
OR I G I N A L R E S E A R C H

Synergistic ROS-Associated Antimicrobial Activity

of Silver Nanoparticles and Gentamicin Against

Staphylococcus epidermidis
This article was published in the following Dove Press journal:

International Journal of Nanomedicine

Paulina Mazur 1

Iwona Skiba-Kurek 2

Paulina Mrowiec2

Elżbieta Karczewska 2

Ryszard Drożdż 1

1Department of Medical Diagnostics,

Faculty of Pharmacy, Jagiellonian

University Collegium Medicum, Cracow,

Poland; 2Department of Pharmaceutical

Microbiology, Faculty of Pharmacy,

Jagiellonian University Collegium

Medicum, Cracow, Poland

Introduction: Increasing bacteria resistance to antibiotics is a major problem of healthcare

system. There is a need for solutions that broaden the spectrum of bactericidal agents

improving the efficacy of commonly used antibiotics. One of the promising directions of

search are silver nanoparticles (obtained by different methods and displaying diversified

physical and chemical properties), and their combination with antibiotics.

Purpose: In this study, we tested the role of reactive oxygen species in the mechanism of

synergistic antibacterial activity of gentamicin and Tween-stabilized silver nanoparticles

against gentamicin-resistant clinical strains of Staphylococcus epidermidis.

Methods: Synergistic bactericidal activity of gentamicin and silver nanoparticles stabilized with

non-ionic detergent (Tween 80) was tested by the checkerboard titration method on microtiter

plates. Detection of reactive oxygen species was based on the chemiluminescence of luminol.

Results: Hydrophilic non-ionic surface functionalization of silver nanoparticles enabled the

existence of non-aggregated active nanoparticles in a complex bacterial culture medium.

Tween-stabilized silver nanoparticles in combination with gentamicin exhibited bactericidal

activity against multidrug-resistant biofilm forming clinical strains of Staphylococcus epi-

dermidis. A synergistic effect significantly decreased the minimal inhibitory concentration of

gentamicin (the antibiotic with numerous undesirable effects). Gentamicin significantly

enhanced the generation of reactive oxygen species by silver nanoparticles.

Conclusion: Generation of reactive oxygen species by Tween-coated metallic silver nanoparti-

cles was significantly enhanced by gentamicin, confirming the hypothesis of oxidative-associated

mechanism of the synergistic antibacterial effect of the gentamicin-silver nanoparticles complex.

Keywords: gentamicin, silver nanoparticles, reactive oxygen species, multidrug-resistant,

Staphylococcus epidermidis

Introduction
Untargeted therapy as well as abuse of antibacterial drugs has led to the selection of

bacterial strains resistant to available antibiotics. Microorganisms resistant to many

different groups of antibiotics pose a particular danger.1 There is a need for alternative

agents to combat bacterial infections.2 New antibacterial compounds should be effective

in eradicatingmicroorganisms, easily accessible, cheap, harmless to the environment and,

above all, safe for the patient. Special interest is currently associated with nanomaterials,

including silver nanoparticles (SNPs), as well as their combination with antibiotics.3,4

The antibacterial properties of silver were known from ancient times. In ancient

Egypt, silver solutions were used to treat peptic ulcer disease. Food was stored in
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silver vessels for longer protection. Soldiers put silver

coins on the wounds, what accelerated the healing

process.5 Nowadays silver is widely used in medicine

(silver coating on implants and catheter tubes), cosmetol-

ogy, biotechnology, food and textile industries.6

The antibacterial properties of silver nanoparticles

depend primarily on their size, shape, surface modification

and concentration. The mechanism of bactericidal action

of SNPs has not been clearly explained. Under the influ-

ence of their action, the process of wall and cell membrane

formation is disturbed, protein synthesis is also inhibited.

