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Purpose: We propose three support vector machine (SVM) classifiers, using pre-and post-

contrast T2 fluid-attenuated inversion recovery (FLAIR) subtraction and/or pre-and post-contrast

T1WI subtraction, to differentiate treatment-related effects (TRE) from glioma recurrence.

Materials and Methods: Fifty-six postoperative high-grade gliomapatientswith suspicious progres-

sion after radiotherapy and chemotherapy from two centerswere studied. Pre-and post-contrast T1WI and

T2FLAIRwere collected.Eachpre-contrast imagewasvoxel-wise subtracted from the co-registeredpost-

contrast image.Datasetwas randomly split into training, and testingona7:3 ratio, accordingly subjected to

a five fold cross validation. Best feature subsets were selected by Pearson correlation coefficient and

recursive feature elimination, whereupon a radiomics classifier was built with SVM. The discriminating

performance was assessed with the area under receiver-operating characteristic curve (AUC), accuracy,

sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV).

Results: In all, 186 featureswereextractedoneach subtractionmap.TopnineT1WIsubtraction features,

top thirteen T2 FLAIR subtraction features and top thirteen combination features were selected to build

optimal SVM classifiers accordingly. The accuracies/AUCs/sensitivity/specificity/PPV/NPV of SVM

based on sole T1WI subtraction were 80.00%/80.00% (CI: 0.5370–1.0000)/100%/70.00%/62.50%/

100%. Those results of SVM based on sole T2 FLAIR subtraction were 86.67%/84.00% (CI: 0.5962–-

1.0000)/100%/80%/71.43%/100%.Those resultsofSVMbasedonbothT1WIsubtractionandT2FLAIR

subtraction were 93.33%/94.00% (CI: 0.7778–1.0000)/100%/90%/83.33%/100%, respectively.

Conclusion: Pre- andpost-contrastT2FLAIRsubtractionprovidedaddedvalue for diagnosis between

recurrence and TRE. SVM based on a combination of T1WI and T2 FLAIR subtraction maps was

superior to the sole use of T1WI or T2 FLAIR for differentiating TRE from recurrence. The SVM

classifier based on combination of pre-and post-contrast subtraction T2 FLAIR and T1WI imaging

allowed for the accurate differential diagnosis ofTREfromrecurrence,which is of paramount importance

for treatment management of postoperative glioma patients after radiation therapy.

Keywords: glioma recurrence, treatment-related effects, T2 FLAIR enhancement, image

subtraction, support vector machines

Introduction
Maximal safe surgical resection followed by concurrent chemotherapy and radia-

tion therapy (CCRT) has become a standard treatment for patients with high-grade

Correspondence: Yan-Ping Yu
Department of Radiology, Cancer
Hospital of the University of Chinese
Academy of Sciences, East Banshan Road,
1#, Hangzhou City, Zhejiang Province,
People’s Republic of China
Tel/Fax +86-571-88122222
Email yuyanpingdoc@163.com

Guang Yang
Department of Physics, Shanghai Key
Laboratory of Magnetic Resonance,
North Zhongshan Road, 3663#, Shanghai,
People’s Republic of China
Tel/Fax +86-21-62233873
Email gyang@phy.ecnu.edu.cn

Cancer Management and Research Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com Cancer Management and Research 2020:12 3191–3201 3191

http://doi.org/10.2147/CMAR.S244262

DovePress © 2020 Gao et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

C
an

ce
r 

M
an

ag
em

en
t a

nd
 R

es
ea

rc
h 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-3678-1182
http://orcid.org/0000-0001-7501-5037
http://orcid.org/0000-0003-2222-6257
http://orcid.org/0000-0002-2241-0639
http://orcid.org/0000-0002-5560-8078
http://orcid.org/0000-0002-9717-1871
http://orcid.org/0000-0003-3880-3282
http://orcid.org/0000-0002-5681-4308
http://orcid.org/0000-0001-8942-427X
http://orcid.org/0000-0001-6784-3828
mailto:yuyanpingdoc@163.com; 
mailto:gyang@phy.ecnu.edu.cn
http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


