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Abstract: In recent years, it has been found that exosomes can be used as nanocarriers,

which can be used in the treatment of tumors by carrying contents. The exosomes are derived

from the secretion of the organism’s own cells and are characterized by a phospholipid

bilayer structure and a small particle size. These characteristics guarantee that the exosomes

can carry a wide range of tumor drugs, deliver the drug to the cancer, and reduce or eliminate

the tumor drug band. The toxic side effects were significantly eliminated; meanwhile, the

therapeutic effects of the drug on the tumor were remarkably improved. This paper reviewed

the strategies and drugs presented by different scholars for the treatment of tumors based on

the drugs carried by exosomes.
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Introduction
Exosomes are a class of natural nanoscale membrane vesicles formed by living cells

through a series of regulatory processes, such as “endocytosis-fusion-efflux”.1 In

brief, exosomes were first discovered around 40 years ago.2 In recent decades,

people’s understanding of exosomes has remarkably grown. At the beginning, it

was thought that exosomes were such a path of cell excretion,3 and further

researches revealed that exosomes are also a medium participating in information

exchange and material transportation between cells by carrying proteins,4 lipids,5

nucleic acids,6 and other substances of host cells. Consequently, exosomes are used

as a kind of nanocarrier to transport nucleic acids (such as miRNA7) or drugs (such

as paclitaxel8) for the treatment of various diseases, such as tumors. The mechanism

of better-utilizing exosomes and construct low-toxic or non-toxic granules with

high-efficiency exosomes-loading, which were used in cancer treatment, has quietly

become a research hotspot.9,10 The present study systematically expounds exo-

somes, and summarizes the application of exosomes as nanocarrier-loaded drugs

in tumor therapy, with the aim of providing a reference for future treatment of

cancer.

Structure
Exosomes are a class of round-shaped lipid bilayer vesicles with a diameter of

ranging from 30–150 nm, and in the image of exosomes EM, we can see that their

shape is round-shaped and the distribution is monodisperse.11–14 As early as 1981,

Trams et al2 discovered the existence of exosomes. Pan et al15 reported the forma-

tion of exosomes via electron microscopy in 1985. Until 1987, the term “exosome”

was first officially introduced by Johnstone et al.16
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Figure 1 The ingredients of exosomes include multiple proteins, lipids, and nucleic acids, including RNA and DNA. And the scanning electron microscopy image of

exosomes175 was made by ourselves.
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Figure 2 Usually, exosomes can be naturally secreted by a variety of cells, such as T and B lymphocytes,31,32 epithelial cells,33 endothelial cells,34 dendritic cells,35

mesenchymal stem cells,36–38 platelets,39,40 tumor cells.41,42
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The ingredients of exosomes (Figure 1) include multiple

proteins,4,17 lipids,5 and nucleic acids, such as mRNA,18–20

tRNA,21 miRNAs,22–25 LncRNA,26–28 and DNA.6,29

Typically, almost all mammalian cells could secrete

exosomes (Figure 2), 30 including T and

B lymphocytes,31,32 epithelial cells,33 endothelial cells,34

dendritic cells,35 mesenchymal stem cells,36–38

platelets,39,40 tumor cells,41,42 and act as transmitters and

couriers in cellular crosstalk.43 The source of exosomes is

broad, and they can be found in several body fluids, such

as tears,44 nasal mucus,45 saliva,46 breast milk,47 urine,48–

50 semen,51,52 lymph,53 and plasma,54 etc. Sokolova et al55

found that the size and integrity of the exosomes were

strongly dependent on the storage conditions: the exosome

diameter significantly decreased within 2 days at 37 ◦C
and 4 days at 4 ◦C, but storage at −20 ◦C to −80◦C can be

stored for months to years.

It was revealed by pulse tracking and electron micro-

scopy that exosomes were generated by endocytic

pathway.56 The specific generation process is as follows

(Figure 3):57 early endosomal stage, the cell membrane

forms early endosomes through endocytosis; late endoso-

mal stage: on the basis of the early endosomes, ESCRT-0

first bind to the specific receptors on the surface of the

early endometrial membrane through the ubiquitination

binding site, as well as selectively splicing part of the

cytoplasm to form intraluminal vesicles by budding,

ESCRT-I binds to ESCRT-0 and induces ESCRT-II to

bind to ESCRT-I. Then, ESCRT-I is synergized with

ESCRT-II to promote the formation of ILVs, followed by

ESCRT-III shearing the bud of the neck. The ILVs are

separated from the endosomal membrane, thereby releas-

ing the ILVs encapsulating specific proteins, nucleic acids,

and other substances into the endosomal cavity, as well as

Early endosomes

Endocytosis

Protein
DNA

RNA

Lipid

ESCRT-0

ESCRT-
ESCRT-

ESCRT-

Late endosomes

Exocytosis

Endocytic process

Exosomes

Lysosome

Golgi
Nucleus
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Figure 3 The process of exosomes is divided into three parts, namely endocytic process, endosome process, and exocytosis.56 The endosome is stroked by endocytosis,

