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Introduction: Ovarian carcinoma is a malignant tumor with a high mortality rate and a lack

of effective treatment options for patients at advanced stages. For improving outcomes and

helping patients with poor prognosis, choose a suitable therapy and an excellent risk

assessment model and new treatment options are needed.

Materials and Methods: Ovarian cancer gene expression profile of GSE32062 was down-

loaded from the NCBI GEO database for screening differentially expressed genes (DEGs)

between well and poor prognosis groups using limma package in R (version 3.4.1). Prognosis-

related genes and clinical prognostic factors were obtained from univariate and multivariate Cox

regression analyses, and a comprehensive risk assessment model was constructed using

a Pathway Dysregulation Score (PDS) matrix, Cox-Proportional Hazards (Cox-PH) regression,

as well as L1-least absolute shrinkage and selection operator (L1-LASSO) penalization. Then,

significant DEGs were converted to pathways and optimal prognosis-related pathways were

screened. Finally, risk prediction models based on pathways, genes involved in pathways, and

comprehensive clinical risk factors with pathways were built. Their prognostic functions were

assessed in verification sets. Besides, genes involved in immune-pathways were checked for

immune infiltration using immunohistochemistry.

Results: A superior risk assessment model involving 9 optimal combinations of pathways

and one clinical factor was constructed. The pathway-based model was found to be superior

to the gene-based model. Phospho-STAT3 (from JAK-STAT signaling pathway) and IL-31

(from DEGs) were found to be related to immune infiltration.

Conclusion: We have generated a comprehensive risk assessment model consisting of

a clinical risk factor and pathways that showed a possible bright foreground. The set of

significant pathways might play as a better prognosis model which is more accurate and

applicable than the DEG set. Besides, p-STAT3 and IL-31 showing correlation to immune

infiltration of ovarian cancer tissues may be potential therapeutic targets for treating ovarian

cancers.

Keywords: ovarian cancer, prognosis-related pathways, comprehensive risk assessment

model, immune infiltration

Introduction
Ovarian carcinoma is a malignant tumor that has a high mortality rate.1 With the

recent increase in the world’s aging population, the incidence of ovarian carcinoma

has also increased;2 the mortality rate for ovarian cancer is higher for women over

the age of 65 due to the difficulty in early diagnosis and the survival rate is less than

30%.3 Additionally, there is a lack of treatment options available for patients at
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advanced stages of the disease. To help patients with

a poor prognosis get better nursing, an excellent risk

assessment model to identify patients with poor prognosis

after surgery needs to be constructed. This can contribute

to the understanding of ovarian cancer pathogenesis and

management of its patients. Another is to find new cures

for patients with poor prognosis.

Firstly, clinical features are commonly used as impor-

tant factors for predicting the patient’s outcome, but some-

times it becomes very difficult to make a credible

prediction. Numerous related genes4–6 and transcripts7,8

have been identified as cancer biomarkers, that could

benefit the malignancy diagnosis. However, a single gene

is not a competent model as it ignores the inter-gene

associations and pathways. Recently, co-expressed gene

modules9 and pathway models have also emerged as

potential tools to improve the prognosis of ovarian

cancer.10 Models that combine genes with pathways and

clinical features are considered to be useful; they can be

exploited and analyzed using various bioinformatics

methods.11–13 Secondly, the identification of cancer bio-

markers is key, because they usually act as hub genes in

tumorigenesis and metastasis. In recent years, immu-

notherapy has captured the interest of researchers, clini-

cians, and pharmaceutical companies, particularly due to

its promise in treating various forms of cancer.14,15 The

resulting immune infiltration in ovarian cancer tissues is

a major prognostic factor.16 Therefore, there is a biological

rationale for the development of immunotherapy in ovar-

ian cancer based on identifying genes related to immune

infiltration, which may benefit the patients with poor

prognosis.

