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Abstract: Vitiligo is a depigmentation disease that seriously affects the physical health,

mental health and quality of life of a patient. Therapeutic aim at control immunoreaction by

relieving oxidative stress. Unfortunately, the cuticle barrier function and lack of specific

accumulation lead to unsatisfactory therapeutic outcomes and side effects. The introduction

and innovation of nanotechnology offers inspiration and clues for the development of new

strategies to treat vitiligo. However, not many studies have been done to interrogate how

nanotechnology can be used for vitiligo treatment. In this review, we summarize and analyze

recent studies involving nano-drug delivery systems for the treatment of vitiligo, with

a special emphasis on liposomes, niosomes, nanohydrogel and nanoparticles. These studies

made significant progress by either increasing drug loading efficiency or enhancing penetra-

tion. Based on these studies, there are three proposed principles for topical nano-drug

delivery systems treatment of vitiligo including the promotion of transdermal penetration,

enhancement of drug retention and facilitation of melanin regeneration. The presentation of

these ideas may provide inspirations for the future development of topical drug delivery

systems that will conquer vitiligo.
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Introduction
Vitiligo is an acquired idiopathic dermatological disorder characterized by the appear-

ance and development of white macules related to the apoptosis or selective damage of

melanocytes. Approximately 0.5–1% of the individuals are diagnosed with vitiligo.1

The highest reported prevalence has been recorded in India (up to 8.8%), followed by

Mexico (2.6–4%) and then Japan (1.68%2). Depigmentation usually occurs on exposed

areas of the body including the face, neck and arms. The extreme effects of vitiligo

often bring dramatic psychological burden to afflicted patients. Although males and

females are equally affected by this disease, women more often openly express and

address vitiligo for cosmetic purposes and are more likely to seek treatment.3 The

incidence of vitiligo often presents through distinct familial clustering with reports that

20% of the vitiligo patients also have relatives diagnosed with the disorder.4 Individuals

with a positive family history usually have an earlier age of onset as well as a longer

duration5 compared to individuals that do not have a family history of the disease.

Thus far, the etiology of vitiligo has been found to result from multiple factors and

has not yet fully been elucidated. In the 1950s, Lerner investigated 600 vitiligo
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patients and found that most patients with segmental vitiligo

suffered from emotional imbalances or hyperhidrosis, even-

tually giving rise to the neural theory.6 As research pro-

gressed, factors including stress, autoimmune diseases,

melanocyterrhagy and autoinflammation have been identi-

fied as important factors contributing to vitiligo.7 Of all

theories, autoimmune disease or autoinflammation8–11 and

oxidative stress12 as well as interactions among and between

them have been accepted as some of the most important

factors contributing to the disease.13 In the disease, antigen-

presenting cells activate T cells through the presentation of

melanocyte antigens where T cells then directly kill the

melanocytes. It has been reported that endogenous killer

and inflammatory dendritic cells are in a hyperactive state

in patients with vitiligo.9,10 Various cytokines including

INF-γ,14–16 CXCL10,14,17,18 TNF-α, IL-6 and IL-1719–22

are also secreted by innate cells through an autoimmune

response.

Separate from the autoinflammation theory, oxidative

stress is also an important risk factor for vitiligo. Melanin

synthesized by melanocytes is toxic which stimulates the

cell stress signaling pathway in these cells. Moreover,

active energy metabolism in the mitochondria leads to an

excessive accumulation of reactive oxygen species (ROS).

This also gives rise to the development of vitiligo.23,24

Briefly, when tiny lesions generated through a sunburn,

viral infection or physical trauma occur, epidermal damage-

associated molecules are released into the body and oxida-

tive stress levels are increased. The adhesion of melanocytes

is lost and inflammasomes are activated by the release and

induction of molecular and oxidative stress products. After

a series of immunoreactions, specific cytotoxic T cells are

accumulated on the skin, regulatory T cell activity is down-

regulated and inflammatory cytokines as well as autoantibo-

dies are produced, ultimately leading to immune-based

melanocyte destruction (Figure 1).25 Likewise, oxidative

stress contributes to the onset of depigmentation, and sub-

sequent undesired autoimmune responses lead to the pro-

gression of vitiligo.26–30 Here, we review all nano-drug

delivery systems that can be used for the treatment of

vitiligo, hoping to offer useful resources and spark inspira-

tion for future research focused on novel vitiligo treatments

(Figure 2).