and then matured into a late endosome containing multiple intraluminal vesicles,57 which is multi-vesicle bodies (MVBs). The small vesicles secreted by MVBs to the

extracellular membrane are exosomes. Some MVBs are degraded by lysosome phagocytosis, and a small part is degraded by Golgi and then recycled.58
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completing the budding process, thereby forming mature

late endosomes, and due to the late endosomes containing

multiple ILVs, they are also called multi-vesicle bodies

(MVBs).58 Exocytosis: afterwards, some MVBs are

degraded by fusion with lysosomes, while a number of

them are fused with the plasma membrane, in which the

internal vesicles of the MVBs are released into the extra-

cellular medium as exosomes. Besides, there are some

MVBs combined with the Golgi body for recycling.

The Methods for Isolation and
Identification of Exosomes
At present, the methods for isolation of exosomes are

mainly divided into centrifugation,59 precipitation,60

ultrafiltration,61 and immunoassay.62 Their main purpose

is to remove the mixed cells and their fragments and other

small molecular impurities in the exosomes. Among those

methods, centrifugation is a differential and a sucrose

density gradient centrifugation method.63 The principle

of differential centrifugation64 is based on the difference

in sedimentation rates of different protein molecules, vesi-

cles, cells, and cell debris in a homogeneous suspension.

The sucrose density gradient centrifugation method65 is

based on the difference in density of each component in

the sample. Under the action of centrifugal force, particles

with low density are lifted upward, and particles with high

density are sedimented downward. The density of

enriched exosomes is at the range of 1.13~1.19 g/mL.

The precipitation60,66,67 is mainly a polyethylene glycol

precipitation method. Because PEG is extremely hydro-

philic, it can bind to the hydrophobic lipid bilayer and

change the solubility or dispersibility of the exosomes to

precipitate. Ultrafiltration method61,68 uses the ultrafiltra-

tion membrane with the corresponding molecular weight

cut off according to the size of the exosomes.

Ultrafiltration technology is used to remove residual

cells by centrifugation, in which a 0.22 μm filtration

membrane is used to remove cell debris, macromolecular

vesicles, etc., and pure exogenous secretion is isolated.

With any method mentioned above, the exosome can be

separated. The cystic bodies with double membrane

secreted by the cell membrane not only involve the com-

ponent of the exosome, but vesicles and microvesicles

(MVs) (with the diameter of 100nm–1000nm) dropped

off from the cell membrane after becoming activated,

injured or dead.69,70 It is difficult to separate them from

exosome with common separation methods; however,

there is a promising one, the emerging microfluidic sys-

tem, a microscale separation based on the physical and

biochemical properties, such as immune affinity, size and

density, that can also achieve the innovative separation

mechanism for acoustics,71 electrophoresis72 and

electromagnetism.73 With this technique, components of

exosome and other microvesicles with different physical

properties can be effectively separated. However, due to

the lack of standardization and large-scale clinical sample

testing, the microfluidic system has failed to be wildly

used.

While, the identification of exomes mainly focuses on

the identification of morphological structure, size, num-

ber, and surface protein of exosomes.74 Using electron

microscopy,75 we can clearly observe that the morpholo-

gical structure of exosomes is mostly disc-shaped, which

is composed of two layers of membranes, with light

internal staining and deep external staining. The

Nanoparticle Tracking Analysis can be used to measure

and analyze the number and size of exosomes without

destroying the structure and function of exosomes.76,77

As a kind of Nanosight-related technique, the NTA tech-

nique is based on laser light scattering microscopy that

can visualise and dynamically size populations of parti-

cles in the particle size range of 10 nm–1000 nm under

a liquid state on an individual basis. And the Brownian

motion of each and every particle is tracked separately

but simultaneously using a CCD camera, from which

a high-resolution plot of the particle size distribution

profile is obtained. Jin et al78 determined the size and

concentration of exosomes through Nanosight Tracking

Analysis by utilizing Zeta View PMX 110 according to

previous protocol. Western blotting,79 flow cytometry,80

and mass spectrometry81 can detect the type of exosome

surface protein expression, in addition to its amount.