glioma.1 CCRT commonly leads to treatment-related

effects (TRE) in the form of enhancement of conventional

T1WI, which appears to be similar to glioma recurrence.2

This predicament becomes more complex because the

recurrence often occurs within or adjacent to the primary

site,3 which greatly overlaps with the radiation zone. The

misdiagnosis may exclude the recurring tumor from proper

therapy and bring overtreatment to TRE.4 Recurrent

glioma and TRE show T1WI enhancement primarily by

damaging the blood-brain barrier (BBB) according to

underlying pathological changes.5 However, TRE could

also lead to increased leakiness of the contrast agent due

to increased capillary permeability along with the BBB

alteration pathologically.6,7 The leakage of contrast agent

from the vessel to the interstitial space is a major compo-

nent of T2 fluid-attenuated inversion recovery (FLAIR)

enhancement. There has been an interest in the usefulness

of post-contrast T2 FLAIR to detect an increase in perme-

ability of the BBB in brain inflammatory diseases with

pathological confirmation.8 It should, therefore, be

expected that enhanced T2 FLAIR could help differentiate

TRE from recurrence. Previous studies have tried pre-

contrast T2 FLAIR MRI in differentiating recurrence and

TRE, none has tested the utility of T2 FLAIR enhance-

ment. Thus, the utility of T2 FLAIR enhancement for

differentiating recurrence and TRE is worth investigating.

Conventional T1WI and MRI are among the most

widely used and easy-to-handle imaging methods for

glioma diagnosis and clinical follow-up. Although it has

been generally reported that advanced MRI sequences are

more accurate than conventional ones,9 certain limitations

hinder the popularity of advanced functional MRI

sequences.10,11 In comparison with other functional MR

imaging methods, classic T1WI and T2 FLAIR sequences

are less vulnerable to artifacts, more accessible, and allow

for higher spatial resolution.9 However, other tissue

sources of bright signal appear as high signal on pre-

contrast T1WI or T2 FLAIR, which greatly influence

traditional enhancement observation. To overcome this

limitation, a voxel-by-voxel image subtraction method

has been adopted in several previous studies.12–14

Recently, Zivadinov et al further improved post-contrast

T2 FLAIR accuracy by conducting pre- and post-contrast

T2 FLAIR subtraction.12 With the help of pre- and post-

contrast subtraction, still only a limited amount of readable

conventional MRI features were able to be utilized, leav-

ing a huge amount of precious image data information

untouched.

Chung et al discovered that a bimodal histogram ana-

lysis based on dynamic contrast-enhanced MR could be

a potential biomarker for differentiating recurrent glioblas-

toma (GBM) from radiation necrosis.1 The newly merged

field of machine learning further allows the specifics of

radiomics to be integrated into ancillary diagnostic meth-

ods. Previous studies have added the benefits of machine

learning to the glioma World Health Organization grading

classification,15 gene mutation,16,17 and survival.18 Only

a few studies have attempted machine learning for the

differential diagnosis between recurrence and TRE.19–21

Advances in voxel-wise pre- and post-contrast image sub-

traction along with machine learning could potentially

help differential diagnosis between recurrence and TRE

by mining the conventional image data to the utmost

extent. However, the assessment of a previous single

enhanced T1WI sequence alone did not show good

results.22 Single T1WI subtraction alone provided only

limited information on BBB damage. In this study, the

combination of both pre-and post-contrast T2 FLAIR sub-

traction, as well as T1WI subtraction, using machine learn-

ing is assessed. To date, no multicenter investigations on

the use of both pre-and post-contrast T2 FLAIR subtrac-

tion, as well as T1WI subtraction radiomic machine learn-

ing to distinguish TRE from recurrence, have been

reported.

It is hypothesized that: 1) T2 FLAIR enhancement is

complementary to T1WI enhancement in differentiating

TRE from recurrence; and 2) radiomic features, which

combine robust conventional T1WI enhancement subtrac-

tion and T2 FLAIR enhancement subtraction from enhan-

cing lesions, can help distinguish recurrence and TRE by

using machine learning.