Therapeutic Approaches
Since the mechanics and dynamics of vitiligo are not fully

understood, it has been challenging to develop an effective

treatment for vitiligo. The ultimate goals for vitiligo treat-

ment are to prevent the expansion of existing white spots

on the skin, promote repigmentation and reduce psycholo-

gical burden. Currently, strategies that are typically used

for vitiligo treatment mainly include drug therapy and

phototherapy (Table 1). Corticosteroids, such as beta-

methasone dipropionate, clobetasol dipropionate and

mometasone furoate, have been first-line options for viti-

ligo treatment due to their anti-inflammatory and immu-

nosuppressive effects.31 In recently published guidelines

for vitiligo treatment, calcineurin inhibitors such as tacro-

limus and pimecrolimus were also recommended as first-

line approaches for the management of vitiligo.32–34 Some

clinical trials have shown that calcineurin inhibitors have

a similar effect as glucocorticoids, especially for facial

leukomas.35,36 In addition, the accumulation of oxidative

products in the skin is also an important factor

Figure 1 Illustration of the pathogenesis of vitiligo.
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contributing to melanocyte dysfunction. Hence, various

antioxidants that remove excess ROS and hydrogen per-

oxide from the epidermis of vitiliginous skin have been

used to restore the oxidation-antioxidant system of the

skin.37 Oral antioxidants such as polypodium leucotomos,

vitamin E, vitamin C and minocycline are used for an

antioxidation treatment strategy against vitiligo. Separate

from drug therapy, phototherapy including narrow-band

ultraviolet (NB-UVA) and psoralen ultraviolet A (PUVA)

are relatively safe physical-based approaches.38–40 Since

phototherapy alone and in combination with the drugs

mentioned are highly successful in inducing repigmenta-

tion, these strategies have been extensively adopted in

clinical practice.41

The onset, progression and management of vitiligo is

usually a long process ranging from months to years. Thus,

Figure 2 A scheme of the nano-drug delivery systems for vitiligo therapy.

Table 1 Treatment Approaches for Vitiligo

Treatment Approaches Indications Defects/Side Effects

Topical

corticosteroids

Betamethasone dipropionate,

clobetasol dipropionate,

mometasone furoate

Localized vitiligo, both on adults

and children.

Skin atrophy, telangectasias, folliculitis, acneic

lesions, hypertrichosis and striae distensae.

Topical

immunomodulators

Tacrolimus, pimecrolimus Adult patients, as a substitution

option of corticosteroids.

Photosensitivity, burning sensation, erythema,

pruritus, flushing; increased risk of cutaneous and

noncutaneous lymphomas.

Antioxidants Vitamin C, vitamin E,

superoxide dismutase,

polypodium leucotomos

In association with all kinds of

treatment options.

No obvious side effects reported while treatment

effect is not obvious.

Phototherapy NB-UVB, PUVA Generalized vitiligo both in adults

and children. Usually combine with

additional drugs.

Hyperpigmentation, erythema, burning and

blistering, increased risk of skin cancer.

Other treatments Surgical therapies, depigmentation, cosmetic approaches, etc.

Dovepress Sun et al

International Journal of Nanomedicine 2020:15 submit your manuscript | www.dovepress.com

DovePress
3269

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


long-term use of certain drugs or treatment approaches will

inevitably result in a variety of side effects. For example, the

side effects of the long-term use of glucocorticoids include

skin atrophy, acne and folliculitis.42 The large-scale use of

corticosteroids is not feasible and may lead to a high number

of side effects. Thus, corticosteroids are not considered

appropriate for the treatment of generalized vitiligo.