Nanoparticles affect nucleic acids and cellular metabolic

processes. It is also assumed that the bactericidal effect

may result from the induction of the reactive oxygen

species (ROS) production by silver nanoparticles.7

Gentamicin and other antibiotics may form chemical

complexes by binding of the active hydroxyl or amine

group with metals. This may affect their biological

activity.8 The combination of silver nanoparticles with

antibiotics used in therapy may increase the bactericidal

activity of both nanoparticles and antibiotics, even in

relation to strains resistant to their action.9–13 The mechan-

ism leading to the increased bactericidal activity of the

drug-nanoparticle complex may be related to production of

reactive oxygen species by silver nanoparticles under the

influence of an antibiotic.14–16

Silver nanoparticles display diverse stability in complex

solutions such as media used in microbiological tests. In

order to provide adequate stability of SNPs, various types

of stabilizing agents are used, both ionic and non-ionic. In

this study Tween 80, non-ionic surfactant and emulgator,

was used as a silver nanoparticles stabilizing agent.17

We demonstrated synergistic antibacterial activity of gen-

tamicin and Tween-stabilized silver nanoparticles against

gentamicin resistant clinical strains of Staphylococcus epi-

dermidis. Antimicrobial activity of the Tween-stabilized sil-

ver nanoparticles was accompanied by production of reactive

oxygen species as demonstrated by luminol chemilumines-

cence (CL).

Materials and Methods
Materials
Polysorbate 80 (Tween 80), silver nitrate, sodium borohy-

dride, luminol and gentamicin sulfate were purchased from

Sigma Aldrich Co. The Mueller-Hinton Broth II (Becton

Dickinson) was used as a microbiological medium. UV-

Vis spectra were recorded on Multiskan Sky Reader

(Thermo Scientific). For the incubation and horizontal

shaking of the microtiter plates containing bacterial cul-

tures ES-20 Shaker (Biosan, Poland) was used.

All of the tested strains of Staphylococcus epidermidis

were isolated from blood of newborns with low birth

weight and catheter-related sepsis. Blood was collected

during routine diagnostic tests, after obtaining written

informed parental consent. No additional blood sample

was taken, instead, the strains isolated in a hospital labora-

tory during routine diagnostic tests were used for the

purpose of the study. This study was approved by the

Bioethical Committee of the Jagiellonian University no.

KBET/263/B/2013.

Synthesis of Silver Nanoparticles
Tween-stabilized silver nanoparticles (diameter 20–40 nm

established by TEM - transmission electron microscopy)

were prepared by thermal reduction of silver nitrate by

Tween 80.18 Briefly, silver salt solution prepared by dissol-

ving 50 mg of AgNO3 in 0.2 mL of deionized water was

mixed with 2 mL of Tween 80 and incubated at 100°C for 72

hours. The color of reaction solution changed from yellow to

orange and in the end to dark red-brown. The basic working

solution of silver nanoparticles was prepared by 5x dilution

of the reaction mixture with deionized water. The molar

concentration of the working solution of SNPs was estimated

on the basis of the LSPR (Localized Surface Plasmon

Resonance) maximum and the molar extinction coefficient

(4.18 x 109 M–1 cm–1),19 to be 60 nM. The concentration of

metallic silver in the solution was 1400 µg/mL.

To address the problem of SNPs stability, citrate-

stabilized silver nanoparticles were used. Nanoparticles

were synthesized by reducing silver nitrate with sodium

borohydride in the presence of sodium citrate.20 Briefly,

0.5 mL of AgNO3 (0.01 M) was mixed with 19 mL of

sodium citrate (0.01 M). In the next step, 0.6 mL of sodium

borohydride (0.01 M) was added gradually. Reaction was

carried out at 0°C. The molar concentration of 10 nm SNPs

solution was estimated, on the basis of the LSPR maximum

and the molar extinction coefficient (5.56 x 108 M–1 cm–1)19

to be 10 nM.

The Assessment of Antimicrobial Activity

of Combination of Gentamicin and Silver

Nanoparticles
Nine multidrug-resistant (MDR) clinical strains of

Staphylococcus epidermidiswere isolated from blood cultures
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and stored at −80ºC until use. The drug resistance of the

isolates were confirmed according to the protocols of

European Committee on Antimicrobial Susceptibility Testing

(EUCAST).21

The minimal inhibitory concentration (MIC) values of

gentamicin for selected strains were assessed according to

the recommendations of EUCAST.22 The analogous test

was conducted to assess the antimicrobial activity of silver

nanoparticles.

