(400 mg twice per day) plus gefitinib (250 mg/day)

achieved an ORR of 47%.68 No significant drug–drug

interactions were observed in that study. Other ongoing

studies are combining capmatinib and aunazartinib or

erlotinib.

The TATTON (phase Ib) study tested the combination of

osimertinib (80 mg/day) and savolitinib (600 mg/day) on

two cohorts of patients with EGFR-mutated MET-amplified

NSCLCs.69,70 In the first cohort of first- and second-

generation EGFR-TKI–pretreated patients with EGFRT790M-

negative/MET-positive (GCN≥5 or IHC MET 3+) disease,

the ORR was 52%. In the other cohort that included third-

generation EGFR-TKI–pretreated patients, the combination

therapy obtained an ORR of 25%.

The ongoing phase II SAVANNAH study (NCT

03778229) will further evaluate the osimertinib–savolitinib

combination in first-generation EGFR-TKI–pretreated

patients with EGFR-mutant, MET-amplified NSCLCs that

progressed on prior osimertinib.

Emibetuzumab (LY2875358) is a humanized IgG4 biva-

lent monoclonal anti-MET antibody-blocking ligand-

dependent and -independent HGF/MET signaling. In a study

examining whether acquired resistance to erlotinib in MET-

positive (expression) NSCLC patients, with a predominance

of EGFR-mutated tumors, that resistance could be overcome

by emibetuzumab or emibetuzumab + erlotinib; the ORRs for

patients with MET overexpression (≥60%) were 3.8% and

4.8% in the combination and monotherapy arms,

respectively.94 In a phase Ib study combining tesolituzumab

vedotin (ABBV-399) and erlotinib for patients with IHCMET-

positive (H-score >150 or MET-amplification) NSCLCs, the

ORR was 34.5% for the 29 EGFR-TKI–pretreated patients.95

JNJ-61,186,372, an antibody bispecific to EGFR and

MET, binds the two proteins, thereby blocking their ligand

binding, promoting receptor degradation and triggering anti-

body-dependent cellular cytotoxicity in models of EGFR-

mutated NSCLC. Results of the phase I study were reported

at ASCO 2019 (NCT02609776).96 Response-assessable

patients’ ORR was 28% and their best timepoint response

was partial. Among 47 patients with prior third-generation

TKI therapy, 10 had best timepoint response of partial

response (six confirmed), including four with EGFRC797S

mutation, one with MET amplification and five with no

identifiable EGFR/MET-dependent resistance. Enrollment

in that trial’s expansion phase is ongoing. It also evaluated

another cohort with the combination of JNJ-61,186,372 and

lazertinib (third-generation EGFR-TKI).

Evaluation of Anti-MET Agents in Patients

with NSCLCs Harboring METex14
The METex14 mutation clearly appears to be an oncogenic

driver. According to a multicenter series of patients
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carrying the METex14 mutation, 61/148 patients not

exposed to anti-MET and for whom survival data was

available, median OS lasted 8.1 [95% CI: 5.3–not reached]

vs 24.6 [95% CI 12.1–not reached] months for those who

had received at least one TKI anti-MET (crizotinib, glesa-

tinib or capmatinib) during management of their

NSCLCs.97 Several MET inhibitors are under develop-

ment for this indication.

Crizotinib efficacy was addressed in several case reports

and Phase I–II trials (Table 2).73,98,99 Updated results from

the PROFILE-1001 study, in which 69 treatment-naïve or

chemotherapy-refractory, METex14+ NSCLC patients parti-

cipated, showed three complete responses and 18 partial

responses (ORR, 32% [95% CI: 21–45]) with median PFS

at 7.3 [95% CI: 5.4–9.1] months.100

In the METRO study, which included 26 crizotinib-

treated patients (16 with MET amplification, nine harbor-

ing the METex14 mutation and one with concurrent

abnormalities), the ORR was 20% for patients with

METex14 mutations, with median PFS at 2.6 [95% CI:

2.2–3.0] months and median OS at 3.8 months [95% CI:

1.7–5.8]. No difference between MET-amplified and

METex14-mutated patients was found for any clinical

endpoint.87

In the AcSé crizotinib study,88 among 28 patients with

MET anomalies, 25 had the METex14 mutation; the ORR

at 2 cycles was 10.7% [95% CI 2.3–28.2%]; median PFS

was 2.4 [95% CI 1.6–5.9] months and median OS was 8.1

months [95% CI 4.1–12.7].

In light of the outcomes of the Profile-1001 study, in

2018, the FDA granted, crizotinib (Xalkori) a breakthrough-

therapy designation for the treatment of patients with

NSCLC harboring METex14 alterations that progressed

after receiving platinum-based chemotherapy.