Although glucocorticoids and calcineurin are clinically com-

plementary and have similar therapeutic effects, a recent

study emphasized that tacrolimus showed no apparent ther-

apeutic effects in mitigating segmental vitiligo.32 The most

common side effect of calcineurin inhibitors is a burning

sensation during the first two weeks of treatment. In addi-

tion, the financial costs of calcineurin inhibitors are much

higher than the costs of corticosteroids, which can be

a significant financial burden for patients.37,43,44

Comparing these different treatments, antioxidant drugs are

milder with no obvious side effects. Nonetheless, accepted

consensus guidelines do not recommend the use of topical

antioxidants as a single therapy for vitiligo since most stu-

dies were restricted by a limited number of patients.45 In

terms of a non-drug treatment, phototherapy for vitiligo

requires frequent treatment (two or three times weekly),

which brings inconvenience to patients. Despite the higher

success rates that these strategies have for repigmentation,

recurrence rates still remain high. Over 50% of the patients

are prone to recurrent white spots on regimented skin within

the first year after therapy is discontinued.25,46 In addition,

side effects such as headaches, nausea and ocular as well as

renal toxicity may occur as a result of phototherapy

treatment.47,48 In addition, these therapies are also associated

with a risk of skin cancer. Thus, phototherapy is recom-

mended only when major treatments are found to be inef-

fective by the NHS.49

With the development of nanotechnology, voluminous

nano-drug delivery systems have emerged and been applied

to enhance drug penetration through the skin. These systems

include microemulsions, nanoemulsions, nanoparticles, lipid

carriers and many other nanovesicles and exhibit prominent

advantages over conventional methods. In the field of nano-

medicine, the number of existing literature focused on the

treatment of vitiligo is relatively small.

Nano-Drug Delivery System in the
Treatment of Vitiligo
Human skin is the largest of the body's organ and helps to

carry out many essential functions including such as acting

as a physical barrier, aiding in immune defense, temperature

maintenance, UV protection, and moisture retention.50

Three layers comprise the skin: stratum including the cor-

neum, dermis, and hypodermis. The exposed layer and the

stratum corneum contain 70–90% protein and 5–15% lipids,

and aid in the process of influencing the role of protecting

the body from external and environmental stressors and

pollutants.51 One of the most significant challenges of trans-

dermal delivery such as to treat afflictions such as vitiligo is

that only a few therapeutic compounds possess ideal pene-

tration behaviors and characteristics.52 The best existing

technology merely allows drugs with a molecular mass of

100 Da and good lipophilicity to permeate the skin

successfully.53–56 In addition, another obstacle in achieving

the desired therapeutic effects is the incompetence of the

current dosage forms including creams, ointments, lotions,

gels, and other vectors.57 Generally, all the problems asso-

ciated with conventional topical preparations suggest that

reform and innovation of transdermal drug delivery for the

treatment of vitiligo are urgently needed to improve the

understanding of this affliction and to increase the possibility

of better patient outcomes.

Recent advancements in cutting-edge nanotechnology

provide an unprecedented opportunity to overcome short-

comings related to conventional methodologies (Figure 3).

In particular, by taking advantage of some features of the

stratum corneum, there is potential for the use of a nano-

drug delivery system that can enhance the transdermal

penetration of drugs and increase therapeutic effects.58

A large number of novel nano-drug delivery systems car-

rying therapeutic agents are being developed, such as

Figure 3 Existing nano-drug delivery system for vitiligo therapy.
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liposomes, polymeric nanoparticles, microspheres, solid

lipid nanoparticles and nanofibrous structures (Table 2)