To evaluate the MIC value of gentamicin in combination

with SNPs, the antimicrobial activity of antibiotic and silver

nanoparticles was investigated by checkerboard titration

method on 96-well microtiter plates.23 The checkerboard

method was based on microdilution assay. Briefly, 100 μL of

Mueller-Hinton Broth II (MHB II) was added to each well on

the plate, the dilutions of gentamicin (in range of 0.97 to 250

μg/mL) were made from left to the right side of the plate,

dilutions of SNPs (in range of 21.5 to 1400 μg/mL) weremade

from upper to lower rows of the plate. To microtiter wells,

containing different combinations of gentamicin and SNPs, 10

μL of 1.0 McFarland bacterial saline suspension was added.

The final concentration of bacteria in each well was 1.5 × 107

CFU/mL (colony-forming unit). To determine the microbial

growth inhibition the microtiter plates were incubated at 37°C

for 24 hours with horizontal shaking (120 rpm/min). To reduce

the SNPs related optical background of SNPs, after first incu-

bation, 10 μL of suspension from each well on the plate was

transferred to 190 μL of MHB II on another plate and incu-

bated at 37°C for 24 hours with horizontal shaking (120 rpm/

min). To assess the growth of the strains, the optical density of

the solutions was measured with microplate reader Sunrise

(Tecan, Switzerland) at wavelength 600 nm. The checkerboard

tests was performed for all of tested strains in duplicates. The

growth control and negative control were maintained during

the test. The growth control was maintained to confirm the

normal growth of the bacteria in test condition. Briefly, 10 µL

of 1.0McFarland bacterial saline suspension was added to 190

µL of MHB II. The negative control (200 µL of MHB II) was

maintained to confirm the purity of microbiological medium

and to prove lack of contamination of the solutions during the

test. Additional control was carried out to confirm that Tween

80, detergent used during the synthesis of SNPs, does not

show the bactericidal effect. Briefly, 100 µL of MHB II was

mixed with 100 µL of 20% v/v Tween 80 solution and 10 µL

of bacterial saline suspension.

The interpretation of the checkerboard test was based

on the value of a Fractional Inhibitory Concentration (FIC)

Index:24

FIC index ¼ MIC of gentamicimwith SNPs
MIC of gentamicin

þMIC of SNPswith gentamicin
MIC of SNPs

The FIC values have been interpreted as follows:

FIC ≤ 0.5 - synergistic effect

> 0.5 and ≤ 1 - additive effect

> 1 and <4 - no action

≥ 4 - antagonistic effect

The capability of tested strains to biofilm formation was

evaluated according to procedure of Christensen et al, based

on the assessment of bacterial cells’ adherence to 96-well

tissue culture plates. Bacterial saline suspension (1.0

McFarland) was incubated with the plate for 18 hours,

37ºC. After incubation, the suspension was removed and

wells were washed with phosphate-buffered saline.

Adherent cells were fixed and stained with 1% crystal violet

water solution. Interpretation of the test was based on the

value of optical density measured with microplate reader at

600 nm wavelength.25 The positive (Staphylococcus aureus

SA RN450) and negative control (Staphylococcus epidermi-

dis SE ATCC12228) were maintained during the test. Eight

of nine of the investigated strains of Staphylococcus epider-

midis displayed the ability to biofilm formation.

Detection of Reactive Oxygen Species
Detection of ROS was based on the chemiluminescence of

luminol.26 The generation of ROS was investigated by mixing

100 µL of luminol solution (5 mM in phosphate-buffered

saline) with 100 µL Tween-stabilized silver nanoparticles

(working solution was diluted 25x with deionized water) and

2 µL of gentamicin water solution (40 mg/mL) to obtain final

antibiotic concentration of 0.4 mg/mL. Chemiluminescence

wasmeasured on a LUMATLB 9507 (Berthold Technologies)

luminometer at 1-s intervals.