In this research, a comprehensive ovarian cancer risk

assessment model consisting of prognosis-related path-

ways and clinic factors was studied, using large-scale

bioinformatics analysis and based on the Pathway

Dysregulation Score (PDS) matrix, Cox-Proportional

Hazards (Cox-PH) regression, and L1-least absolute

shrinkage and selection operator (L1-LASSO) penaliza-

tion. We also generated a gene-based assessment model

based on prognosis-related gene biomarkers and

a pathway-based assessment model on prognosis-related

pathways. When tested on the training set and five valida-

tion sets using Kaplan–Meier survival analysis and recei-

ver operating characteristic (ROC) curves, the

comprehensive risk assessment model with clinical factors

and prognosis-related pathways showed a sound prediction

than the gene model and the pathway model. Phospho-

STAT3 (p-STAT3) and IL-31 were also found to be related

to immune infiltration as indicators to patient survival

times and could serve as potential therapeutic targets for

patients with poor prognosis.

Materials and Methods
Data and Grouping
The ovarian cancer gene expression profiling data were

obtained from the databases, the Cancer Genome Atlas

(TCGA) and the Gene Expression Omnibus (GEO). The

clinical characteristics of the training and validation sets

are listed in Table S1.

GSE32062,17 the training set used for establishing the

primary model, has 260 expression profiles downloaded

from the GEO database (http://www.ncbi.nlm.nih.gov/geo/).

The platform of GPL6480, Agilent-014850 Whole Human

Genome Microarray 4×44K was used for the expression

array of GSE32062.

Five independent datasets were used as validation sets.

One was obtained from the TCGA database (https://gdc-

portal.nci.nih.gov/). It contained 419 mRNA-seq expression

profiles of ovarian tumors; Illumina HiSeq 2000 RNA

Sequencingwas used. The other 4 datasets that were obtained

from GEO were GSE49997, GSE8842, GSE26712, and

GSE31245, and their platforms were GPL2986 ABI

Human Genome Survey Microarray Version 2, GPL5689

Agilent Human 1 cDNA Microarray, GPL96 [HG-U133A]

Affymetrix Human Genome U133A Array, and GPL8300

[HG_U95Av2] Affymetrix Human Genome U95 Version 2

Array, respectively.

Data Pre-Processing and Differentially

Expressed Genes (DEGs) Selection
For the data that was downloaded from the Affymetrix plat-

form (GSE26712 and GSE31245), the background was cor-

rected, quantiles were normalized and complementarity of

missing values was found, which were conducted using the

oligo package in R language (version 3.4.1) (http://www.bio

conductor.org/packages/release/bioc/html/oligo.html).18 For

GSE32062, GSE49997 and GSE8842, the limma package in

R language was utilized (https://bioconductor.org/packages/

release/bioc/html/limma.html).19 Probes were annotated

according to the annotation platform, and an approximately

normal distribution was yielded using log2 transformation.

TCGA data were subjected to quantile normalization using

the preprocess core package20 in R language (version 3.4.1)
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(http://bioconductor.org/packages/release/bioc/html/prepro-

cessCore.html).

In the GSE32062 training set, patients with relapse and

recurrence within 6 months and death were assigned into

the poor prognosis group while those with recurrence after

more than 24 months were assigned into well prognosis

group. Screening of DEGs was performed between two

groups using the limma package with the threshold of

FDR < 0.05 and |logFC| > 0.263.

Screening Prognosis-Related Genes and

Clinical Factors
Univariate and multivariate Cox regression analyses21 were

performed to investigate the significant DEGs and the clin-

ical factors of samples using survival package in R language

(version 3.4.1) (http://bioconductor.org/packages/survivalr/).

A P-value of less than 0.05, obtained by the Log rank test,

was set as the significant threshold. A two-way hierarchical

clustering analysis based on the centered Pearson correlation

algorithm22 was conducted for identifying prognosis-related

DEGs and clinical factors using the heatmap package in

R (version 3.4.1) (https://bioconductor.org/packages/

release/bioc/html/pheatmap.html).23

Prognostic Gene-Related Risk Pathways

Screening
An annotation file (c2.cp.v6.0.symbols.gmt) containing

217 Biocarta and 186 KEGG accessions were downloaded

from the Gene Set Enrichment Analysis (GSEA) database.