Liposomes and Niosomes
Liposomes are particles formed by lipids that consist of

a double layer similar to the natural cell membrane enclos-

ing an aqueous core. Containing non-toxic, biodegradable

properties, liposomes are regarded as the most promising

nanocarrier for topical drug delivery.69 The apparent suc-

cess of liposomes may be the result of lipid vesicles fusing

into the stratum corneum, allowing the therapeutic to

permeate into deeper skin layers.70 Liposomes also

increase the dissolution of the applied drugs and augment

drug solubility on skin surfaces. Furthermore, liposomes

are seen as drug repositories that allow for sustained rates

of drug release and help reduce the frequency of

treatments.71 One group59 prepared an 8-methoxypsoralen-

loaded liposomal treatment through a film hydration

method. After a series of purges, it was found that the

diameter of the final vehicle ranged from 100 to 500 nm

and showed excellent penetration behavior when com-

pared to controls treated with hydroalcoholic solution.

All nano vehicles displayed high capacities for sustaining

the levels of 8-MOP release and its permeation––accumu-

lation into skin layers.

Another group61 reported the effects of both psoralen

and resveratrol that were co-loaded with ultradeformable

liposomes (UDL) for the treatment of vitiligo. Psoralen is

a natural furanocoumarin derivative used in combination

with UV or PUVA for the treatment of various skin

diseases.72,73 Due to the presence of a surfactant, the

vesicle changes its shape to respond to conditions from

the external environment.74 Resveratrol stimulates mito-

gen-activated protein kinase signaling and has been

demonstrated to have antioxidant activity.75 Other

groups76 have conducted optimization studies and the

most appropriate formula was selected based on particle

size, PDI and zeta potential. Co-loaded liposomes were

prepared through modified film hydration and liposome

particle size was 120 nm with drug loading efficiencies

between 2.5% and 5%. In vitro studies and kinetics

showed that the carrier can sustain the release of both

drugs over prolonged periods of time. In vitro cell studies

showed that the carrier significantly stimulated melanin

and tyrosinase activity without affecting the antioxidant

capacity of psoralen and resveratrol.

One group60 prepared baicalin and berberine samples

that were co-loaded with ultradeformable vesicles and

demonstrated their potential as adjuvants for the treatment

of vitiligo. Baicalin and berberine were selected as cura-

tive agents due to their antioxidant, anti-inflammatory and

proliferative effects.76–78 In vitro studies showed that pre-

paration enhanced permeation of drugs and antioxidants.

Photoprotective effect evaluations showed that co-loaded

vesicles increased melanin and tyrosinase activities.

Others63 constructed an elastic cationic noisome, load-

ing the human tyrosinase plasmid pMEL34. The maximum

loading amount of pMEL34 in the elastic vehicle was

150 mg/16 mg of niosomal determined by gel electrophor-

esis and documentation. Due to the enhancement effects of

ethanol on vesicle elasticity, cumulative amounts and flux

at 6 h post-treatment with pMEL34 were significantly

increased in comparison with pMEL34 loaded into none-

lastic cationic niosomes. The level of tyrosinase-associated

activities were found to be four times higher than the

respective levels for free plasmid and plasmid loaded

into nonelastic niosomes, indicating that elastic cationic

niosomes have potential as efficient gene topical delivery

systems for vitiligo treatment. In 2012, a human tyrosinase

plasmid pMEL34 by Tat peptide was described and found

to enhance melanin production. The vesicular size and zeta

potential were proved that the carrier is still in the range of

stable dispersion. In vitro studies have indicated that this

type of preparation promotes both tyrosinase gene expres-

sion and melanin production with little to no cytotoxic side

effects.62

Another group66 prepared 8-MOP ethosomes through

a central composite design (CCD). Conventional lipo-

somes deliver drugs to superficial layers of the skin,

while ethosomes improve the permeation and retention in

skin layers of the drugs.79 The in vitro skin permeation

study showed that this preparation induced enhanced

transdermal efficacy, optimized ethosomal formulation

and produced significant accumulation of 8-MOP, likely

as a result of ethosome deformation. In vivo studies were

consistent with in vitro results. Among all the elaborated

topical transdermal delivery approaches, lipid nanocarrier

is the most optimal one for its high biocompatibility and

drug encapsulation efficiency. An increasing number of

researchers in this field are paying attention to various

novel vesicle delivery systems that possess percutaneous

penetration and better therapeutic effects.