Biological Functions of Exosomes
Previously, the understanding of exosomes was limited to

transport some non-essential proteins and other molecules

from the donor cells, thus, people originally thought exo-

somes are the only path of cellular excretion of waste.82

With the increase of evidence, exosomes have been con-

firmed to play an important role in the body’s physiologi-

cal, pathological processes, such as carrying material, as

well as exchanging information between local and distant

cells.17,83,84 Normally, these two roles of exosomes com-

plement each other.
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With the deepening of research, it is found that exo-

somes can be used as a biomarker85,86 in clinical practice.

Iaccino et al87 studied exosome secreted by multiple

myeloma and found that these exosomes express the

immunoglobulin B-cell receptor, which binds to the

unique type of binding peptide. The results of this study

can be used as one of the biomarkers for the early diag-

nosis of multiple myeloma. What’s more, exosomes play

an important role in neural signal conduction,88 immune

response,89,90 inflammation,91 coagulation,92 cell prolif-

eration and differentiation,93 tumor invasion and

metastasis94,95 and angiogenesis96 etc.

Due to the basic characteristics of the stability of

the lipid membrane structure encapsulating the genetic

information material, the widespread distribution in

body fluids, and the ease of availability, and their

nanoscale and great biocompatibility, exosomes could

be used as a potential nanocarrier for clinical tumor

therapy. In this review, we focused on the application

and progress of exosomes as nanocarriers in tumor

therapy.

Comparing with Conventional
Nanocarriers
In general, traditional nanocarriers can be divided into two

categories (Tables 1 and 2): organic nanocarriers (such as

liposomes,97–99 micelles,100–102 etc.) and inorganic nanocar-

riers (eg, mesoporous silica nanoparticles,103–105

graphene,106,107 magnetic nanoparticles,108–110 gold

nanoparticles,111–113 quantum dots,114,115 and layered double

hydroxides,116–118 etc.). Compared with conventional nano-

carriers, exosomes have several their own advantages and

enormous potential in clinical tumor treatment.

First of all, due to the phospholipid bilayer structure,

exosomes could carry drugs stably to avoid enzymes

degrading drugs and extend the half-life of drugs during

delivering, and their membranes could mix well with

target cells. Correspondingly, the bioavailability of the

loaded drug improved as well.

Then, compared with traditional drug carriers like lipo-

somes, the immunogenicity, and toxicity of exosomes

were poor. Moreover, we cannot ignore their petite body.

The nanosize of exosomes allows them to be extravasated

Table 1 The Summary of Inorganic Nanocarriers

Group Advantages Disadvantages References

Carbon

nanotube

Have superior transmembrane ability due to their

tubular structure; plus their large specific surface area,

they can be loaded with high molecular weight drugs; in

addition, they are chemically stable, easy to modify, and

can be linked to various biomolecules to improve

targeting. At the same time, the carbon nanotube

complex can prolong the circulation time of the drug in

the body

It has poor dispersibility in most polar solvents, is easy

to agglomerate, and has certain cytotoxicity. At the

same time, its length is long, the surface has many

impurities, lacks functional groups, and cannot be

directly applied

[176–180]

Mesoporous

silica

Have good biocompatibility, regular pore structure and

controllable pore size, large specific surface area, easy

surface modification, easy synthesis and good stability

There is drug leakage, and the carrier is not highly

targeted

[181–184]

Magnetic

nanoparticles

Have excellent biocompatibility, small size, low toxicity,

heat treatment, surface modification, and superior

magnetic orientation

Has low drug loading and low bioavailability, and it is

difficult to control the size of industrialized nano-iron

oxide. In clinical applications, the heat during

hyperthermia is difficult to control

[185–187]

Gold

nanocarriers

Have high electron density, dielectric properties and

catalysis. They can be combined with various

biomacromolecules for biomedical and detection.

Surface-enhanced Raman scattering properties can be

used to detect biomolecule levels in vivo and accurately

diagnose lesions. Increasing the length-to-length ratio of

the plasmon resonance of the nano-gold longitudinal

surface to the near-infrared region, and converting it

into thermal energy or singlet oxygen, exerting the

near-infrared thermal effect

The surface modification method of gold nanocarriers

is not abundant, and then the cost is also high. At the

same time, the biosafety of nanogold is still questioned

[188–190]
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in tumor vessels and spread in tumor tissue to treat tumors.