Then, the matrix of prognosis-related gene expression was

converted to a PDS matrix based on a principal compo-

nents analysis (PCA) dimensionality reduction algorithm

using the pathifier package24 in R language (version 3.4.1)

(http://bioconductor.org/packages/pathifier/). Finally, the

identified pathways were used to fit the Cox-PH model

based on the L1-LASSO estimation25 for selecting the

optimal panel of prognosis-related pathways. The optimal

value for penalization coefficient lambda was selected by

running cross-validation likelihood (cvl) 1000 times.

Construction and Verification of Risk

Assessment Model Based on Pathways
Based on the optimal panel of prognosis-related pathways,

a pathway-based risk assessment model was constructed and

the Prognosis Index (PI) of each sample was calculated. The

median score of PI was used as the cut-off point, and

samples in the training set were divided into high and low-

risk groups. The survival package was used to draw Kaplan–

Meier survival curves for evaluating the relationship

between this risk model, and the outcomes of progression-

free survival (PFS) and overall survival (OS). ROC curves

were drawn for evaluating the classification efficiency of the

model. At the same time, the prognostic ability of this risk

model was subsequently assessed in validation sets.

Construction and Verification of Risk

Assessment Model Based on Gene Sets
Using the matrix of the expression values of prognosis-related

genes as input, the Cox-PH model based on L1-LASSO

estimation was applied to screen the optimal prognostic

genes. A gene-based risk assessment model, similar to the

pathway-based risk assessment model, was constructed by

using the median PI score as the cut-off point. The Kaplan–

Meier survival analysis was performed and ROC curves

drawn in the same way.

Construction and Verification of

Comprehensive Risk Assessment Model

Based on Clinical Risk Factors and

Optimal Panel of Prognosis-Related

Pathways
A comprehensive risk assessment model was constructed by

combining optimized prognosis-related pathways and clin-

ical factors. The PI score of each sample was recalculated

based on the gene and the pathway model. The median PI

score was selected, and the samples were divided into high

and low-risk groups. Then, the association between the

comprehensive model and the prognosis was exploited

using Kaplan–Meier survival analysis and ROC curves in

the training and validation sets, respectively.

Immunohistochemistry and Immune

Infiltration Analysis of Ovarian Cancer

Tissues
Ten ovarian cancer tissues were collected in Xin Hua

Hospital Affiliated to Shanghai Jiao Tong University

School of Medicine, Shanghai, China. Five samples were

poor prognosis, and 5 were well prognosis. This research

was approved by the Ethics Committee of Xin Hua

Hospital Affiliated to Shanghai Jiao Tong University

School of Medicine. All recruited patients provided

a signed, informed consent prior to the collection of ovar-

ian cancer tissues.
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Hematoxylin-eosin (HE) staining was performed for

evaluating immune infiltration by observing the histomor-

phology and cell morphology. Among optimized prog-

nosis-related genes and pathways, candidate genes were

chosen according to the literature reviewed on PubMed

(https://www.ncbi.nlm.nih.gov/pubmed/). Candidate genes

that reported of functions related to immunity were briefly

selected. Immunohistochemistry was performed for the

selected candidate genes, as Zhang described.26 The phos-

pho-STAT3 antibody (#9145S, Cell Signaling Technology,

USA) was used at a dilution ratio of 1:200, and the IL-31

antibody (sc-515,415, Santa Cruz Biotechnology, USA)

was used at a dilution ratio of 1:100.

Results
Screening of Prognosis Genes and Clinical

Factors
All 264 of the DEGs screened from GSE32062 (training set)

