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Background: Diosgenin, a natural steroidal saponin isolated from Trigonella foenum-

graecum, has been reported to exert anti-cancer effects. Inhibitors of enhancer of zeste

homology 2 (EZH2) have been widely used in treatment of cancers. However, the effects

of combined treatment with diosgenin and an EZH2 inhibitor on gastric cancer (GC) cells,

and the mechanism for those effects are not fully understood.

Methods: AGS and SGC-7901 gastric cancer cells were treated with diosgenin (0 to 8 μM), followed

by treatment with either diosgenin or an EZH2 inhibitor, GSK126 alone. Afterwards, an EZH2 over-

expression plasmid and Rho inhibitor, GSK429286Awas involved in cells. Cell proliferation, cell cycle

distribution,andcell apoptosis,migration, and invasionwereexaminedbyCCK-8assays,flowcytometry,

and transwell assays. Western blotting was performed to detect the relative levels of protein expression.

Results: Treatment with diosgenin alone caused a dose-dependent decrease in the cell viability, and

combined treatment with an EZH2 inhibitor plus GSK126 caused a further significant decrease.

A further analysis revealed that treatment with either diosgenin or GSK126 alone induced significant

increases in G0/G1 cell cycle arrest and apoptosis, and combined treatment with both agents induced

further increases in those parameters. In addition, combined treatment with diosgenin and GSK126

synergistically induced even stronger effects on impaired cell proliferation, G0/G1 phase arrest, and

cell apoptosis when compared to treatment with either diosgenin or GSK126 treatment alone. At the

molecular level, we demonstrated that inhibition of Rho/ROCK signaling by combined treatment

with diosgenin andGSK126could downregulate the expressionof epithelial–mesenchymal transition

(EMT)-relatedmolecules.We also found that EZH2 overexpression reversed the anti-tumor effect of

diosgenin by inducing cell survival, blocking G1-phase arrest, and promoted EMT. While, these

biological properties were further reversed by GSK429286A.

Conclusion: Collectively, combined treatment with diosgenin and GSK126 produced even

more significant effects on GC cell inhibition by targeting EZH2 via Rho/ROCK signaling-

mediated EMT, which might be a therapeutic strategy for improving the poor therapeutic

outcomes obtained with GSK126 monotherapy.
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Introduction
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide,

and especially in China.1,2 While new surgical techniques and chemotherapy regimens

have gradually improved the clinical outcomes of GC patients, the five-year survival
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rate of advanced GC patients has not improved, mainly due

to the high rates of GC metastasis and recurrence.3,4

Therefore, there remains an urgent need to explore the bio-

logical mechanisms that drive GC metastasis, and develop

new target-specific treatments for GC.

Numerous molecules have been reported to contribute to

cancer cell invasion and metastasis, and the epithelial–

mesenchymal transition (EMT) process can enhance the abil-

ity of cancer cells to migrate and invade.5 The EMT is

a complex process characterized by the loss of epithelial

markers (e.g. E-cadherin and β-catenin) and an upregulation

of mesenchymal markers (e.g., N-cadherin and vimentin).6

Previous studies demonstrated that RhoA and its downstream

kinase Rho-kinase (ROCK) are able to mediate cell matrix

formation in diabetic nephropathy.7,8 Furthermore, the RhoA/

ROCK signaling pathway was previously demonstrated to be

associated with EMT.9 For example, ART1 was shown to

regulate the EMT process in colon carcinoma via the RhoA/

ROCK1/AKT/β-catenin pathway.10 Zhang et al11 showed that
the RhoA/ROCK signaling pathway might mediate EMT

induced by TGF-β1 in rat peritoneal mesothelial cells.11

However, it remains unclear whether EMT regulated by

RhoA/ROCK signaling that involved in GC metastasis.