Results
Stability of SNP Solutions in the Presence of

Bacterial Growth Medium and Gentamicin
Silver nanoparticles require adequate stabilization to elimi-

nate precipitation in growth media due to the destabilization

of the surface charge of the molecules. Citrate-stabilized

silver nanoparticles precipitate in the broth, yielding dark

precipitate of metallic silver. The study compared the stabi-

lity of silver nanoparticles, both Tween and citrate-stabilized

in Mueller-Hinton Broth II.
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Figure 1 presents plasmon resonance related UV-Vis

spectrum of the solutions of Tween and citrate-stabilized

silver nanoparticles made with and without addition of

broth (1:1 volume ratio). Changes in the spectrum of

citrate-stabilized silver nanoparticles accompanied by

metallic silver precipitation in the presence of broth con-

firms instability of citrate-stabilized SNPs (Figure 1A).

Contrarily, Tween-stabilized silver nanoparticles are stable

in the presence of broth solution as confirmed by UV-Vis

spectrum of Tween-stabilized silver nanoparticles in

the presence of MHB II (Figure 1B).

Stability of SNPs may be affected by many physical

factors/reagents. Containing four amino groups, basic

molecules of gentamicin have enhanced affinity to citrate-

stabilized SNPs causing their massive aggregation and

precipitation.27 To the opposite, Tween-stabilized SNPs

are stable in the presence of gentamicin.

Changes in the spectrum of citrate-stabilized silver nano-

particles accompanied by metallic silver precipitation in the

presence of gentamicin are presented on the Figure 2A. UV-

Vis spectrum of Tween-stabilized silver nanoparticles in the

presence of gentamicin (Figure 2B) confirms that Tween-

stabilized silver nanoparticles are stable in that conditions.

The method of synthesis/stabilization plays a crucial role in

the biological activity of SNPs. Regarding the high stability

of Tween-stabilized SNPs and the lack of the pronounced

biological activity of the Tween itself, Tween-stabilized

silver nanoparticles were used in further experiments.

Antimicrobial Activity of Gentamicin in

the Presence of SNPs
Addition of SNPs strongly affected the minimal inhibitory

concentration of gentamicin for all gentamicin resistant clin-

ical strains of Staphylococcus epidermidis. Combination of

SNPs and gentamicin leads to synergistic decrease of genta-

micin and SNPs concentrations. Figure 3 presents typical

bacterial growth pattern in the presence of gentamicin and

SNPs. Increase in gentamicin concentration resulted in

a decrease of SNPs concentration necessary for bacterial

growth inhibition and vice versa. Minimal FIC index for

each bacterial strain identified the point where synergistic

effect was the most prominent, establishing conditions of

optimal concentrations of gentamicin and SNPs. Minimal

inhibitory concentration for gentamicin and silver nanoparti-

cles at minimal FIC index for all clinical strains are presented

in Table 1. At minimal value of FIC index, MIC of gentami-

cin was significantly decreased (median 16 times).

Simultaneously in the presence of gentamicin, bactericidal

activity of SNPs was observed. Silver nanoparticles alone did

not exhibit antimicrobial activity at a concentration of 1400

µg/mL of silver (or 60 nM of SNPs concentration). In the

presence of gentamicin, at minimal FIC index value, median

value of inhibitory concentrations of SNPs was 175 µg/mL.

Generation of ROS in the Presence of

Gentamicin
To assess the production of reactive oxygen species in the

presence of SNPs and gentamicin, the chemiluminescence

Figure 1 Differences in stability of citrate and Tween-stabilized silver nanoparticles

in bacterial growth medium.

Notes: (A) UV-Vis spectrum of citrate-stabilized silver nanoparticles before and

after addition of Mueller-Hinton Broth II medium. Metallic silver precipitation is

accompanied by suppression of characteristic nanoparticle-associated plasmon

resonance spectrum; (B) UV-Vis spectrum of Tween-stabilized silver nanoparticles

before and after addition of Mueller-Hinton Broth II medium. Strong plasmon

resonance absorption band in the range of 400 nm confirms the presence of native

metal nanoparticles.