are shown in Figure 1A. The two-way hierarchical clustering

graph based on gene expression values of DEGs in well and

poor prognosis groups was drawn (Figure 1B). Using uni-

variate and multivariate Cox regression analysis, 172 prog-

nosis-related genes and one clinical prognostic factor

(namely clinical stage) were screened from the DEGs and

the clinical information of samples in the training set. The

clustering analysis of the expression values of the 172 prog-

nosis-related genes were conducted. Samples were clearly

divided into two groups, namely Group 1 and 2 (Figure 1C),

which included 109 and 151 ovarian tumor samples, respec-

tively. Group 1 contained 95 recurrent samples and

14 non-recurrent samples, and Group 2 contained

98 recurrent samples and 53 non-recurrent samples

(χ2 = 15.2484, P = 9.426E–05). Group 1 contained 14 sam-

ples of clinic stage III and 95 samples of clinic stage IV, and

group 2 contained 42 samples of clinic stage III and 109

samples of clinic stage IV (χ2 = 7.5327, P = 0.006059). The

association analysis between the two groups and the prog-

nosis are shown in Figure 1D. According to the results,

clustering was significantly associated with the recurrence

(Log Rank P = 0.0001928). The samples in Group 2 had

a longer PFS than that of the samples in Group 1 (29.29 ±

23.88 vs 23.52 ± 21.34, t-test P = 0.0419). Meanwhile,

clustering was significantly associated with the OS (Log

Rank P = 0.03222). The samples in Group 2 have a longer

OS than that of the samples in Group 1 (44.89 ± 22.68 vs

38.71 ± 28.01, t-test P = 0.0496).

The clinical stage has been identified to be significantly

correlated to prognosis (P values < 0.05, Table S2) and the

Kaplan–Meier survival curves for the clinical stage and

prognosis are shown in Figure 1D.

Screening of Prognosis Gene-Related Risk

Pathways
Based on 172 prognosis-related gene expression matrices,

92 ovarian cancer-related pathways (61 KEGG pathways

and 31 Biocarta pathways) and path-based PDS matrices

were created using pathifier package. Lambda equalled to

0.1753 while cvl reached the max value of −1145.3164
(Figure 2A); the path coefficient is shown in Figure 2B.

Finally, 9 optimal combinations of pathways (one Biocarta

and 8 KEGG pathways, see Table 1) were obtained using

Cox-PH model, which involved 19 prognostic genes.

Based on the PDS matrix values of 9 pathways, cluster

analysis was performed in the training set of GSE32062

(Figure 2C). As expected, the samples were clearly divided

into Group I and Group II, which included 138 and 122

ovarian cancer tumor samples, respectively. There were 117

recurrent samples and 21 non-recurrent samples in Group I,

while 76 recurrent samples and 46 non-recurrent samples in

Group II (χ2 = 15.963, P = 6.459E–05). Group I contained 95

samples of Clinic Stage III and 43 samples of Clinic Stage IV,

while Group II contained 109 samples of Clinic Stage III and

13 samples of Clinic Stage IV (χ2 = 14.9182, P = 0.0001123).

Meanwhile, the clustering of pathways was significantly

associated with PFS (Log Rank P = 0.0002581, Figure 2D

left) and OS (Log Rank P = 0.02053, Figure 2D right). The

samples in Group II had a longer PFS and OS than those of

the samples in Group I (31.39 ± 26.58 vs 22.88 ± 18.46,

t-test P = 0.00339; 46.24 ± 28.93 vs 43.55 ± 20.95, t-test

P = 0.0397).

Prognostic Abilities of Pathway-Based

Risk Assessment Model
Using the median PI score as the cut-off point, a pathway-

based risk assessment model was constructed. The prognos-

tic ability of the model in a training set and validation sets

are shown in Table S3. Kaplan–Meier survival analysis was

applied to assess the association between risk groups and

PFS as well as OS. As a result, patients in the low-risk group

had longer PFS and OS in all sets (all P < 0.05) except for

OS in GSE8842 (P > 0.05). Meanwhile, the ROC for PFS

and OS based on this pathway-based model were conducted

(Supplemental Figure S1).
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The Prognostic Ability of Gene-Based

Risk Assessment Model
The optimal prognosis-related genes screened by the Cox-

PH model based on L1-LASSO estimation are shown in

Table 2. The prognostic ability of gene-based risk assess-

ment model in training and validation sets are shown in

Table S4. According to the results of Kaplan–Meier survi-

val analysis (Supplemental Figure S2), low-risk patients

had a longer PFS than that of high-risk patients in the

training set (P = 2.13E–11) as well as validation sets of

TCGA (P = 0.03871) and GSE49997 (P = 0.0021).