Diosgenin is a natural steroidal saponin isolated from the

plant Trigonella foenum-graecum, which has been reported to

exert anti-inflammatory,12 antioxidant,13 and anti-cancer

effects.14 Accumulating evidence suggests that diosgenin can

induce apoptosis, DNA damage, and activate mitochondrial

signaling pathways.15,16 Enhancer of zeste homology 2

(EZH2), a member of the polycomb gene family,17 is over-

expressed in many malignancies and could possibly serve as

a prognostic factor in certain malignancies.18,19 Some selective

EZH2 inhibitors have been reported to exert potent antitumor

activity when used in the treatment of cancers.20 Among those

inhibitors, GSK126 is a highly selective EZH2 inhibitor and

also a newly synthesized S-adenosylmethionine competitor.21

Several studies conducted with solid tumor cell lines have

suggested thatGSK126suppresses cellmigration andangiogen-

esis, but has a limited therapeutic effect when used alone.22–24

Therefore, we hypothesized that a combination of GSK126 and

diosgenin might be more potent for attenuating GC metastasis

when compared to using GSK126 or diosgenin alone.

To test our hypothesis, we first analyzed the effects of

diosgenin or GSK126 treatment alone on GC cell prolifera-

tion, cell cycle progression, apoptosis, migration, and inva-

sion, and then compared those results with those obtained

when using diosgenin combined with GSK126. Furthermore,

we investigated whether inhibition of both EZH2 and EGFR

would produce a synergistic effect on EMTexpression in GC

cells by inhibiting RhoA/ROCK signaling.

Materials and Methods
Drugs and Reagents
Diosgenin and GSK126 (> 98% purity) were purchased from

Sigma-Aldrich (St. Louis, MO, USA) and Shanghai

Hanxiang Life Technology Ltd. (Shanghai, China), respec-

tively. Both agents were dissolved in dimethyl sulfoxide and

stored as 100 mM stock solutions for use in in vitro studies.

RPMI-1640 medium and FBS were purchased fromHyclone

(GE Healthcare, Chicago, IL, USA). A Cell Counting Kit-8

(CCK-8) Kit was purchased from Sigma-Aldrich and an

Annexin V/Propidium Iodide (PI) Apoptosis detection Kit

was purchased from BD Biosciences (San Jose, CA, USA).

RIPA buffer, a BCA protein assay kit and an enhanced

chemiluminescence kit were obtained from Beyotime

Institute of Biotechnology (Shanghai, China). All antibodies

were purchased from Abcam (Cambridge, UK), ProteinTech

(Chicago, IL, USA), or Santa Cruz Biotechnology (Dallas,

TX, USA). Transwell chambers (8 µm pore size) were

obtained from Corning Inc., (Corning, NY, USA).

Cell Culture and Treatment
Human GC cell lines MGC-803, AGS, and SGC-7901, as

well as the gastric epithelial cell line GES-1, were pro-

vided by The Cell Bank of Type Culture Collection of the

Chinese Academy of Sciences (Shanghai, China). All the

cell lines were routinely cultured in RPMI-1640 medium

supplemented with 10% FBS in a humidified chamber

containing 5% CO2 at 37°C. For the in vitro studies,

AGS and SGC-7901 cells were seeded into 96-well plates

at a density of 3 × 103 cells/well, and then treated with

diosgenin and/or GSK126 at the indicated concentrations

and time points. In this study, GSK126 was used at con-

centration of 8 μM. While GSK429286A was used at

concentration of 10 μM.

RNA Extraction and Quantitative PCR
Total cellular RNA was extracted using TRIzol reagent

(Takara, Tokyo, Japan), and cDNA was synthesized using

a Prime Script PTMP RT reagent kit (Perfect Real Time,

Takara). Each quantitative PCR analysis was performed in

triplicate on an ABI 7900HT Fast Real-Time PCR system

(Applied Biosystems, Foster City, CA, USA) and using

SYBR Premix Ex Taq (Takara) according to the manufac-

ture’s protocol. The primer sequences used in this study
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were as follows: EZH2 forward: 5′-AATCAGAGTACAT

GCGACTGAGA-3′ and reverse: 5′-GCTGTATCCTT

CGCTGTTTCC-3′; GAPDH forward: 5′-TGTTCGTC

ATGGGTGTGAAC-3′ and reverse: 5′-ATGGCATGGAC

TGTGGTCAT-3′. Relative levels of EZH2 expression

were calculated using the 2−ΔΔCq method and normalized

to those for GAPDH.