Materials and Methods
Study Design, Ethical Approval, and

Patient Consent
Figure 1 shows the flow chart of this study. All study

protocols were approved by the local ethics committee of

Zhejiang Cancer Hospital (grant number: 2019145) and

the local ethics committee of Huashan hospital affiliated

to Fudan University (grant number: 2017003) individually.

Written informed consents were obtained from all patients.

Patients
Patients suitable for this study included patients with

pathologically proven glioma after gross total surgical
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resection who underwent subsequent chemoradiotherapy.

Patients were eligible when T1WI enhancement initially

appeared or enlarged during follow-ups (when TRE or

recurrence was noticeable for the first time). The data of

56 patients who were diagnosed with high-grade glioma

(including glioblastomas and anaplastic astrocytoma)

between May 2017 and April 2019 in two individual

centers were retrospectively reviewed. The specific radia-

tion technique was intensity-modulated radiation therapy.

The radiation dose was programmed according to the

volume and location of the lesion. Subsequently, che-

motherapy was in the form of a standard regimen of

temozolomide. In this study, all recurrent lesions were

pathologically confirmed by second surgical resections.

The clinical diagnosis criteria for TRE were: 1) patients

without additional treatment who were stable or regressive

and did not show any adverse event clinically,23 2) did not

progress on conventional MRI and MRI spectrum (MRS)/

MRI perfusion (MRP) (clinical routine in the two centers),

and 3) had a minimum 6-month follow-up coverage. The

exclusion criteria were as follows: 1) the patient had first

or second surgery at an external institution and pathologi-

cal results were not available; 2) had insufficient diagnos-

tic proof according to our clinical TRE criteria; or 3) had

insufficient MRI quality to obtain image subtraction and

further analysis (eg, motion artifact, missing sequence).

A neuroradiologist (Y.P.Y.), blinded to clinical data,

assessed the new or enlarged lesions. A senior radiology

resident (A.N.Z) scrutinized each patient’s medical

records.

Imaging Protocol
The enrolled patients had undergone MRI on either of two

3.0-T scanners (both were MEGNETOM Verio; Siemens

Healthineers, Erlangen, Germany) in the two institutions

using an 8-channel phased-array head coil. Post-contrast

T2 FLAIR was added to the routine conventional MRI

follow-up protocol, which was conducted in the following

order: Sagittal or coronal T1WI; axial T1WI and T2

FLAIR; contrast-enhanced axial T1WI and contrast-

enhanced axial T2 FLAIR. The conventional T1WI was

a TSE sequence, the Siemens T2 FLAIR sequence was

also known as “dark fluid” sequence. The voxel size of

both the T1WI and T2 FLAIR was 0.8*0.7*4 mm3; and

FOV, 220 mm2. The post-contrast T1WI was scanned 3

minutes after injection, and the duration was approxi-

mately 3 minutes. Then, the T2 FLAIR immediately fol-

lowed as a delayed contrast scan. Gadolinium contrast

agent (gadopentetate dimeglumine injection; Beijing

Beilu Pharmaceutical Co., Ltd., Beijing, PR China, or

gadodiamide injection; GE Healthcare CO., Ltd., Co.

Cork, Ireland) was administered intravenously with

a standardized protocol (0.1 mmol/Kg) by using an MR-

compatible contrast medium injection system.

Image Preprocessing and Segmentation
To avoid multicenter MRI standardization bias, the enrolled

patients in the two affiliations underwent a similar scan set

up on similar Siemens scanners. For every study, the two

enhanced MRI sequences of T1WI and T2 FLAIR were co-

registered with reference to each pre-contrast T1WI and T2

Figure 1 Flow chart of this study. (A) Pre- and post-contrast TIWI and T2 FLAIR MRI. (B) Voxel wise image subtraction. (C) Region of interest segmentation on subtraction

map. (D) Feature extraction and selection. (E) SVM classifiers construction and validation.
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FLAIR accordingly using SPM8 (Wellcome Department of

Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.

ac.uk/spm/software/spm8/) under individual space.

Subtraction maps were further calculated using the SPM8

“ImaCalc” tool function for each co-registered pre-and post-

contrast T1WI images or T2 FLAIR images. To make the

enhancement bright on the subtraction image, pre-contrast

images were subtracted from post-contrast ones.