Abbreviations: MHB II, Mueller-Hinton Broth II; SNPs, silver nanoparticles
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of luminol was tested. Addition of Tween-stabilized silver

nanoparticles to luminol-based detection system stimu-

lated production of reactive oxygen species. Consecutive

addition of gentamicin significantly increased the genera-

tion of ROS (Figure 4). The generation of ROS induced by

gentamicin decreased with time and further addition of

gentamicin did not stimulate chemiluminescence, indicat-

ing that oxidizing potential of that system is SNPs depen-

dent (Figure 5).

Discussion
Silver nanoparticles are increasingly used in various fields of

medicine and biotechnology.28 SNPs with controlled size and

shapes determined by synthesis conditions, are used in bio-

chemical diagnostics systems, bioimaging strategies, photo-

therapy of cancer cells and drugs delivery. Antibacterial

properties of silver were observed from ancient times.

Extraordinary antibacterial activity of functionalized SNPs

acquire increasing interest in 21st century.29,30

The new resistance mechanisms developed by bacteria

limited the amount of available medicines used in therapy.

Bacterial strains isolated from patients are increasingly char-

acterized by resistance to more than one group of antibiotics.

These multidrug-resistant bacterial strains are a serious chal-

lenge for health care.31 Searching for new antibacterial agents

became one of main goals of modern medicine.32 Promising

results were obtained with metal nanoparticles, including

silver nanoparticles. There are many studies evaluating anti-

microbial activity of silver nanoparticles. Silver nanoparticles

are applied on the surface of surgical instruments, implants,

catheters and dental prostheses to inhibit their microbiological

colonization.33,34 The main advantages of silver nanoparticles

used as a antimicrobial agents are: gradual release of silver

ions (which provides long-term activity), low toxicity to

eukaryotic cells (lower than silver ions) and lack of mechan-

ism of resistance developed by bacteria.35,36

The bactericidal activity of silver nanoparticles and the

mechanisms of bactericidal action raise a lot of contro-

versy. The results of published studies conducted to eluci-

date the antibacterial activity of silver nanoparticles differ

significantly.37 It is very difficult to draw specific conclu-

sions, as the published studies utilized various methods of

nanoparticle synthesis, including so called green methods,

based on undefined extract of natural products, and tested

the variety of bacterial strains and various methods for

assessing biocidal activity.38,39

The exact mechanism of bactericidal activity of silver

nanoparticles has not been fully determined.40,41 The pos-

sible modes of action of metal nanoparticles include: (a)

production of reactive oxygen species inside microbial

cells including inhibition of microbial proteins/enzymes

by increased production of H2O2. This mechanism is sup-

ported by the lack of many antioxidant mechanisms in

bacterial cells as compared to eukaryotic cells; (b) disrup-

tion of vital enzymes in bacterial respiratory chain via

forming silver complexes with electron donors containing

sulfur, oxygen, nitrogen or thiols, (c) damage of biomole-

cules such as DNA or proteins, (d) targeting the bacterial

membrane by SNPs. The accumulation of metal ions in

microbial membranes alters the bacterial membrane poten-

tial and increases the cell membrane permeability; (e)

Figure 2 Differences in stability of citrate and Tween-stabilized silver nanoparticles

in the presence of gentamicin (0.4 mg/mL).

Notes: (A) UV-Vis spectrum of citrate-stabilized silver nanoparticles before and

after addition of gentamicin (0.4 mg/mL). Metallic silver precipitation is accompanied

by suppression of characteristic nanoparticle-associated plasmon resonance spec-

trum; (B) UV-Vis spectrum of Tween-stabilized silver nanoparticles before and after

addition of gentamicin (0.4 mg/mL). Strong plasmon resonance absorption band in

the range of 400 nm confirms the presence of native metal nanoparticles.

Abbreviation: SNPs, silver nanoparticles
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electrostatic attraction between metal nanoparticles and

microbial cells which disrupt metabolic activities.42–44

In order to be used in therapy, compounds with bacterici-

dal activity must exhibit not only high biocidal activity but

also should be safe for human cells. Many of antibiotics are

highly toxic to the patient. Gentamicin, an aminoglycoside

antibiotic that exhibits bactericidal activity against aerobic

bacteria commonly used to treat respiratory and urinary tract

infections, skin and eyes diseases, causes a variety of undesir-

able side effects.45 Nephrotoxicity, neurotoxicity, ototoxicity,

Figure 3 Bacterial growth pattern in the presence of gentamicin and silver nanoparticles.