CCK-8 Assay
GC cells were seeded into triplicate wells of 96-well plates at

a density of 1.0 × 104 cells per well, and then incubated with

100µLofCCK-8 solution for 2 h at 37°C. The absorbance of each

well was measured at 450 nmwith a microplate reader (Norcross,

GA, USA). IC50 values were calculated using Graphpad Prism 5

software.

Flow Cytometry Analysis
GC cells from different treatment groups were reseeded

into 6-well plates, washed twice with ice-cold PBS, and

then fixed with 70% ethanol at −20°C overnight. After

being washed twice with PBS, the cells were harvested

by centrifugation at 1000 rpm for 5 min. For cell cycle

analysis, the harvested cells were stained in the dark for 30

min with 500 µL of PI, and subsequently analyzed with

a FACSCalibur flow cytometer (BD Biosciences, Franklin

Lakes, NJ, USA). For apoptosis analysis, harvested cells

were stained with 5 μL of FITC Annexin V and 5 μL of PI

for 15 min at room temperature, and then analyzed with

a FACScan flow cytometer (BD Biosciences) equipped

with FlowJo version 10.0.7 software (FlowJo, Franklin

Lakes, NJ, USA).

Transwell Assays
Cell invasion and migration assays were performed using

Transwell filter chambers (8-µm pore size, Corning, USA)

with and without a Matrigel coating, respectively. In brief,

approximately 5 × 104 cells in 200 µL of FBS-free medium

were added to the upper chamber and 500 µL of medium

containing 10% FBS was added to the lower chamber. After

24 h of incubation at 37°C, cells that had migrated into the

lower chamber were fixed with methanol for 10 min and then

stained with 0.1% crystal violet for 20 min. The stained cells

in five randomly selected microscopic fields were visualized

and counted under a light microscope (Olympus, Japan).

Western Blot Analysis
Cellswere harvested, lysed inRIPAbuffer, and then centrifuged at

12,000 rpm for 30min. The amount of total protein in each extract

was quantified with a BCA protein assay kit. Next, an equal

amount of protein from each extract was separated on a 10%

SDS-PAGE gel, and the separated protein bands were transferred

onto PVDFmembranes (Millipore Corp, Burlington,MA, USA).

Next, the membranes were blocked with 5% skim milk and then

incubated with primary antibodies against EZH2, H3K27m3,

RhoA, ROCK, E-cadherin, N-cadherin, vimentin, fibronectin

and GAPDH, followed by incubation with a horseradish perox-

idase-conjugated secondary antibody. The immunostained protein

bands were visualized with an enhanced chemiluminescence kit,

and staining intensity was quantified using Image J software (Ver.

1.48, National Institutes of Health, USA).

Statistical Analysis
The experimental data were analyzed using SPSS

Statistics for Windows, Version 17.0 (Chicago, IL, USA),

and results are expressed as the mean ± standard deviation

(SD) of data obtained from at least three experiments.

Differences among groups were evaluated using one-way

ANOVA, followed by Tukey’s post hoc test. P-values <

0.05 were considered to be statistically significant.

Results
EZH2 Expression Was Significantly

Increased in the GC Cell Lines
EZH2 expression in GC cells was determined by using

quantitative PCR. As shown in Figure 1A, the levels of

EZH2 mRNA expression in the GC cell lines (MGC-803,

AGS, and SGC-7901) were significantly higher than those

in the GES-1 gastric epithelial cell line (p < 0.05, p <

0.01). Furthermore, Western blot studies confirmed those

results (Figure 1B). Notably, AGS and SGC-7901 cells

exhibited higher levels of EZH2 expression than MGC-

803 cells; therefore, AGS and SGC-7901 cells were used

in the following in vitro experiments.