Capmatinib (INC280; Novartis), an oral, ATP-

competitive, type Ib MET inhibitor has also been devel-

oped for this indication. In the phase I study, the four

METex14-mutated–NSCLC patients enrolled achieved

significant tumor-volume reductions (>45%).101 In the

phase II GEOMETRY mono-1 study, among the 94

METex14-mutated NSCLC patients included (69

receiving second- or third-line therapy and 25 treatment-

naïve), respective ORRs were 39.1% (95% CI: 27.6–51.6)

and 72.0% [95% CI: 50.6–87.9]. The median first-line PFS

was 9.7 months and 5.4 months for the subsequent

lines.102 In September 2019, the FDA designated capma-

tinib (INC280) a breakthrough therapy as first-line treat-

ment for patients with METex14-mutated NSCLC.
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Tepotinib (EMD1214063, MSC2156119J; Merck), an

oral, ATP-competitive, and highly selective MET inhibitor,

was evaluated in a phase II study on patients with

METex14-mutated NSCLCs. The intermediate results for

35/90 patients included and assessable showed the ORR at

51.4% [95% CI: 34.0–68.6], with median treatment dura-

tion of 9.8 [95% CI:1.1–18.0] months.103 The FDA

accorded this investigational targeted therapy break-

through-therapy designation for patients with METex14-

mutated NSCLCs that progressed after platinum-based

chemotherapy.

Other anti-MET TKIs are currently being tested, like

savolitinib (AZD6094, volitinib, HMPL-504; AstraZeneca)

or glesatinib (MGCD265; Mirati Therapeutics) in phase II

trials, but no information is available at this time (Table 2).

Immunotherapy for Patients with a MET-

Pathway–Signaling Abnormality
In pathophysiological terms, the presence of a MET anom-

aly seems to induce programed cell-death protein-1–

ligand-1 (PD-L1) expression.104–106 An analysis of 622

surgical NSCLC samples showed that PD-L1 expression

was significantly higher in patients with MET amplifica-

tions than those without. In addition, peritumoral lympho-

cyte infiltration was more abundant in patients with MET

amplification.105 In that paper, six patients with MET

anomalies were treated with immunotherapy, which

yielded three partial responses, one disease stabilization

and two progressions. In an analysis of 148 patients har-

boring the METex14 mutation, 63% of the cohort’s

NSCLCs expressed PD-L1: 1–49% for 22% and >50%

for 41%.100 Their median tumor mutation burden was 3.8

mutations/megabase, lower than that of a control historical

cohort, whose tumors did not carry the METex14 mutation

(5.7 mutation/megabase: P<0.001).

Retrospective analysis of registries provided informa-

tion on the inefficacy of immune-checkpoint inhibitors

(ICIs) for patients with oncogenic driver alterations. The

Immunotarget Registry included 34 patients, whose

NSCLCs harbored the METex14 mutation, 30% expres-

sing PD-L1 and their ORR was 16%, with median PFS at

4.7 months.15 In another analysis of 30 patients with MET

mutations, 43% expressing PD-L1, ORR was 35.7% and

median PFS lasted 4.9 months.16 ICIs do not seem to have

any remarkable efficacy against MET anomalies but it

appeared better than for other oncogenic anomalies, eg

ALK or RET translocations. Phase I–II trials combining

ICIs with anti-MET TKIs, like glesatinib, are ongoing but

no information is available at this time.105

Conclusion
Inspired by the major breakthrough of targeted therapies in

treating lung cancers, the identification of new pertinent

targets remains a high priority. After the discoveries of the

EGFR or BRAF mutations, or ALK or ROS1 rearrange-

ments, new, less frequent mutations have been identified,

such as RET or NTRK. MET pathway anomalies also have

major clinical impact, especially for patients with the

METex14 mutation, for which promising therapeutics

have been developed, eg first-line capmatinib or second-

line crizotinib and tepotinib after chemotherapy failure.

Other agents are being investigated as any treatment line

in patients with metastatic METexon14-mutation–positive

NSCLCs.

It is necessary to distinguish between de novo amplifi-

cations and amplifications as a resistance mechanism to

EGFR-TKIs. Among the latter, capmatinib, tepotinib or

savolitinib have yielded promising results in combination

with an EGFR-TKI, like gefitinib or osimertinib. For this

indication, anti-MET or -HGF antibodies can also repre-

sent a therapeutic option.

Clinical findings about other MET anomalies, like

overexpression or rearrangement, have been disappointing

and do not represent an avenue for clinical research at this

time.

In light of the promising results obtained for patients

whose NSCLCs harbor the METex14 mutation or MET

amplification as a mechanism of resistance to EGFR-TKI,

inclusion of such patients in clinical trials should be

strongly encouraged.
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