Every 2D subtraction map with a visible enhancement

lesion was segmented manually by two neuroradiologists

(reader 1:W.T.R., with 5 years of experience; reader 2: S.

M.W., with 4 years of experience) using ITK-SNAP

(http://www.itksnap.org). They were then scrutinized by

a neuroradiology professor (Z.W.Y., with 25 years’ work

experience) slice by slice. Figure 2 shows a representative

of a segmented subtraction map. Intra- and interobserver

reproducibility assessments were conducted according to

Wu et al.24 Based on this, 25 lesions were initially chosen

and an ICC greater than 0.75 was established as satisfying

the reproducibility agreement. Up-sampling method was

used to deal with class imbalance, in which random sam-

ples in the small class in the training data set were copied

to make the number of samples in two classes equal.

Radiomic Feature Extraction and

Selection
Radiomic features were extracted from each ROI with

Pyradiomics (http://pyradiomics.readthedocs.io/en/latest/

index.html). Images were normalized by centering at the

mean intensity and dividing by one standard deviation to

eliminate the influence of variation in grayscale ranges.

Classes of features extracted included Shape, First Order,

Gray Level Co-occurrence Matrix, Gray Level Size Zone

Matrix, Gray Level Run Length Matrix, Neighboring Gray

Tone Difference Matrix, and Gray Level Dependence Matrix.

In order to be potentially clinically effective, the SVM

classifiers were designed based on the T1WI subtraction

features (classifier 1) or the T2 FLAIR subtraction features

(classifier 2) and combined features (classifier 3) indivi-

dually. Due to the discrepancy between the relatively

small sample size and the high-dimensional feature size,

dimension reduction and feature selection were per-

formed. Since the dimension of the feature space was

high, the similarity of each feature pair was compared.

According to a previous study,25 if the Pearson correlation

coefficient value of the feature pair was larger than 0.86,

one of them was removed. After this process, the

Figure 2 Glioma recurrence. (A) Pre- and post-contrast T2 FLAIR subtraction map. (B) Region of interest on T2 FLAIR subtraction map. (C) Color-encoded T2 FLAIR

subtraction map. (D) Pre- and post-contrast T1WI subtraction map. (E) Region of interest on T1WI subtraction map. (F) Color-encoded T1WI subtraction map.
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dimension of the feature space was reduced, and each

feature was independent of each other. Then, the recursive

feature elimination (RFE) was used to select features

before building the model. By removing the redundant

features and keeping the highly important features, the

RFE method helps to avoid overfitting and reduce the

computational burden.

Model Construction
With the selected best features, the SVM model was built to

construct the diagnostic classifier. The kernel function has the

ability to map the features into a higher dimension to search the

hyper-plane for separating caseswith different labels. The linear

kernel function was used here because it was easier to explain

the coefficients of the features for the final model. The best

feature number was found by comparing the performance of

a 5-fold cross-validation on the training cohort using the SVM.

Model Validation and Comparison
A receiver operating characteristic curve (ROC) analysis was

performed to evaluate the different model’s performance in

the training cohort and testing cohort. The area under the

ROC curve (AUC) was calculated for quantification. The

accuracy, sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) were also cal-

culated at a cutoff value that maximized the value of the

Youden index. To calculate the 95% Confidence Interval

(CI), we used a non-parametric bootstrap method.26 In each

step of the calculation, a bootstrap dataset was produced by

sampling n samples from the test data set randomly with

replacement, where n was size of the test data set. Then, the

bootstrap data set was used to calculate a bootstrap version of

the statistics, including AUC. This step was repeated for

1000 times to get a bootstrap distribution of the statistics of

interest from which CI was calculated.

All of the above processes were implemented using

FeAture Explorer (FAE, v0.2.5, https://github.com/

salan668/FAE) on Python (3.6.8, https://www.python.org/).