Diosgenin Treatment Decreased GC Cell

Proliferation in a Concentration-Dependent

Manner
To investigate the effect of diosgenin on GC cells, the effect of

different doses of diosgenin on human AGS and SGC-7901 cell

proliferation was determined using the CCK-8 assay. As shown

in Figure 2A, the inhibitory effect of diosgenin on AGS and

SGC-7901 cell proliferation gradually increased in a dose-

dependent manner when compared with the proliferation of

untreated control cells. The IC50 of AGS and SGC-7901 to

GSK126 was 38.48±1.43 μM and 35.05±1.13 μM (Figure 2B).
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The IC50 values for the anti-proliferative effect of diosgenin on

AGS and SGC-7901 cells were 20.02 μM and 17.40 μM,

respectively (Figure 2C). Based on those results, diosgenin con-

centrations of 10.01 μM and 8.7 μM (50% of the IC50 values)

were chosen as the optimal concentrations to be used for sub-

sequent treatment of AGS and SGC-7901 cells, respectively.

Combined Treatment with Diosgenin and

GSK126 Synergistically Inhibited GC Cell

Proliferation
Next, the proliferation of AGS and SGC-7901 cells was deter-

mined by CCK-8 assays performed at specified time points after

the cells had been treated with diosgenin and an EZH2 inhibitor

(8 μM GSK126) either alone or in combination. As shown in

Figure 3A, either diosgenin or GSK126 significantly inhibited

cell proliferation at 24, 48, and 72 h, respectively (p < 0.05, p <

0.01). Interestingly, the combination of diosgenin and GSK126

caused a further inhibition AGS cell proliferation (p < 0.01).

Similar results were also found for SGC-7901 cells (Figure 3B,

p < 0.05, p < 0.01). Meanwhile, we selected 48 h as the optimal

cell treatment time point.
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Combined Treatment with Diosgenin and

GSK126 Synergistically Induced GC Cell

Cycle Arrest and Apoptosis
It is now widely accepted that cell cycle distribution and

apoptosis play important roles in cell proliferation, and espe-

cially in tumor progression. Therefore, we examined whether

treatment with GSK126 and/or diosgenin would affect cell

cycle progression and apoptosis in GC cells. As shown in

Figure 4A, when compared with control cells, the percentage

of cells in G0/G1 phase was obviously increased, while the

percentage of S phase cells was obviously decreased among

cells treated with either GSK126 or diosgenin alone.

Furthermore, among cells that received combined treatment

with GSK126 plus diosgenin, the percentage of cells in G0/

G1 phase was remarkably increased and the percentage of cells

in S phase was decreased when compared with control cells or

cells treatedwith eitherGSK126 or diosgenin alone (AGS cells:

p < 0.05, p < 0.01) (SGC-7901 cells: p < 0.05 p < 0.01, p <

0.001). In addition, flow cytometry results (Figure 4B) showed

that the percentages of apoptotic AGS cells in the control,

diosgenin, and GSK126 groups were 5.4% ± 1.14%, 12.43%

± 0.80%, and 16.63% ± 0.49%, respectively, whereas the

percentage of apoptotic AGS cells in the diosgenin plus

GSK126 treatment group was 33.03% ± 2.36%. We also

found that treatment with GSK126 or diosgenin alone signifi-

cantly increased the cell apoptosis rate (p < 0.05), and that

increase was further enhanced by combined treatment with

diosgenin plus GSK126 (p < 0.05, p < 0.01). These results

showed that combined treatment with diosgenin and GSK126

synergistically induced G0/G1phase arrest and apoptosis in

AGS and SGC-7901 cells.

Combined Treatment with Diosgenin and

GSK126 Synergistically Induced GC Cell

Migration and Invasion
We next performed Transwell assays to evaluate the effects

of GSK126 and/or diosgenin on cell migration and invasion.