Microemulsions
Microemulsions are thermodynamically stable colloidal sys-

tems with a transparent appearance. The conventional
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formula of microemulsions consists of water and oil stabi-

lized by surfactant and sometimes also contains a -

cosurfactant.80 Based on the physical and chemical

properties of surfactants and ingredients of microemulsions,

microstructures of microemulsions vary. The advantages of

microemulsions used as transdermally delivered drugs show

them as being an attractive technological platform for novel

pharmaceutical formulations.81–84 One group85 reported

a clobetasol propionate-loaded microemulsion-based gel

that successfully overcame the poor solubility of clobetasol

propionate. The effectiveness of the preparation indicated

that the stratum corneum swelled due to water retention

caused by gel formulation thereby assisting clobetasol pro-

pionate penetration into the skin. A clinical study indicated

that the extent of repigmentation in patients treated with

a clobetasol propionate-loaded microemulsion-based gel

was faster and more profound when compared to control

groups. Numerous studies and literatures have shown that

microemulsion can significantly enhance the percutaneous

permeability of drugs though the exact mechanisms that

have not been fully understood. It is worth noting that

apart from the internal microstructure, the composition or

internal phase structure largely determines the permeation of

microemulsion. Microemulsions have been a promising

approach in the transdermal delivery of anti-inflammatory

drugs (NSAIDs) with a fairly obvious improvement in the

permeation rate.

Nanoparticles
The emerging use of nanoparticles is one of the most

impactful components of nanomedicines. Due to large sur-

face-to-volume ratios, nanoparticles not only enhance the

contact area between a drug and target tissue but also

permits drug release in a controlled manner.86 In recent

years, nanoparticles have been incorporated into common

and daily goods. Nanoparticles penetrate the skin based on

its size, charge and overall structure.87 Metal nanoparticles

such as palladium and platinum boost enzyme activity and

exhibit anti-inflammatory capacity in UV-treated HaCaT

keratinocytes. In addition, the rate of apoptosis in cells

pretreated with nano-Pt was significantly reduced com-

pared to controls.88 A mix of Pd and Pt nanoparticles

termed PAPLAL has a history as a treatment for chronic

diseases such as burns, gastric ulcers and rheumatoid

arthritis.89 PAPLAL also exhibited SOD catalase activity

and significantly lowered O2- generation levels in mouse

skin tissue. Both in vivo and in vitro results showed that

PAPLAL effectively suppressed endogenous superoxide

levels through SOD and catalase activity via the AHR

and NRF2 pathways.67 Further investigation using

Table 2 Nano-Drug Delivery System for Vitiligo Therapy

Formulation Drug/Therapeutic Agent Outcome Ref

Liposomes 8-Methoxypsoralen The release and permeation–accumulation of 8-MOP is increased in vitro [59]

Deformable

liposomes

Baicalin and berberine Stimulated melanin production and tyrosinase activity. Showed remarkable

antioxidant and photoprotective capabilities

[60]

Deformable

liposomes

Resveratrol and psoralen Higher penetration rate, significantly stimulated melanin and tyrosinase

activity, potential antioxidant activity, promoted pigmentation and

restoration of redox balance by free radical scavenging activity.

[61]

Cationic niosomes Human tyrosinase plasmid in

mouse melanoma cells by Tat

peptide

Enhanced the expression of human tyrosinase gene and melanin production

with relatively low cytotoxicity; improved the stability of the plasmid loaded

in the niosomes.

[62]

Cationic niosomes Tyrosinase plasmid pMEL34 The expressed tyrosinase activities were four times higher than the free

plasmid and the plasmid loaded in nonelastic niosomes. Exhibit potential as

a gene topical delivery system for vitiligo.