Results
Clinical and Imaging Data
As shown in Table 1, 49 lesions were finally included in this

study from two different hospitals in China. Eight patients with

eight lesions were excluded due to incomplete series (7) and

motion artifacts (1). Interestingly, after pre- and post-contrast

T1WI enhancement subtraction, nine lesions displayed slight

enhancement on their T1WI enhancement subtraction maps. In

contrast, all of these lesions showed intense enhancement on the

T2 FLAIR subtraction map. All of the lesions were clinically

diagnosed with TRE. None of the recurrence lesions displayed

this phenomenon. These lesions were further excluded because

it was difficult to circumscribe these slightly enhanced T1WI

ROI accurately. Figure 3 shows an example of this phenom-

enon. The lower bound of both inter-observer (ICC = 0.87) and

intra-observer reproducibility (ICC = 0.90) of lesion segmenta-

tion reached the satisfactory standard of this study. After testing

the ICC, the remaining ROIs were finished by reader 1.

Classifier 1: SVM Based on Single T1WI

Enhancement Subtraction
During this process, only features extracted from the T1WI

enhancement subtraction maps were used to train an SVM

classifier. Forty-nine lesions (TRE: 16; recurrence: 33) were

randomly split into training (TRE: 11; recurrence: 23; total: 34)

and testing (TRE: 5; recurrence: 10; total: 15) at a 7:3 ratio. The

top nine features were chosen by the classifier across a total of

93 features. Figure 4A demonstrates the OSE feature selection

method. The SVM classifier provided a diagnostic accuracy of

80.00%. The AUC was 84.20% in the training cohort, 75.50%

in the validation cohort, and 80.00% (95% CI: 0.5370–1.0000)

in the test cohort, with 100% sensitivity and 70% specificity

(Table 2). Figure 4B shows the ROC curve of classifier 1.

Classifier 2: SVM Based on Single T2

FLAIR Enhancement Subtraction
During this process, only features extracted from the T2 FLAIR

enhancement subtraction maps were used to train an SVM

classifier. A total of 49 lesions (TRE: 16; recurrence: 33) were

randomly split into training (TRE: 11; recurrence: 23; total: 34)

Table 1 Demographic Data for the Final SVM Study Patients

Variable Glioma

Recurrence

Treatment-Related

Changes

No. of patients 25 14

No. of lesions 33 16

Sex

No. of male 9 (36.0%) 5 (35.7%)

No. of female 16 (64.0%) 9 (64.3%)

Age (y)a 50.3 ± 12.7 53.5±8.3

WHO Grade

Grade III 4 (16.0%) 3 (21.4%)

Grade IV 21 (84.0%) 11(78.6%)

Note: aData are means standard ± deviation.
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and testing (TRE: 5; recurrence: 10; total: 15) at a 7:3 ratio. The

top 13 features were chosen by the classifier across a total of 93

features. Figure 5A shows the OSE feature selection method.

The SVM classifier provided a diagnostic accuracy of 86.67%.

The AUC was 94.70% in the training cohort, 85.80% in the

validation cohort, and 84.00% (95% CI: 0.5962–1.0000) in the

test cohort, with 100% sensitivity and 80% specificity (Table 2).

Figure 5B shows the ROC curve of classifier 2.

Classifier 3: SVM Based on a Combination

of the T1WI Enhancement Subtraction

and the T2 FLAIR Subtraction
Features extracted from both the T1WI and T2 FLAIR

enhancement subtraction maps were used to train an SVM

classifier. A total of 49 lesions (TRE: 16; recurrence: 33)

were randomly split into training (TRE: 11; recurrence: 23;

Figure 3 Treatment-related effects. (A, D) Pre- and post-contrast T2 FLAIR subtraction map in two planes. Lesions with intense enhancement (arrow & arrowhead)

represent treatment-related effects. (B, E) The corresponding pre- and post-contrast T1WI subtraction map in two planes. The lesions show slightly (arrow and arrowhead)

enhancement. (C, F) The corresponding post-contrast T1WI in the two planes with suspicious enhancement (arrow and arrowhead).