Unfortunately, low-risk patients had longer OS than that
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Figure 1 The differentially expressed genes (DEGs), prognosis-related genes, and clinical factors screened from the training set. (A) The volcanic map for DEGs. Red triangles

and green triangles indicate genes that were upregulated and downregulated in the well prognosis group, respectively. With the threshold of FDR < 0.05 and |logFC| > 0.263. (B)
Two-way hierarchical clustering map of DEGs. Top bar in orange color indicates the well prognosis group and blue color indicates poor prognosis group. (C) Two-way

hierarchical clustering map based on 172 prognosis-related genes. The first line below the sample tree indicates cluster 1 (black bars) and 2 (white bars) formed by the category.

The second line shows the sample recurrence information, and the orange and blue bars represent the recurrent and non-recurrent samples, respectively. The third line shows

the clinic stage information, in which the green and red represent the Clinic Stage III and IV samples, respectively. P values were obtained using Chi-square test. (D) The Kaplan–

Meier curves of progression-free survival (PFS, left) and overall survival (OS, right) for clusters and clinic stages. Horizontal axis represents the survival period and the vertical

axis represents the frequency.
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in high-risk patients in the training set (47.92 ± 24.41 and

41.71 ± 25.29, P = 2.13E–11); there was no significant

correlation with OS prognosis in all validation sets

(P > 0.05). Additionally, the ROC for PFS and OS based

on this gene-based model were conducted (Supplemental

Figure S2).

The Prognostic Ability of Comprehensive

Assessment Model Based on Clinical Risk

Factors and Pathways
The clinical stage was the only optimal prognosis-related

clinical factor screened by the Cox-PH model based on

L1-LASSO estimation (P = 0.0176). Kaplan–Meier survi-

val analysis ROC were used to assess the association

between risk groups and PFS as well as OS for the training

and validation sets based on this comprehensive assess-

ment model (Figure 3). As shown in Table S5, low-risk

patients had longer PFS and OS than high-risk patients in

training and validation sets of TCGA and GSE4997 (all

P < 0.05).

Clinicopathologic Correlation of Immune

Infiltration and Expression of

Phospho-STAT3 and IL-31 in Ovarian

Cancer Tissues
Histological sections from 6 ovarian cancer patients (3 well

and 3 poor prognoses) were analyzed with HE staining and

immunohistochemistry. Among 9 optimal prognostic path-

ways and 17 optimal prognostic genes, p-STAT3, BTL8,

CD207, IL-31, RELN, LIX1, and POU4F1 were chosen as

candidates related to immune infiltration according to the

literature review on Pubmed. The candidate genes were

chosen because they were related to immunity and have

never been reported in correlation to immune infiltration in

ovarian cancer.

According to the morphology of HE stained tissue

sections and immunohistochemistry results, the position

of concentrated immune cells showed brown signals in

the cell cytoplasm (Figure 4B), that confirmed the correla-

tion of immune infiltration and expression of p-STAT3 and

IL-31. Tissues with poor prognosis are positively (3 strong

and 2 moderate) correlated to the expression of p-STAT3,

while well prognosis tissues showed negative or weak

expression levels. In addition, IL-31 was detected in all

samples, and tissues with poor prognosis showed a larger

proportion of IL-31 positive regions (Figure 4A).

Discussion
There are 3 types of risk assessment models associated

with the prognosis of ovarian cancer in this study:

Table 1 Optimal Prognostic Pathways Screened Using the Cox-PH Model Based on L1-LASSO Estimation