[63]

Microemulsion-

based gel

Clobetasol propionate Showed better retention in the skin and less irritation potential, permeated

and retained into skin layers; significantly enhanced skin permeation and

accumulation; patients treated with MBC showed faster repigmentation

[64,65]

Nanosized

ethosomes-based

hydrogel

8-Methoxypsoralen Significantly increased skin permeation and accumulation in the epidermal

and dermal layers. Showed insignificant phototoxicity and erythema

compared with the conventional cream.

[66]

Nanoparticles Palladium and platinum Is able to active AHR and NRF2 in human keratinocytes [67]

Nanoparticles Polydopamine The melanin-like nanoparticles were endocytosed by human epidermal

keratinocytes and mimicked the behavior of natural melanosomes.

[68]
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palladium and platinum nanoparticles in the treatment of

vitiligo should be performed with caution since metals

may possess allergens.90 By coating or other means of

modification, nanoparticles can overcome their inherent

shortcomings to achieve efficient transdermal delivery

and even release drugs with targeting behavior.

Principles of Nano-Drug Delivery
Systems Designed for Vitiligo
Therapy
Enhancing the Penetrate Capacity of

Therapeutic Agents
Similarities between lipid particles and the stratum cor-

neum make liposomes excellent vectors for delivery of

therapeutics.91 Conventional liposomes are thought to be

inadequate for transdermal delivery, but more advanced

liposomes such as invasomes, transferosomes, ethosomes

and niosomes can overcome disadvantages seen with ori-

ginal methods (Table 3).

Invasomes were first proposed as novel modified lipo-

somes in 2003.92 The presence of soy-phosphatidylcholine

(SPC), ethanol and terpenes make significant improve-

ments in percutaneous permeability compared to tradi-

tional liposomes.93,94 One group investigated the

transdermal ability of invasomes loaded with ferulic acid.

Skin permeation experiments revealed that invasomes pos-

sess good permeation capacity and are an ideal carrier for

the transdermal delivery of ferulic acid.95

Transfersomes were first reported for transdermal delivery

in 1992. Surfactants such as sodium cholate, spans and tweens

make these carriers more elastic in comparison to traditional

liposomes. Another group prepared a transferosome-

encapsulating dexamethasone and evaluated its in vivo perfor-

mance in a carrageenan-induced rat paw edema model. After

a series of formula optimization studies, Span-80 was selected

as the optimum edge activator that offered maximum deform-

ability. These results demonstrated that drug-loaded transfero-

somes have better antiedema activity when compared to

liposomes, indicating that transferosomes possess better pene-

tration ability.87

Microneedles (MN) are micron-sized needle projec-

tions with a height of 10–2000 μm and a width of 10–50

μm that painlessly penetrates the skin.98 In recent years,

transdermal drug delivery using microneedles has been

widely studied.99–101 A combination of microneedles and

nanocarriers has also been considered for the treatment of

diabetes,102 cancer therapy103 and immunotherapy.104

Various nanoparticles with antioxidant or anti-

inflammatory properties can be used as therapeutic agents

to remove excess ROS and control vitiligo progression.

However, poor water dispersibility and weak percutaneous

permeability restrict application.105 The combination of

microneedles and nanoparticles brings hope for vitiligo

therapy. Kim et al reported gold nanoparticles that were

successfully able to be delivered into the hamster cheek at

a depth of 100–200μm.106 Nevertheless, the main draw-

back of treating vitiligo with microneedle is that the fre-

quent use of microneedle will inevitably lead to stubborn

skin damage and even inflammation. A comprehensive

microneedle drug delivery strategy deserves attention and

development.

By applying a mild electrical current, iontophoresis

allows ionized substances to pass through the adjacent

skin or tissue without invasion.107,108 The combination of

nano-drug delivery systems and iontophoresis was first

reported in 1996. However, unsatisfactory results were

obtained using this method.109 Another group further

demonstrated the mechanisms behind the combination

strategy. This group observed connexin43 phosphorylation

and filamentous actin depolymerization when charged

Table 3 Brief Introduction of Novel Liposomal Systems

Carriers First Described Typical Compositions Characteristics and Advantages

Compared to Conventional Liposomes

Invasomes A. Fahr et al in 2003.92 Phosphatidylcholine, ethanol, terpenes. Enhance transdermal absorption of both aqueous

and lipid-soluble drugs.