Notes: (A) Growth pattern of S.epidermidis K/8605/12 in the presence of gentamicin and SNPs. The dilutions of gentamicin (in range of 0.97 to 250 μg/mL) were made from

left to the right side of the plate, dilutions of SNPs (in range of 21.5 to 1400 μg/mL) were made from upper to lower rows of the plate. The FIC index was established on the

growth inhibition border. Minimal FIC index (0.12) identified the point where synergistic effect was the most prominent*. For each well, optical density (mean from duplicate

measurements) were presented. (B)Photography of the growth of the presented strain of Staphylococcus epidermidis K/8605/12.
Abbreviations: FIC, fractional inhibitory concentration; SNPs, silver nanoparticles
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hematological disorders and impairment of liver function are

among of the most deteriorating effects. One of the main

problems of pharmacology is to use therapeutic compounds

in the lowest possible doses, as well as to search for alternative

therapeutic agents with similar efficacy but less toxicity.46

Gentamicin is a part of the basic panel of susceptibility testing

for Staphylococcus epidermidis strains isolated from blood.

Staphylococcus epidermidis is the most common coagulase-

negative staphylococci responsible for nosocomial infections

observed among newborns with very low birth weight and

associated with colonization of medical devices. Research

conducted at intensive care units in Poland showed that 95%

of Staphylococcus epidermidis strains isolated from blood of

neonates with very low birth weight were resistant to

gentamicin.47 In treatment of Staphylococcus epidermidis

infections, gentamicin is very often used in combination

with other antibiotics.

The effect of silver nanoparticles on human cells is not

entirely known. The small diameter and surface of the nano-

particles enables to their transport with blood to all organs

and tissues.48,49 Research has been done to assess the toxic

activity of silver nanoparticles.50,51 It is not entirely clear

whether the nanoparticles themselves are responsible for

their toxic activity, or whether the silver ions that are gradu-

ally released contribute to the toxic effect.52,53 The effect of

silver nanoparticles on human cells is similar to their effect

on bacterial cells. They change the structure of the cell wall,

affect the process of protein synthesis and reduce the poten-

tial of the mitochondrial membrane.54–56, Questionable

safety of SNPs enforces administrating of silver nanoparti-

cles in the lowest possible concentrations. To achieve this

effect, various methods of stabilizing and functionalizing the

surface of silver nanoparticles are sought, as well as their

combinations with other agents with bactericidal activity. All

this technological solutions contribute to the increase in the

bactericidal activity of nanoparticles, while reducing their

concentration.57,58 Our study utilized relatively high concen-

trations of SNPs. However, such concentrations might be

used eg in preparations designed for external use, such as

ointments. This is clinically relevant, as gentamicin is one of

the antibiotics used externally to treat skin infections. It is

noteworthy that the synthesis of SNPs is relatively inexpen-

sive, broadening their universal use.

To achieve bactericidal effect, nanoparticles must be stable

and active in the complex microbiological media.59 Despite

the fact that citrate-stabilized silver nanoparticles are widely

used, their lack of stability in a complex microbiological

environment excludes the possibility of their use in microbio-

logical tests. The stability of nanoparticles can be achieved by

using various types of ionic and non-ionic factors (polymers

and surfactants).17,60 SNPs must also be stable in the presence

of other compounds as antibiotics. Tween 80 ensures the

stability of silver nanoparticles in a microbiological medium

and in the presence of positively charged antibiotics, including

gentamicin. Similar effect in stabilization of silver nanoparti-

cles with Tween 80 was reported by Chen et al. For several

tested surfactants, the most preferable effect was achieved

with using Tween 80-stabilized silver nanoparticles, which

have been recognized by the authors as a very promising

antibacterial agent.61

In this study, the antibacterial activity of silver nano-

particles combined with gentamicin was investigated.