Thus, exosomes can also overcome some physiological

barriers (eg, blood-brain barrier).119–122 Another advan-

tage is that when the drug is loaded in exosomes, the

efficacy of the drug is enhanced.

However, the only drawback is the difficulty of large-

scale extraction. However, a number of scholars have

discovered that other sources of exosomes can also be as

same as human exosomes, can be utilized as anti-tumor

drug carriers, and successfully applied to the treatment of

cancer. Munagala et al9 found that bovine milk-derived

exosomes can be used as nanocarriers for the delivery of

chemotherapeutic/chemopreventive agents for the treat-

ment of lung cancer, and can increase antitumor activity.

Katakowski et al123 exploited the characteristics of exo-

somes capable of loading miRNAs, in which they used

exosomes as nanocarriers carrying miRNAs to treat glio-

mas after loading miR-146b.

The Function of Exosomes in Tumor
Tumor-derived exosomes are involved in pathogenesis and

microenvironmental establishment of cancer. To explore the

specific function of exosomes in tumors, it is necessary to

explore its complexity and functional heterogeneity.

Exosomes have been widely proved to play an important

role in the formation of tumor microenvironment,124 tumor

invasion and metastasis,125,126 angiogenesis127 and tumor

immunity.128 There is no doubt that exosomes secreted by

cancers are one of the main biological mediators of tumor

progression but some exosomes have been found to inhibit

the occurrence and development of tumors. Which kind of

exosomes to be choose is the most critical point in treatment.

Logozzi et al129 suggest that nanomaterials getting to tissues

are scavenged by macrophages that then release them

through exosomes. Iessi et al130 devised a novel strategy

involving the use of exosomes as carriers which is purified

from culture supernatant of macrophages isolated from per-

ipheral blood of healthy donors. The exosome delivery

system showed to actually enhance the tumoricidal effect

of Acridine Orange (AO), by increasing the exposure time of

the biological targets. This evidence suggests that the exo-

somes release by macrophages potentially useful material.

Exosomes have been detected in a variety of body fluids

such as urine, saliva, bile, and blood. In tumor patients, the

content of exosomes has become an important information

to judge the occurrence and development of tumors.131–134

Table 2 The Summary of Organic Nanocarriers

Group Advantages Disadvantages References

Liposomes Have good biocompatibility and biodegradability; they

can be used to embed hydrophilic, hydrophobic and

amphiphilic drugs, have wide applicability, and have

relatively high drug loading; surface-modified liposomes

not only improve drug utilization, but also reduce toxic

side effects

Phospholipids in liposomes are easily oxidized, poor

overall stability, low industrial reproducibility, and

difficult sterilization treatment

[191,192]

Micelles Have a low critical micelle concentration, high stability

in body fluids, high drug loading rate, and chemically

modified surface to introduce other functional groups

Have a limited range of use and are limited to the

entrapment of hydrophobic drugs

[193,194]

Dendrimer Due to its monodisperse size, surface functionalization,

water solubility and versatility of internal cavities,

dendrimers have become a drug delivery carrier with

great potential, and the surface is easily chemically

modified while simultaneously functioning with

multiple functions. The combination of molecules such

as imaging contrast agents, targeting ligands and drugs

allows people to prepare multifunctional drug delivery

platforms

The synthesis process of dendrimers is cumbersome,

the synthetic products are difficult to separate and

purify, and the synthesis cost is high, so it cannot be

widely used in industrial production, and it is difficult to

extract on a large scale

[195,196]

Exosomes Have the following characteristics: they can stably

carry drugs to avoid enzymatic degradation of drugs

and prolong the half-life of drugs during delivery;

extremely high bioavailability; extremely low

immunogenicity and toxicity; can spread in tumor

tissues, and Pass the human blood brain barrier

Hard to extract on a large scale [8,9,28,122,197]
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Therefore, preventing the secretion and circulation of tumor

exosomes can effectively inhibit the progression of cancer.

The results show that the high exosomes content in tumor

tissues may be related to the acid anoxic

microenvironment124,135 and Ca2+.136 The presence of an

anoxic environment results in an acidic microenvironment,

then results in an increased secretion of exosomes. Some

studies showed that the exosomes of CD63+, CD9+ and

ALIX+ increased by five times when the calcium content

increased. It is therefore a useful option to suppress acidic

microenvironments or to use Ca2+ channel blockers before

using exosomes as carriers to treat tumors.