Ethosomes E.Touitou et al in 199696 Phospholipids, high proportion of ethanol

(20–45%)

Smaller particle size; fusion with skin lipids and

increase the penetration of ethosomes.

Niosomes RM.Handjanivila et al in 197996 Non-ionic surfactants and cholesterol. A greater bioavailability; more stable than

liposomes in oxidizing environment.

Transfersomes G. Ceve et al in 1992.97 Phosphatidylcholine, surfactants (sodium

cholate, Tween 80, Tween 60, Span 80, etc.)

Greatly improve the deformability and elasticity

of the carriers; migrate into deeper skin layers.
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liposomes crossed the intercellular space. The Ca2+ inflow

was also stimulated by the electrical stimulus. All evi-

dence suggested that the electric current changed the phy-

siological properties of the skin and enhanced the

permeation of liposomes.110

Increasing Therapeutic Agent

Accumulation: The Receptor Ligand

Binding Mechanism
Melanocytes are dendritic cells that synthesize and secrete

melanin and are located in the basal cell layer of the

epidermis. There are plenty of ways therapeutic agents

can overcome the stratum corneum barrier and penetrate

deeper into the skin. However, driving and accumulating

the drug to the target site still remains a challenge. The

affinity of the receptor and ligand that encompasses active

targeting is widely utilized to exert specific retention.

Many receptors on the surface of melanocytes enable the

construction of such active targeting vectors.

Melanocortin-1 receptor (MC1R) is a G protein-

coupled receptor specifically distributed on the surface of

melanocytes (Figure 4). Endogenous ligands of this recep-

tor include α-MSH, β-MSH, γ-MSH and adrenocorticotro-

pic hormone (ACTH). Among these ligands, α-MSH

shows the strongest affinity with MC1R.111 The amino

acid sequence of α-MSH is simple, allowing it to serve

as a target molecule enabling nano-drug delivery systems

to aggregate in the vicinity of melanocytes.

The endothelin receptor is another receptor located on

melanocytes that participates in a variety of physiological

activities. During the transformation of melanocytes into

melanoma cells, endothelin B receptor expression gradu-

ally increases.112 One group reported that Endothelin-1

(ET-1) promotes melanin synthesis and the formation of

dendrites in normal human epidermal melanocytes.113

Similarly, a seven-transmembrane receptor on keratino-

cytes termed protease-activated receptor-2 (PAR-2) plays

a central role in the transportation of melanosomes.114

SLIGRL and SLIGKV are two PAR-2-activating peptides

that have the same activation capacity as PAR-2 without

receptor cleavage.115,116

Promoting Melanin Regeneration
Therapeutic goals for vitiligo treatment consist of inhibit-

ing the inflammatory response and promoting melanin

regeneration. Many therapeutic regimens only focus on

inhibiting the inflammatory response rather than promot-

ing repigmentation. Thus, there has been a growing

demand for drug delivery systems that inhibit the inflam-

matory response while promoting melanin regeneration.

Tacrolimus is a calcineurin inhibitor that weakens T cell

activity and the secretion of proinflammatory cytokines, thus

promoting melanocyte migration and repigmentation.117,118

However, its application is restricted due to the risk of

lymphoproliferative disease, narrow therapeutic index and

low solubility.119,120 One group prepared a nanolipid carrier

containing lipophilic solubilizers to improve drug solubility.