As shown in Figure 5A, treatment with either diosgenin or

GSK126 alone significantly reduced the numbers ofmigrated

and invasive AGS cells (p < 0.05, p < 0.01). Furthermore,

combined treatment with diosgenin and GSK126 produced

even greater reductions in the numbers of migrated and

invasive AGS cells (p < 0.05, p < 0.01). Similarly, treatment

with either diosgenin or GSK126 alone induced a notable

decrease in the numbers of migrated and invasive SGC-7901

cells, whereas treatment with the combination of diosgenin

and GSK126 induced an even further decrease in the num-

bers of migrated and invasive SGC-7901 cells (Figure 5B,

p < 0.05, p < 0.01).

Effects of Combined Treatment with

Diosgenin and GSK126 on Rho/ROCK

Signaling and Epithelial–Mesenchymal

Transition
To elucidate the potential mechanisms governing the sup-

pression of cell proliferation, migration, and invasion by the

combination of diosgenin and GSK126, we monitored the

expression of signal molecules associated with Rho/ROCK

signaling in AGS and SGC-7901 cells. We first confirmed

that EZH2 expression was significantly downregulated after

treatment with either diosgenin or GSK126 alone, and even

further downregulated after combined treatment with
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diosgenin plus GSK126 (p < 0.05).We found that both RhoA

and ROCK expression were slightly decreased after treat-

ment with either diosgenin or GSK126 alone, but notably

reduced after treatment with diosgenin plus GSK126 (Figure

6A). Because Rho/ROCK signaling is indispensable for cell

migration and invasion (factors that might mediate epithe-

lial–mesenchymal transition), we explored whether inhibi-

tion of Rho/ROCK signaling by the combination of

diosgenin and GSK126 could affect the expression of EMT-

associated molecules. As expected, treatment with either

diosgenin or GSK126 alone induced an obvious increase in

E-cadherin expression and decreases in N-cadherin, vimen-

tin, and fibronectin expression. These effects were further

enhanced by the combination of diosgenin and GSK126

(Figure 6B).

Diosgenin Inhibited Malignant Biological

Properties Through EZH2/RhoA Pathway
To confirm the mechanism of anti-tumor effect of dios-

genin in gastric cancer, an EZH2 overexpression vector

and RhoA inhibitor, GSK429286A were included in the

experiment. As shown in Figure 7A, Apoptosis induced by

diosgenin treatment was reversed by introduction of EZH2

overexpression in AGS and SGC-7901. While a RhoA

inhibitor, GSK429286A, contributed to the reversal of

the inhibitive effect of EZH2 on cell apoptosis

(Figure 7A). Stimulation of diosgenin lead to G1 phase

arrest, together with decrease of S-phase distribution in

AGS and SGC-7901 cells, and then the effect of diosgenin

was reversed in response to EZH2 overexpression.

However, GSK429286A blocked the effect of EZH2
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overexpression by inducing G1 phase arrest and decreas-

ing S phase distribution (Figure 7B). Western blot assay

showed that EZH2 expression was elevated in cells treated

with diosgenin and EZH2 overexpression plasmid.

However, its expression was not affected due to

GSK429286A (Figure 7E and F).

In order to confirm the effect of involving of EZH2/RhoA

pathway in diosgenin treatment in AGS and SGC-7901,

Transwell assay was performed to evaluate the EMTcharacter

in response to EZH2 overexpression and GSK429286A. As

shown in Figure 7C and D, cell mobility in AGS and SGC-

7901 was significantly inhibited by diosgenin induction, and

then reversed by EZH2 overexpression. While exposure to

GSK429286A blocked the promotive effect EZH2 on cell

mobility (Figure 7C and D). Results of Western blot showed

that N-cadherin, Vimentin, and Fibronectin expression was

inhibited by diosgenin in AGS and SGC-7901, and reversed

by EZH2 overexpression. Finally, enhancive effect of EZH2

was blocked by GSK429286A (Figure 7E and F).

Discussion
To the best of our knowledge, this study is the first to provide

evidence that the suppressive effects of diosgenin or GSK126

on GC cell proliferation, migration, and invasion can be

significantly enhanced by co-treatment with both agents.