Application of Exosomes as
Nanocarriers in Tumor Treatment
It was revealed that utilizing exosomes as nanocarriers to

load antitumor drugs or siRNAs into exosomes may cause

them possess the following characteristics, such as enhancing

the efficacy of drugs, as well as expanding the current ther-

apeutic range; increasing the bioavailability of drugs; target-

ing; being non-toxic or low-toxic, etc.137–139 We know that,

Hadla et al140 made exosomal doxorubicin (ExoDOX) by

electroporation, in which ExoDOX is more potent than free

doxorubicin. Qi et al141 developed a dual-functional exo-

some-based superparamagnetic nanoparticle cluster using

exosomes as a targeted drug carrier for the treatment of

tumors. At present, the anti-tumor effect of exo-drugs mainly

represents the occurrence and development of tumors by

inhibiting cell proliferation, inducing apoptosis, inhibiting

drug resistance, inhibiting tumor angiogenesis, and inhibiting

cell invasion and metastasis. Simultaneously, exo-drugs can

also treat tumors by regulating immunity (Figure 4).

Although some unanswered problems and methodological

challenges remain, this rapidly advancing field have already

provided important insights into the relevance of EVs in the

clinical setting. The great clinical impact in nanomedicine of

exosomes has been explored,142–144 The clinical research data

have already demonstrated that exosomes secreted by immune

cells stimulate the immune system and can be exploited as

antitumor vaccines.145,146 Several clinical trials involving the

use of extracellular vesicle-based delivery are ongoing, for

example for the treatment of lung cancer and melanoma, that

may become part of an immunotherapy approach that has

great potential for patients with advanced cancers.147

Anti-Tumor Cell Proliferation
Compared with the mono drug action, the exosomes could

enhance the anti-tumor cell proliferation characteristic of

the drug via generating the exo-drugs with drug loading.

F. Aqil et al10 mixed 10% of curcumin ethanol with

Anti-tumor cell
proliferation

Inducing of tumor cell
apoptosis

Reversing of chemotherapy
resistance of tumor cells

Cancer immunotherapy

Inhibiting tumor
angiogenesis

Inhibiting tumor invasion
and metastasis

Figure 4 The anti-tumor effect of exo-drugs mainly represents the occurrence and development of tumors by inhibiting cell proliferation,10,123,148-150 inducing apoptosis,151–154

reversing chemotherapy resistance of tumor cells,155,158 inhibiting tumor angiogenesis,119,159 and inhibiting cell invasion and metastasis.11,160 Simultaneously, exo-drugs can also

treat tumors by regulating immunity.161–166
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acetonitrile to form exosomal curcumin (ExoCUR) with

a drug loading rate of 18–24%. In vivo experiments

showed that ExoCUR was absorbed compared to free

curcumin, and the rate increased by 3–5 times; in vitro

experiments showed that ExoCUR inhibited tumor cell

proliferation, which was also significantly enhanced.

More meaningful, ExoCUR has no systemic toxicity.

Similarly Aqil et al148 used milk-derived exosomes to

encapsulate berry anthocyanins to form ExoAnthos,

which demonstrated that in vivo experiments Exo prepara-

tions may increase drug stability, uptake ratio, and half-

life, allowing Anthos to be slowly released from exosomes

to increase the anti-cancer effect in ovarian cancer.

Moreover, the exosomes play the role as the carrier for

doxorubicin to generate the Exo-Dox, which functioned on

MFC-7 cells and significantly inhibited the cell growth under

Yang et al149 exploration. This effect is significantly superior to

that of free doxorubicin. After combining Exo-Dox with heat-

stress, Exo-Dox-HS showed better inhibition than Exo-Dox,

and the content of doxorubicin in cells was higher as well.

Subsequent examines using exosomes to load drugs not only

revealed their own advantages, but also other technologies (eg,

heat-stress) were employed to further enhance the anti-tumor

efficacy of Exo-drugs.

In addition, the exosomes could also contribute to the other

mediator function, such as the miR-146b and iRG peptides.

Katakowski et al123 used the plasmid expressing miR-146b to

transfect the marrow stromal cell to secrete M146-exosomes

(M146-exo). M146-exo may inhibit the growth of gliomas by

inhibiting the expression of EGFR, thereby treating tumors.