Pathway Features Coefficient Hazard Ratio P-value

BIOCARTA_INTRINSIC_PATHWAY 1.552726 1.79 <0.001

KEGG_LYSOSOME 0.7119018 1.30 0.006

KEGG_TIGHT_JUNCTION 1.0804625 1.48 0.005

KEGG_JAK-STAT_SIGNALING_PATHWAY −0.9610553 0.27 0.007

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION −0.6328017 0.34 0.012

KEGG_INSULIN_SIGNALING_PATHWAY −0.4656219 0.58 0.010

KEGG_P53_SIGNALING_PATHWAY −0.5351019 0.46 0.019

KEGG_CALCIUM_SIGNALING_PATHWAY 0.2761623 1.08 0.013

KEGG_OLFACTORY_TRANSDUCTION −1.0215228 0.28 0.011

Table 2 The Optimal Prognosis-Related Genes Screened by

Cox-PH Model Based on L1-LASSO Estimation

Genes Coefficient Hazard Ratio P-value

BTNL8 0.09569362 1.14 0.035

C14orf178 −0.03610888 0.83 0.011

CCT8L2 −0.23418706 0.83 0.007

CD207 −0.673177 0.87 0.012

FSTL5 0.998989 1.19 0.002

HAS1 0.89701482 1.13 0.006

IL-31 0.01465706 1.22 0.006

KLRF1 0.56070228 1.28 0.001

LIX1 0.73503346 1.17 0.006

MCOLN3 −0.35668146 0.84 0.009

POU4F1 −0.66531218 0.84 0.005

RELN −0.35224032 0.90 0.033

SERPINC1 0.00665972 1.19 0.017

SGCG 0.06338372 1.11 0.025

SLCO6A1 1.37722274 1.19 <0.001

TBX4 −0.97987224 0.79 0.002

TEX12 0.35175726 1.11 0.019
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a pathway model, a gene model, and a comprehensive

model of clinical risk factors and pathways. Through

a series of analyses and verification, the pathway model

failed in the OS verification of GSE8842, while the gene

model failed in the PFS verification of GSE8842 and the

OS verification of all validation sets. Undoubtedly, the
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Figure 3 Kaplan–Meier survival analysis and receiver operating characteristic (ROC) curves of comprehensive assessment model of clinical risk factor and pathways. (A)

Kaplan–Meier curves of progression-free survival (PFS) for GEO and TCGA clusters. (B) Kaplan–Meier curves of overall survival (OS) for GEO and TCGA clusters.

Horizontal axis represents the survival period and the vertical axis represents the frequency. (C) ROC curve of PFS and OS for comprehensive assessment model of clinical

risk factor and pathways. The abscissa represents sensitivity and the ordinate represents specificity.
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pathway model is superior to the gene model. The com-

prehensive model had a good prognostic role for PFS and

OS in the training and all validation sets and hence is the

most credible. However, one of the study’s limitations is

that there are only two validation sets for the comprehen-

sive model. Research that includes more validation sets

based on ovarian cancer expression profiles and clinical

studies is required for further confirmation.

Nine signaling pathways have been identified and might

play pivotal roles in the prognosis of ovarian cancer. The

significantly activated pathway, Janus kinase/signal trans-

ducer and activator of transcription (JAK-STAT, coefficient

= –0.9615305 and P = 0.007, see Table 1) pathway, con-

tributes to the invasion and metastasis of tumors;27 it plays

a crucial role in orchestrating the immune system and can

modulate the polarization of T helper cells.28 The depho-

sphorylation tyrosine residues bound to STATs is an impor-

tant step in downregulating JAK-STAT signaling.

Mechanistically, constitutively activated JAK signaling

causes inflammation and subsequently phosphorylates addi-

tional targets in the STAT family.29 Inhibiting STAT3 could

suppress the invasion and metastasis of ovarian cancer

cells;30,31 a STAT3 inhibitor drug has been considered as

a novel therapeutic approach for head and neck squamous

B 

A

Figure 4 Hematoxylin-eosin (HE) staining and immunohistochemistry of phospho-STAT3 (p-STAT3) and IL-31 in ovarian cancer tissues. (A) Immunohistochemistry photos

showed upregulated p-STAT3 and downregulated IL-31 in ovarian cancer tumor sections with poor prognosis, and brown positions indicate the expression of detected

proteins. (B) Morphology of HE and immunohistochemistry results showed p-STAT3 and IL-31 expressed at the position of concentrated immune cells, which were marked

by arrows in photos. Scale bars indicate 100 μm.
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cell carcinoma32 and ovarian carcinoma.33 Based on the

mechanism of JAK-STAT signaling, we explored the clin-

icopathologic correlation of immune infiltration and expres-

sion of phosphorylated-STAT3 (p-STAT3). The expression

of p-STAT3 was confirmed in immune cell-concentrated

microenvironment in ovarian tumors with poor prognosis

(Figure 4). In addition, as STAT3 is a latent transcription

factor that resides in the cytoplasm until activated,29 it may

be a potential target for ovarian cancer treatment.