Figure 4 Results of classifier 1. (A) Selections of optimal features using recursive feature elimination (RFE) method. (B) The receiver-operating characteristic curve of

classifier 1.
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total: 34) and testing (TRE: 5; recurrence: 10; total: 15) at

a 7:3 ratio. The top 13 features were chosen by the classifier

across a total of 186 features. Figure 6A shows the OSE

feature selection method. The SVM classifier provided

a diagnostic accuracy of 93.33%. The AUC was 95.90% in

the training cohort, 92.10% in the validation cohort, and

94.00% (95% CI: 0.7778–1.0000) in the test cohort, with

100% sensitivity and 90% specificity (Table 2). Figure 6B

demonstrates the ROC curve of classifier 3.

Discussion
Even with access to advanced MRI sequences, it is still chal-

lenging to differentiate TRE from recurrence when a newly

appeared or enlarged lesion presents itself upon a routine

T1WI follow-up. In this two-center study, conventional T2

FLAIR enhancement as well as the voxel-wise image subtrac-

tion method were used to differentially diagnose between

recurrence and TRE. With the help of machine learning, the

image data of both conventional T1WI enhancement and T2

FLAIR enhancement were mined to the utmost extent.

A machine learning model based on both T1WI enhancement

subtraction and T2 FLAIR enhancement subtraction

(Accuracy: 93.33%; AUC: 94.00%; Sensitivity: 100%;

Specificity: 90.00%; NPV: 100%; PPV: 83.33%) achieved

the best performance among the three classifiers. The diag-

nostic ability was comparable to some previous studies based

on advanced MRI sequences. A previous meta-analysis by

Zhang et al showed the diagnostic quality of diffusion-

weighted imaging (DWI) for differentiating recurrence from

TRE with a sensitivity of 82% and specificity of 84%.27 The

polled sensitivities and specificities found using a recent meta-

analysis were 90% to 88% (95%CI:0.85–0.94; 0.83–0.92) and

89% to 85% (95% CI: 0.78–0.96; 0.77–0.91) for dynamic

susceptibility contrast (DSC) and dynamic contrast-enhanced

(DCE), respectively.2 Deuschl et al reported a predictive value

of approximately 82% based on conventional MRI image

(including T1WI, T2 FLAIR, DWI, and contrast-enhanced

T1WI) observation guided by response assessment in neuro-

oncology (RANO) classification.28 By combining the

enhanced areas in the T1WI and the apparent diffusion coeffi-

cient (ADC), Reimer et al reported an AUC between 77.9%

and 90.9%.29 Jena et al reported an AUC between 86.0% and

96.6% using combined DCE-MRI and MRS.3 Novel nonra-

dioactive advanced methods, including arterial spin labeling

(ASL)23 and diffusion tensor imaging (DTI),30 accomplished

a relatively better diagnostic accuracy.

However, advanced MRI methods have gained less

popularity due to several limitations compared with classic

T1WI and T2 FLAIR. The relatively complicated image

Table 2 Diagnostic Efficiency of the Three Classifiers

Classifier Accuracy Sensitivity Specificity PPV NPV AUC (95% CI)

1 80.00% 100% 70.00% 62.50% 100% 80.00% (0.5370–1.0000)

2 86.67% 100% 80.00% 71.43% 100% 84.00% (0.5962–1.0000)

3 93.33% 100% 90.00% 83.33% 100% 94.00% (0.7788–1.0000)

Abbreviations: PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence intervals.

Figure 5 Results of classifier 2. (A) Selections of optimal features using recursive feature elimination (RFE) method. (B) The receiver-operating characteristic curve of

classifier 2.
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acquisition and the vacancy of easily accessible post-

possessing software hinder the widely routine application

of MRI Perfusion. In comparison with MRI perfusion,

MRS showed a better diagnostic value in distinguishing

recurrence and TRE. However, MRS could be misleading

due to the fact that the spectrum largely overlaps with

abundant brain metabolites, which is illegible on the

3.0T MR scanner.10 In addition, the spectrum baseline is

vulnerable to material like blood, which is common in

a glioma treated brain. Also, MRS is restricted in border-

line areas and is not available for the entire brain.11 ASL

and DTI are hindered by relatively lower spatial resolu-

tions and longer scanning protocols. To note, T1WI and

T2 FLAIR sequences are robust and have gained wide-

spread clinical acceptance in neuroradiology practice.