Table 1 Results of Checkerboard Assay

Clinical

Strain

Mechanism of

Resistance

MIC (µg/mL) Change of MIC of

Gentamicin

Minimal FIC

Index
Gentamicin Gentamicin+

SNPs

SNPs+

Gentamicin

K/8605/12 MRSE, MLSB 500 31.25 87 16 0.12

K/4042/16 MRSE, MLSB 500 31.25 175 16 0.19

K/8399/12 MRSE, MLSB 500 31.25 175 16 0.19

K/15/928 MRSE, MLSB 500 7.81 87 64 0.08

K/15/323 MRSE 125 0.97 350 128 0.26

K/15/534 MRSE, MLSB 250 31.25 87 16 0.18

K/15/428 MRSE, MLSB 500 62.5 175 8 0.25

K/15/420 MRSE, MLSB 500 31.25 87 16 0.13

K/16/3882 MRSE, MLSB 500 31.25 175 16 0.19

Note: Minimal inhibitory concentrations for gentamicin and silver nanoparticles and minimal FIC index for all clinical strains of Staphylococcus epidermidis.
Abbreviations: FIC, fractional inhibitory concentration; MIC, minimal inhibitory concentration; MLSB, macrolide-lincosamide-streptogramin resistance of Staphylococcus
epidermidis; MRSE, methicillin-resistant Staphylococcus epidermidis; SNPs, silver nanoparticles.
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Other studies on the mechanism of action of the nanopar-

ticles-antibiotic combinations have suggested that the

improvement in the antimicrobial activity could be caused

by their chemical interaction. The underlying molecular

mechanism of the effect, either synergistic or additive, still

requires clarification.62,63 In former studies, it was postu-

lated that combinatorial effect of antimicrobials drives

synergy by membrane alterations generated by SNPs and

no chemical interactions between SNPs and antibiotics

were detected.64 We demonstrated that synergistic

mechanism is based on direct specific chemical interac-

tions between SNPs and gentamicin stimulating produc-

tion of ROS. In our study, antimicrobial activity was

assessed against well characterized clinical strains of

Staphylococcus epidermidis with developed mechanisms

of resistance to beta-lactam antibiotics (MRSE) and to

macrolides, lincosamides and streptogramins groups of

antibiotics (MLSB). Staphylococcus epidermidis is

a species of Gram positive bacteria present on the skin

and responsible for the most of nosocomial infections

resistant to antibiotics used in the therapy.65 All clinical

strains of multidrug-resistant Staphylococcus epidermidis

were resistant to gentamicin. Eight of nine investigated

strains displayed ability to bacterial biofilm formation, an

additional virulence factor of external surface matrix con-

sisted of proteins and oligosaccharides.66

We observed no antimicrobial effects of SNPs alone

against tested strains, even at the highest concentration of

SNPs (1400 µg/mL, 60 nM of SNPs concentration). This

is in line with former evidence: the lack of significant

results in the assessment of the antibacterial properties of

weak, (citrate) stabilized silver nanoparticles against the

reference strain of Staphylococcus aureus was described

by Kin et al. There were no antimicrobial effect of silver

nanoparticles even at the highest concentration of SNPs -

33 nM.67

On the contrary, in the presence of gentamicin, silver

nanoparticles show antibacterial activity against tested

strains of S. epidermidis. The interpretation of the checker-

board method, used to assess the antimicrobial activity of

combination SNPs and gentamicin was based on the value of

Fractional Inhibitory Concentration index. The FIC value

provides information on whether the achieved bactericidal

effect is associated with the synergistic effect of the com-

pounds, or whether it can be an additive effect.24 Several

studies indicated that SNPs may enhance the antibacterial

Figure 4 Silver nanoparticles-associated generation of ROS in the presence of gentamicin.

Note: The chemiluminescence of luminol (stage 1) in the presence of Tween-stabilized silver nanoparticles (stage 2) and stabilized silver nanoparticles combined with

gentamicin (2 µL of gentamicin, the final antibiotic concentration 0.4 mg/mL) (stage 3).