Consistent with this finding, Katona et al25 showed that

combined treatment with EZH2 and an epidermal growth

factor receptor (EGFR) inhibitor caused a significant

decrease in the proliferation of colon cancer cells and

increased their rate of apoptosis.25 Furthermore, another

study showed that the apoptosis rate and amount of DNA

damage in glioblastoma cells were further enhanced by co-

treatment with an EZH2 inhibitor plus a histone deacetylase

inhibitor.26 In addition, Yang et al27 demonstrated that inhibi-

tion of both EZH2 and EGFR produced a synergistic effect

on GC cell apoptosis by increasing autophagy.27

Diosgenin, themajor steroidal saponin in the fenugreek seed,

has been reported to exert in vitro anti-cancer effects in a variety

of cancer cells.28 For example, diosgenin inhibited proliferation

and induced caspase-dependent apoptosis in skin squamous cell

carcinoma cells.29 In addition, diosgenin has also demonstrated

potent anti-cancer activity in colon cancer,30 breast cancer,31 and

myeloid leukemia cells.32 Similarly, a study by Mao et al32

showed that diosgenin could significantly suppress BGC-823

cell invasion and survival in a hypoxic mimic

microenvironment.33 GSK126, a novel EZH2 inhibitor, has

been shown to affect tumor cell function in various types of

cancers. GSK126 effectively reduced the levels of methylated

histone 3 (H3K27me3) in MM.1S and LP1 cells,23 and inhibi-

tion of EZH2byGSK126 inhibited cellmigration and angiogen-

esis in solid tumors.34 Treatment of neuroblastoma cells with

EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in
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G0/G1 arrest and decreased cell survival.35 Therefore, we might

speculate that combined treatment with diosgenin and GSK126

should produce a stronger suppressive effect on tumor cellular

function. As expected, combined treatment with diosgenin plus

GSK126 significantly enhanced the suppressive effects of dios-

genin or GSK126 alone on cell proliferation, migration, and
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invasion. Consistent with those findings, diosgenin was pre-

viously shown to enhance the efficiency of Adriamycin in

Adriamycin-resistant breast cancer cells by regulating cell sur-

vival and apoptosis.36

We also explored the molecular mechanisms by which the

combination of diosgenin and GSK126 affects GC cell pro-

liferation and invasion. ROCK, including its two subtypes

(ROCK1 and ROCK2) belongs to the serine/threonine family

of protein kinases, and is the downstream effector protein of

RhoA.37 The RhoA/ROCK signaling pathway is known to be

activated in ovarian cancer,38 hepatocarcinoma,39,40 and breast

cancer.41 We found that the RhoA/ROCK signaling pathway

was significantly suppressed by the combination of diosgenin

and GSK126. The RhoA/ROCK signaling pathway was pre-

viously demonstrated to be associated with the EMT process.9

Therefore, we examined whether downregulation of the

RhoA/ROCK signaling pathway would affect the expression

of EMT-related molecules associated with cell migration and

invasion. Our results revealed that a combination of diosgenin

and GSK126 produced synergistic suppressive effects on GC

cell migration and invasion, and also altered the expression of

EMT markers, including E-cadherin, N-cadherin, vimentin,

and fibronectin. In line with our findings, previous studies

have shown that activation of the RhoA/ROCK pathway con-

tributes to the EMT process andmetastasis of liver40 and colon

cancers.10 These results suggest that the synergic effect of the

combined use of diosgenin andGSK126 onGC cell survival is

partially regulated by RhoA/ROCK-mediated EMT.

In summary, our study is the first to show that

a combination of diosgenin and GSK126 produces stronger

suppressive effects on GC cell proliferation, migration, and

invasion, when compared to the effects produced by treat-

ment with diosgenin or GSK126 alone. Moreover, we

further found these effects might result from targeting

EZH2 via RhoA/ROCK-mediated EMT expression. These

findings might contribute to the development of new stra-

tegies for improving the less than satisfactory therapeutic

outcomes achieved with GSK126 monotherapy.
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