Additionally, enhanced T1WI and T2 FLAIR sequences

are relatively easy to perform and unlikely to be influenced

by sequence type variations among different MR scanners

in general. Previous conventional MRI studies have sug-

gested that a differential diagnosis between recurrence and

TRE in glioma is challenging based on the naked eye.31

Santra et al reported a naked eye diagnosis based on

conventional T1WI yielding a 70.5% accuracy, 24.1%

sensitivity, and 94.6% specificity.22 It would be arduous

for the radiologists to distinguish the enhancement if

a certain area appears bright on the T1WI. Previous obser-

vational studies have resulted in an inter-reader variability

and confusing reliable differentiation diagnosis.19

Recently, to overcome the methodical limitations of pre-

vious studies, the voxel-by-voxel image subtraction

method has been employed in several studies.32 Hu et al

applied voxel-wise pre- and post- contrast T1WI image

subtraction as binary masks to relative cerebral volume

(rCBV) to reliably estimate histologic tumor fraction in

recurrent glioma, which strengthened the usefulness of

subtraction methods.33 By using subtraction data mining,

this single T1WI subtraction-based classifier method

further elevated the diagnostic accuracy to 80.00%, with

100% sensitivity and 70% specificity. Recently, Elshafeey

et al built a multicenter-based SVM classifier using radio-

mic features obtained from 98 patients’ Ktrans and rCBV

maps, achieving an accuracy of 90.82% (area under the

curve (AUC) = 89.10%, sensitivity = 91.36%, 67 specifi-

city = 88.24%, p = 0.017).21 In comparison with their

study, this two-center analysis initially was based on the

use of a conventional T1WI and T2 FLAIR-based radio-

mic SVM classifier and reached slightly inferior results. In

this manner, this proposed model may potentially comple-

ment advanced MRI methods and act as an alternative

when advanced MRI methods are not available.

In this study, the T2 FLAIR complement T1WI yielded

different aspects of pathology. Glioma recurrence is char-

acterized by the presence of tumor cells, vascular prolif-

eration, and increased cellularity.34 In contrast, TRE is

characterized by liquefactive necrosis, inflammation,

endothelial damage, and vascular hyalinization.35 During

this process, increased capillary permeability along with

brain blood barrier alteration ultimately leads to increased

leakiness of the contrast agent and/or increased

enhancement.6,7 Previous studies have proven that con-

trast-enhanced T2 FLAIR is very sensitive to an increase

in the permeability of BBB, which was tested in a series of

brain inflammation investigations.8 This study echoed this

unique characteristic of contrast-enhanced T2 FLAIR

Figure 6 Results of classifier 3. (A) Selections of optimal features using recursive feature elimination (RFE) method. (B) The receiver-operating characteristic curve of classifier 3.
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since the sensitivity reached 100% in classifier 2.