Interleukin 31 (IL-31) has also been identified to be

closely related to the outcome of ovarian cancer (Table 2)

and immune infiltration (Figure 4) in this study. IL-31 is

mainly produced by activated T-helper 2 cells, which have

effects on certain kinds of tumors.34 IL31RA, the receptor

of IL-31, is highly expressed in ovarian cancer tumors.35

Signaling through the IL31RA involves immune-pathways

like MAPK and JAK-STAT, indicated the possible correla-

tion between IL-31 and the clinical presentation of cancer.

Moreover, previous studies also reported that serum level

of IL-31 correlated with carcinoma stages, depth of inva-

sion, lymph node, and even distant metastasis.36 Besides,

a recent study suggested that IL-31 gene polymorphisms

might be associated with the development and progression

of epithelial ovarian cancer in the Chinese population.37

However, the roles of IL-31 in the development and pro-

gression of human epithelial ovarian cancer are largely

unknown. Therefore, future trials focusing on IL-31 gene

polymorphisms, IL-31 expression levels, and clinical out-

comes are needed, and an animal experiment simulating

and observing the immune system is useful for revealing

the undiscovered mechanisms and novel pathways.

Other pathways and genes that are found in our models

can also be explained. Lysosome, as a membrane-bound

organelle,38 has critical functions in regulating cell adhe-

sion dynamics,39 invasion, and metastasis,40 and cell

death.41 The lysosome has also been reported as

a mediator of drug resistance in cancer,42 and abnormal

lysosomal trafficking is thought to induce the enhanced

exosomal export of cisplatin, leading to drug resistance in

human ovarian cancer cells.43 From this view, the lyso-

some might provide crucial pathways in clinical outcomes

of ovarian cancer patients. The tight junction pathway also

refers to cell adhesion44 and it is involved in ovarian

cancer progression and targeted therapy.45,46 Cell adhesion

is a critical process in the migration and invasion of cancer

cells47 and several studies focusing on inhibiting cancer

metastasis have been conducted via targeting focal adhe-

sion pathways.48 Hyaluronan synthase (HAS1) and Reelin

(RELN) are also two significant DEGs according to our

results. Previous reports have consistently revealed that

upregulated HAS1 enhances the metastasis of cancer

cells.49 The overexpression of HAS1 might be related to

poor outcomes in ovarian cancer patients as it is expressed

higher in the poor prognosis group.50 RELN was also

reported to be associated with metastasis in several types

of cancer,51 and the knockdown of RELN or its down-

stream components significantly increase cell motility.52

In this study, we have confirmed that the pathway-based

model was more convincing and had greater applicability

than the gene-based model, and we have generated

a comprehensive risk assessment model consisting of

a clinical risk factor and pathways that showed a possible

bright foreground. Besides, p-STAT3 and IL-31 showing

correlation to immune infiltration of ovarian cancer tissues

may be novel potential therapeutic targets for treating ovarian

cancer with poor prognosis. For instance, we can explore the

curative effect of combination therapy with conventional

medicals with inhibitors or monoclonal antibodies of

p-STAT3 and IL-31. The strategy for searching superior and

applicable assessment models for the study might be appro-

priate for the prognosis risk assessment and understanding of

ovarian cancer pathogenesis. The selected prognostic models

from our study might help to improve the nursing of ovarian

cancer patients; however, further validations based on a large

number of ovarian cancer expression profiles and clinical

trials are required. The analysis of clinical samples and

animal experiments are also needed to confirm the efficacy

and feasibility of p-STAT3 and IL-31.
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