Tian et al150 first modified the murine immature dendritic cells

to produce exosomes carrying iRGD peptides on the surface,

namely iRGD-Exos. iRGD-Exos was then loaded with DOX

by electroporation tomake iRGD-Exos-Dox. iRGD-Exos-Dox

can target αv Integrin-positive tumor cells and can specifically

bind to MDA-MB-231 cells and inhibit cells proliferation.

Inducing of Tumor Cell Apoptosis
Studies have shown that exosomes also have a good effect in

inducing tumor cell apoptosis. At present, exosomes can

induce tumor cell apoptosis in two ways. One is to carry

a content to directly induce apoptosis of tumor cells. When

exosomes are combined with drugs that induce apoptosis, the

ability of the drug to induce apoptosis is enhanced, and the

toxicity of normal tissue cells can be remarkably reduced.

Interestingly, the manufactured EXO-drugs possess some fea-

tures, such as targeting and pH sensitivity. For example,

Srivastava et al151 creatively combined gold nanoparticles

with apoptosis-inducing doxorubicin and made Nano-Dox

for the first time. Afterwards, Nano-Dox was incubated with

exosomes to make Exo-GNP-Dox. Exo-GNP-Dox has the

following characteristics: it can be effective up taken by

tumor cells, while it is hardly up taken by normal cells; it

may cause tumor cell apoptosis by activating caspase-9, as

well as inducing DNA damage; it also can induce ROS in

tumor cells, and interfere with mitochondrial membrane

potential, eventually leading to increased DNA damage and

apoptosis in cancer cells, thereby protecting normal cells. And

Xu et al152 screened exosomes expressing miR-29c and acted

on bladder cancer BIU-87 cells. It was revealed that miR-29c

carried by this exosome can down-regulate BCL-2 and MCL-

1 to induce cell apoptosis.

There are also exosomes that, after being secreted by cells,

the proteins carried by the exosomes themselves can induce the

apoptosis of tumor cells without needing to re-design the

exosomes. For instance, Zhu et al153 purified the exosomes

secreted by NK cells and obtained NK-cell-derived exosomes

(NK-Exo), which contained perforin and granzymes. That’s to

say, NK-Exo active apoptosis pathway of glioblastoma via

increased formation of apoptosome and caspase-3 activation

with the help of perforin and granzymes. At the same time,

Hosseini et al154 immobilized SEB to produce EXO/SEB.

Then, they used EXO/SEB in estrogen receptor-negative

breast cancer cells to induce apoptosis by inhibiting the expres-

sion of anti-apoptotic gene BCL-2, as well as promoting the

expression of the Bax and Bak genes.

Reversing of Chemotherapy Resistance of

Tumor Cells
Several tumors are resistant to chemotherapeutic drugs after

chemotherapy. For example, drug-resistant cells produce drug-

resistant proteins, such as P-glycoprotein,155 which can drain

the chemotherapeutic drugs out of the cells, reduce the con-

centration of chemotherapeutic drugs in cells, and eventually

cause cell resistance. At present, EXO-drug can reverse the

chemotherapy resistance of tumor cells mainly through two

ways, one way is to reduce the expression of drug resistance

proteins in drug-resistant cells. Munoz et al156 found that in

glioblastoma multiforme cells, due to the increase of miR-9,

the expression of P-glycoprotein was also increased, resulting

in tumor cell resistance to temozolomide. They utilized exo-

somes secreted by mesenchymal stem cells to carry anti-miR

-9, targeting resistant cells, as well as inhibiting the expression

of drug resistance proteins, in order to enhance the sensitivity
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of tumor cells to chemotherapy drugs, thereby reversing the

resistance of tumor cells.

And the other way is to increase the sensitivity of drug-

resistant cells to chemotherapy drugs. Kim et al157 loaded

Paclitaxel (PTX) into exosomes by ultrasonic technology,

so that exosomes encapsulated PTX and made PTX-

exosome (exoPTX). Compared with free PTX, they

found that exoPTX increased the toxicity of drug-

resistant cells by 50-fold, indicating that exoPTX can

enhance the sensitivity of drug-resistant cells to che-

motherapeutic drugs, thereby improving the therapeutic

effects of the drug on drug resistant cancers. Lou et al158

used miR-122 to transfect adipose tissue-derived mesench-

ymal stem cells, secreted exosomes coated with miR-122,

and exosomes were used for the treatment of hepatocellu-

lar carcinoma by improving the sensitivity of liver cancer

cells to chemotherapeutic drugs.