Interestingly, nine clinically proven lesions with TRE pre-

sented as a subtle enhancement on their T1WI enhance-

ment subtraction maps and intense enhancement on the T2

FLAIR subtraction maps. This phenomenon might be

explained by T2 FLAIR enhancement’s high sensitivity

to detect increased leakiness of TRE according to its con-

genital nature. Harris et al suggested a positive correlation

between FLAIR and contrast-enhanced double inversion

recovery (DIR) and a negative correlation between con-

trast-enhanced DIR post-contrast signal intensity and

rCBV.36 However, they did not directly compare the cor-

relation between FLAIR enhancement and high rCBV

lesion by lesion. In this study, it was found that the AUC

and specificity of pre-and post-contrast T2 FLAIR subtrac-

tion SVM was higher than pre-and post-contrast T1WI

subtraction SVM. There was also improved SVM diagnos-

tic accuracy by adding the T2 FLAIR subtraction map to

T1WI subtraction map. Recently, Ismail et al19 reported an

accuracy of 90.2% using machine learning based on shape

features extracted from the T1WI enhancement image and

the pre-contrast T2 FLAIR image, which was relatively

lower than the result of the classifier 3 in this study. These

results may suggest that T2 FLAIR enhancement is

a sensitive complementary technique that provides inde-

pendent information for the differential diagnosis between

recurrence and TRE. The increased diagnostic accuracy

combined with the T2 FLAIR subtraction suggests that the

combined use of pre-and post-contrast T1WI and T2 Fair

might be beneficial for daily clinical decisions compared

with the sole use of pre-and post-contrast T1WI. Hence, in

a routine follow-up of treated glioma patients, especially

when the advanced technique is not available, it is recom-

mended to add a simple T2 FLAIR sequence directly after

T1WI enhancement. With the help of further pre-and post-

contrast image subtraction and a built SVM classifier, the

combination method can serve as a practical and easy

surrogate for postoperative glioma patient follow-up and

can provide personalized automatic differential diagnostic

information. Integration of all processing steps into

a single software suite may be possible to achieve faster

automatic diagnoses in the future.

In the best SVM classifier developed in this study, 13

top features among a total of 186 features were selected,

including three first-order features, eight gray-level co-

occurrence matrix (GLCM) features, and two gray-level

run length (GLRLM) features. Both the contributing

GLRLM features were extracted from the T1WI

enhancement subtractions, namely a short-run emphasis

(SRE) and a long run high gray-level emphasis

(LRHGLE). The SRE represents higher texture fineness

in the subtraction map. The LRHGLE correlated with the

high signal19 in the T1WI subtraction maps, underlying the

degree of enhancement. Besides, nine clinically proved

lesions with TRE present subtle enhancement on their

T1WI enhancement subtraction maps and intense enhance-

ment on T2 FLAIR subtraction maps were found. Hence,

the enhancement degree of T1WI helped to differentiate

recurrence and TRE.

Nearly 36% of postoperative treated glioma patients

with enhanced T1WI lesions were due to TRE, whereas

true progression occurred in 60% of patients.37 In the data

set of this study, nearly 33% of lesions were clinically

diagnosed as TRE, whereas 67% of lesions were patholo-

gically proven as recurrence after the second surgery.

A relatively strict clinical diagnosis criterion was applied

for the TRE in order to exclude potential recurrence

lesions.

TRE can be subdivided into early pseudo-progression

late radiation induced brain necrosis by timing. Pseudo-

progression occurs within 6 months after radiotherapy,

whereas radiation necrosis typically appears 12–18 months

after radiation therapy. Pseudo-progression and necrosis

share many histologic similarities, such as inflammation

and necrosis, that reflect similar imaging characteristics.34

Hence, in this study, both early and late TRE were

considered.

This study had some limitations. First, it was

a retrospective study with a relatively small sample size.

Further prospective studies on a larger scale are necessary

to strengthen these results. Second, the diagnoses of TRE

were not pathologically confirmed. Relatively strict clin-

ical criteria were conducted instead. Since an invasive

biopsy involves hazards such as infection, hemorrhage,

and neurological deficits, it not routinely conducted in

both of the two institutions. In addition, pathology based

on biopsy may lead to a false-negative result due to the

heterogeneity of treated glioma. Further studies with strict

point-to-point pathological validation are recommended.

Third, since only T1WI enhanced and T2 FLAIR

enhanced lesions were involved, the possible non-

enhanced tumor infiltration area was not assessed.

Carefully selected advanced parameters that reflect glioma

non-enhanced infiltration should be added in future studies

in order to further improve the diagnostic accuracy and

balance between costs and effects based on these findings.
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Finally, we excluded 9 lesions with merely subtle enhance-

ment on T1 FLAIR because it would be difficult to draw

an accurate ROI. All these nine patients were TRE and

showed intense T2 FLAIR and may lead to potential bias.

Further studies with a larger sample size are needed to

investigate whether it could be a unique radiological sign

for TRE.

Pre- and post-contrast T2 FLAIR subtraction provided

added value for diagnosis between recurrence and TRE.

SVM based on a combination of T1WI and T2 FLAIR

subtraction maps was superior to the sole use of T1WI or

T2 FLAIR for differentiating TRE from recurrence. The

SVM classifier based on a combination of pre-and post-

contrast subtraction T2 FLAIR and T1WI imaging allowed

for the accurate differential diagnosis of TRE from recur-

rence, which is of paramount importance for treatment

management of postoperative glioma patients after radia-

tion therapy.
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