This carrier exhibited a high entrapment efficiency of

96.66% and a significantly higher drug release in vitro and

in vivo compared to the commercial ointment. Meanwhile,

a skin irritation study revealed less irritation using this carrier

when compared to the control group.121

As described, many receptors specifically located on the

surface of melanocytes and keratinocytes play important

roles in controlling melanocyte proliferation, melanin synth-

esis and melanin migration. On the other hand, their endo-

genous ligands or the analogues can be used as peptide drugs

to activate biochemical reactions associated with melano-

cytes. α-Melanocyte-stimulating hormone (a-MSH),

a tridecanoic peptide derived from pro-opiomelanocortin

(POMC), plays a significant role in stimulating melanogenic

pigmentation in skin tissues.122 After binding to MC1R, the

receptor typically sends signals by increasing cyclic adeno-

sine monophosphate (cAMP) and exhibits powerful anti-

inflammatory effects.123 The short fragments of α-MSH or

its derivatives Lys-Pro-Val (KPV) and (CKPV)2 are reported
Figure 4 Schematic diagram of the role of MC1R in melanin synthesis and

secretion.
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to possess similar or even stronger biological activity.124 ET-

1 can also regulate the synthesis of melanin, promote mela-

nocyte proliferation and help form dendrites. Accordingly,

these endogenous molecules or their analogues can be

anchored on transdermal delivery systems to ameliorate

transdermal efficiency as well as promote melanin

regeneration.125

Conclusion
Vitiligo is a common depigmenting disease affecting 1%

of the population worldwide. In some regions, the white

spotting caused by vitiligo is confounded with leprosies

and has devastating effects on patient psychological health

and social activities.126 Treatment and management of

vitiligo still shows intractable challenges for both scien-

tists as well as dermatologists. More evidence suggests

that the dynamics and pathogenesis of vitiligo are closely

related to the immune response of skin and melanocyte

response to the immune response. Thus, vitiligo should be

treated as a chronic immune disease rather than a problem

mainly regarding an approach from a regenerative medi-

cine perspective.127 Nevertheless, the rapid development

of nano-drug delivery systems has brought new insights

and ideas for the treatment of vitiligo. These novel meth-

ods facilitate the ability for developed drugs to possess

sustained or controlled release behavior, enhances the

therapeutic efficiency and reduces side effects.

Despite the great potential of the available nano-drug

delivery systems, certain limitations exist. Most research

regarding novel drug delivery systems for the treatment of

vitiligo settle for the minimum control of symptoms rather

than optimal outcome to completely cure the disease.

Despite these challenges, it is inevitable that scientists will

perform and complete the research needed to further opti-

mize nano-drug delivery system efficiency. Various recep-

tors on the surfaces of melanocytes or surrounding

keratinocytes including granulocyte colony-stimulating fac-

tor (G-CSFR) and melanocortin receptors 1~5

(MC1R~MC5R) increase the feasibility of developing tar-

geted agents. Their endogenous ligands or analogues exhibit

great potential for the treatment of vitiligo with minimum

side effects. One group proposed ultrashort peptides contain-

ing cysteine that spontaneously self-assembled into hydro-

gels. In vivo studies revealed that one of the formulas

exhibits great biocompatibility and limited allergenic

potential.128 In the following studies, self-assembly beha-

vior, nanostructure formation, hydrogelation and phase tran-

sition of peptide nanostructures of two selected tripeptides

were investigated by X-ray crystalline diffraction and scan-

ning electron microscopy.129 A consistent hydrophobic

backbone of acetylated Leu-Ile-Val-Ala-Gly plays the role

of self-assembly and the C-terminal residue has an obvious

impact on the rate and extent in which the peptide fibril

interacts with an SMD.130 By elucidating the crosslink and

polymerization mechanisms of small molecule peptide

drugs, various peptide-based topical drug delivery systems

may be an inevitable trend for vitiligo treatment.

Here, we reviewed the pathogenesis, present therapeu-

tic methods and existing nano-drug delivery systems that

have been used and that will be used in the future for the

treatment of vitiligo. Vitiligo can eventually be better

controlled, managed and even cured considering the sig-

nificant progress that has been made and the ongoing

development of strategies to tackle this malady.
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