Inhibiting Tumor Angiogenesis
As we know, the continuous growth of tumors depends on

the supply of tumor blood vessels, and inhibiting tumor

angiogenesis has a very appropriate inhibitory effect on

tumor growth. In fact, in the process of tumor angiogen-

esis, exosomes themselves are involved in this process,

and studies have found that exosomes can promote tumor

angiogenesis by carrying miRNAs such as miR-25-3p. For

example, Zeng et al96 found that miR-25-3p was trans-

fected into endothelial cells by exosomes in colon cancer

cells, and miR-25-3p up-regulated expression of VEGFR2,

p-AKT, p-ERK, and down-regulated ZO-1, occludin and

Claudin5 by silencing KLF2 and KLF4, thereby inducing

angiogenesis.

Based on this research, it was found that exosomes can

inhibit tumor angiogenesis by carrying siRNA such as

HGF siRNA. Such as the research of Zhang et al.159

They loaded HEK293T-derived exosomes with hepatocyte

growth factor siRNA (HGF siRNA), and found that the

exosomes could inhibit the expression of HGF/VEGF in

SGC-7901 cells, thereby inhibiting the growth of tumor

blood vessels. The exosomes can also inhibit the growth

and metastasis of tumor cells. In addition, Yang et al119

found that siRNAs of vascular endothelial growth factor

(VEGF) were transfected into exosomes derived from

brain endothelial bEND.3 cells to produce exosome-

delivered siRNAs. In the brain cancer model of zebrafish,

exosome-delivered siRNAs can inhibit the expression of

VEGF in brain cancer cells through the blood-brain bar-

rier, thereby inhibiting tumor angiogenesis.

Inhibiting Tumor Invasion and Metastasis
Studies have shown that exosomes themselves are

involved in the process of tumor invasion and metastasis.

QinLan et al94 found that in colorectal cancer, M2 macro-

phage-derived exosomes carrying miR-21-5p and miR-

155-5p are transferred to colorectal cancer cells, which

bind to the BRG1 coding sequence and inhibit BRG1

expression, thereby promoting the invasion and metastasis

of colorectal cancer. Chen et al95 also demonstrated that

tumor invasion and metastasis are related to exosomes.

On this basis, people think that when exosomes are

loaded with therapeutic substances, they can also inhibit the

metastasis of tumors. Kamerkar et al11 presented exosomes

carrying siRNA or shRNA to specifically target the onco-

genic KRASG12D, which can inhibit the metastasis of pan-

creatic cancer and prolong the survival rate by reducing the

expression of KRAS gene in a variety of pancreatic cancer

mouse models. In addition, Shim et al160 transfected miR-

143 into mesenchymal stem cells to secrete exosomes loaded

with miR-143 to make exosome-formed miR-143. Then,

they applied exosome-formed miR-143 to osteosarcoma

cells, which inhibited the metastasis of osteosarcoma cells.

Cancer Immunotherapy
After engineering exosomes, a specific tumor antigen was

expressed on the surface. Such exosomes can activate immune

cells in vivo and inhibit the growth of tumors expressing

antibodies corresponding to their antigens, so as to achieve

efficient treatment of tumors. Cho et al161 investigatedwhether

the autologous or allogeneic exosomes express their specific

tumor antigen human MUC1 on the surface, and they can

activate immune cells and inhibit the growth of MUC1-

expressing tumors, in order to achieve the tumor treatment.

These scholars first constructed the recombinant lentivirus

pLXIN-muc1, and then infected mouse-derived CT26 and

TA3HA cells with pLXIN-muc1 to obtain two types of cells,

including CT26-MUC1 and TA3HA-hMUC1. These cells can

be secreted, CT26-hMUC1 exosomes and TA3HA-hMUC1

exosomes. These two exosomes can promote the proliferation

and activation of immune cells, and effectively inhibit the

growth of tumors expressing MUC1. Morishita et al162 trans-

fected a plasmid vector fused to streptavidin-lactocin with

murine melanoma B16BL6 cells, engineered an exosome

expressing streptavidin-lactocin (SAV-LA), and then used

SAV-LA-expressing exosomes (SAV-exo). After integration

with biotinylated CPG-DNA, CPG-DNA-modified SAV-exo

was made, which was CpG-SAV-exo. They found that CPG-
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sav-exo can effectively activate mouse dendritic dc2.4 cells

compared with CPG and SAV-exo, thereby enhancing the

tumor antigen presentation ability of dc2.4 cells, indicating

that CPG-sav-exo has a proper anti-tumor effect.