Abbreviations: CL, chemiluminescence; RLU, relative luminescence units; ROS, reactive oxygen species; SNPs, silver nanoparticles.
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effects of antibiotics. However, these synergistic effects of

SNPs–antibiotic conjunction were observed against antibio-

tic susceptible bacteria. Only few studies confirmed

a successful synergistic effect of SNPs–antibiotics combina-

tions in MDR bacteria.68 The minimal value of FIC index is

associated with the most prominent conditions for bacterici-

dal effect. The combination of SNPs and gentamicin leads to

decrease in the minimal inhibitory concentration of gentami-

cin for all of tested strains of S. epidermidis. The synergistic

effect of silver nanoparticles and gentamicin against

Escherichia coli and Staphylococcus aureus strains was

reported by Wang et al.7 Authors demonstrated that the pre-

sence of gentamicin even at low concentration (1 µg/mL)

stimulates antimicrobial activity of silver nanoparticles

against reference strains. The authors explained the differ-

ences between E. coli and S. aureus susceptibility to silver

nanoparticles and gentamicin by the different membrane

structure of Gram-positive and Gram-negative bacteria.

Gram-negative Escherichia coli strains present higher sensi-

tivity to SNPs and gentamicin than Gram-positive

Staphylococcus aureus strains.

It was suggested that one of the possible mechanisms

of bactericidal activity of silver nanoparticles relies on

stimulation of production of reactive oxygen species.

Oxidative stress caused by silver nanoparticles through the

increase in ROS production leads to damage of the proteins

and nucleic acids, and consequently to inhibition of cell pro-

liferative processes.44,69

There are many works confirming that SNPs in various

conditions can produce toxic ROS including hydrogen

peroxide (H2O2), superoxide anions (O2
−), and most reac-

tive hydroxyl radicals (OH*).7,66,69 Liu et al showed that

silver nanoparticles stimulate the chemiluminescence of

luminol and the intensity of the chemiluminescence is

dependent on the size of SNPs, the most intense chemilu-

minescence was generated by the silver nanoparticles with

the smallest diameter.70 On the contrary, investigation

concerning the generation of ROS in SNPs-gentamicin

system is controversial. Some of the studies conclude

that ROS do not play a major role in the gentamicin

potentiating activity of silver.71 Some recent works have

shown the generation of ROS in the presence of silver ions

(derived from silver nitrate) and gentamicin.72

In order to determine the mechanism of the combined

antibacterial activity of silver nanoparticles and gentamicin,

our study utilized a test based on the chemiluminescence of

Figure 5 Silver nanoparticles-associated generation of ROS stimulated by subsequent doses of gentamicin.

Note: Luminol chemiluminescence in the presence of Tween-stabilized silver nanoparticles after addition of subsequent amounts of gentamicin (2µL of gentamicin, delta

concentration 0.4 mg/mL).

Abbreviations: CL, chemiluminescence; RLU, relative luminescence units; ROS, reactive oxygen species; SNPs, silver nanoparticles.
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luminol to assess the production of reactive oxygen species

both by the nanoparticles themselves and by their combina-

tion with gentamicin. In luminol model, Tween-stabilized

silver nanoparticles generated reactive oxygen species. The

presence of gentamicin significantly increased the generation

of ROS (Figure 4). Decrease in ROS production over time,

which is not stimulated by subsequent doses of gentamicin

(Figure 5) confirms that the bactericidal oxidation potential

of the system depends on silver nanoparticles.

Antibacterial effects of SNPs, either in metallic form or

in gradually released ionic form yields multifactorial sys-

tem operating on different cellular levels. That system, in

combination with antibiotics influences on many bacterial

structures and metabolic processes concurrently. In con-

nection with different forms of ROS, it is an antimicrobial

defending system characterized by low risk of bacterial

resistance development.68

Conclusion
To ensure pronounced antibacterial activity, SNPs must be

stable in complex bacteria environments. Tween-stabilized

silver nanoparticles and gentamicin revealed synergistic

antibacterial activity against multidrug-resistant strains of

Staphylococcus epidermidis. The combination of silver

nanoparticles and gentamicin allowed to decrease the

minimal inhibitory concentration of gentamicin (median

16 times). Gentamicin increased the generation of SNPs

derived ROS, one of the probable co-mechanisms of com-

plex SNPs-antibiotic system.
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