Some exosomes are secreted and purified from the cells in

the body, and the tumor antigen is directly expressed on the

surface without modification. Besides, the exosomes suppress

the growth of the tumor bymediating the immune reaction. For

example, in the study of liver cancer conducted by Rao et al163

human hepatocellular carcinoma HepG2 cell–derived exo-

someswere isolated and purified, which could induce dendritic

cells to produce a strong immune response. Thus, they could

inhibit the growth of the tumors by increasing the number of

T lymphocytes, elevating the levels of interferon-c, as well as

decreasing the levels of interleukin-10 (IL-10) and tumor

growth factor-β (TGF-β1) in tumor sites. Bu164 et al loaded

the exosomes from dendritic cells into chaperone rich cell

lysates (CRCLs) and made DEX (CRCL-GL261)-DCs, in

which in vivo experiments showed that DEX (CRCL-

GL261)-DCs could promote the proliferation of cytotoxic

T cells, leading to increase their activity, stimulate the produc-

tion of anti-tumor factors IL-2 and IFNγ, and eventually inhibit
tumor growth.Wang et al165 found that exosomes derived from

CD40 ligand gene-modified 3LL tumor cells have a stronger

immune effect and can induce more IFN-γ and IL-2 secretion
after dendritic cells become more mature. Furthermore,

Gehrmann et al166 produced an exosome that not only

expressed the antigen ovalbumin (OVA), but also loaded the

invariant NKT (iNKT) immune cell ligand α-
galactosylceramide (αGC), by a series of immune responses,

such as activation and proliferation of iNKT,NK, gamma delta

(γδ) T cells (γδ T cells), as well as proliferating OVA-specific

CD8+ T cells, in order to inhibit tumor growth.

In addition to these common chemical treatments for

tumors, it has also been found that tumors can be treated by

exosome combined with physical therapy. Altanerova et al167

found that exosomes carrying magnetic nanoparticles were

effectively engulfed by tumor cells by endocytosis. Under the

induction of external alternating magnetic fields, magnetic

nanoparticles produced high temperatures, causing tumor cell

ablation.

Conclusion
Chemotherapy and targeted therapy can hardly achieve the

desired curative effect and result in the process of

oncotherapy due to various defects, and patients may

also have various uncomfortable physiological responses

due to large amounts of drug intake. Exosome has been

widely used as a biologically carrier of therapeutic materi-

als, as its great drug loading capacity, high specificity and

low immunogenicity are natural advantages that other

nanometer materials do not have. The application of

further customized exosome drugs in oncotherapy pro-

vides an important platform for the research and develop-

ment of next-generation antineoplastic drugs. However,

such drugs should be produced in a larger scale at more

strictly controlled quality for application. In addition to

rigorous toxicity observation, the drugs also need to be

supported by the ultimate clinical tests. As far as the

current research progress is concerned, the application of

exosomes, in addition to low yield, needs to be studied in

the following aspects: 1, The structure and mechanism of

action of exosomes have not been thoroughly studied, and

further research is needed; 2, Exo-drugs are targeted, but

the stability of their targeting has not been studied in

depth, and there may be off-target phenomenon.3,

Exosomes from different sources carry a variety of sub-

stances from donor cells, leading to exogenous secretion.

There are differences between the bodies, and it is neces-

sary to standardize the use of exosomes. 4, In some stu-

dies, the researchers use tumor cell-derived exosomes.

While, exosomes in from tumor patients contain tumor

support components which could cause tumor changes in

recipient cells or organisms.168–171 Cossetti et al171 found

that exosomes are capable of transferring substances of

tumor cells to recipient cells. Plasma-derived exosomes

need to identify and remove tumor support components

during the purification process. In view of this, animal-

derived exosomes are more or less problematic, and Pedro

Perez-Berm’udez et al have already found exosomes in

food,172 such as milk, fruits, vegetables, etc. They not only

have been isolated exosomes from these foods by centri-

fugation, but also found that exosomes in milk may be

able to act on the human body. For example, milk-derived

exosomes can affect the body’s immune function173 by

carrying proteins, and can also regulate the intestinal bar-

rier function.174 Perhaps we can use milk as a source of

exosomes.

Even if these problems exist, with the breakthrough of

research, it is just around the corner to use exosomes as

nanocarriers for the treatment of tumors.
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