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Purpose: We analyzed changes in the crystalline lens during accommodation and the effects

of cycloplegics by swept-source anterior-segment optical coherence tomography (AS-OCT).

Materials and Methods: Twenty healthy volunteers (7 males and 13 females, aged 22–34

years), with no history of eye disease except for refractive errors, were recruited. Biometric

parameters, including anterior chamber depth (ACD), lens thickness (LT), and anterior and

posterior curvature of the lens (ACL and PCL), were measured using AS-OCT (CASIA2). The

measurements were performed with or without an accommodative demand of 5.0 diopters (D).

The same tests were repeated following the topical administration of 1% cyclopentolate or

a compounding agent comprising 0.5% tropicamide and 0.5% phenylephrine.

Results: The AS-OCT system was capable of simultaneous visualization of all optical

components of the anterior segment in a single frame. ACD, LAC, and LPC decreased and

LT increased significantly during 5.0 D accommodative stimulation in both eyes. Both

cyclopentolate and tropicamide/phenylephrine eyedrops led to deeper ACD, thinner LT,

and flatter LAC. There were no significant differences in all lens parameters despite having

5.0 D accommodative stimulation in both eyes with cycloplegia.

Conclusion: Our results suggest that both tropicamide/phenylephrine and cyclopentolate

eyedrops have enough cycloplegic effects in young adults.
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Introduction
Refraction and accommodation are key elements of vision.1,2 Presbyopia and accom-

modative insufficiency are common causes of asthenopia. The precisemeasurements of

refraction as well as the amplitude of accommodation are essential when glasses are

prescribed. In some clinical situations, such as accommodative esotropia, accommo-

dative spasm, and preoperative evaluation of refractive surgery, the exclusion of

residual accommodation is crucial to evaluate the refractive state.3,4 Cycloplegic

drugs that relax the ciliary muscle are commonly used to determine cycloplegic

refraction.

Atropine is the gold standard for evaluating cycloplegic refraction.5,6 However, its

long action, which results in prolonged blurred vision and a lengthy recovery time, has

limited its application, particularly among elder children and adults. Besides atropine,

the most commonly used cycloplegic agents are tropicamide and cyclopentolate.4 The

major differences between these agents are duration of the onset, maximum efficacy,

and recovery time. Cycloplegics effects on accommodation have been evaluated by
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measuring the refractive changes in optical power of the eye

with an auto refractometer or a retinoscope. Several studies

have been conducted to compare the cycloplegic effects of

these agents, and different results have been reported.7–10 In

addition, cross-sectional imaging methods, including mag-

netic resonance imaging and Scheimpflug camera imaging,

are used to determine the mechanisms underlying accommo-

dation and cycloplegic action.11–14

Anterior-segment optical coherence tomography (AS-

OCT) has evolved rapidly for noninvasive imaging of the

anterior segment of the eye.15,16 In recent years, AS-OCT

has been used to study the behavior of the ocular lens

during accommodation in vivo.17–22 However, the simul-

taneous imaging of the entire anterior segment from the

cornea through the crystalline lens is a challenge for AS-

OCT. Custom-made OCT systems have been used in most

studies, because commercial AS-OCT instruments do not

have enough depth range to capture the posterior surface

of the lens.17–21 Recently, a newly developed swept-source

AS-OCT system (CASIA2; Tomey Corp., Nagoya, Japan)

has become commercially available. This AS-OCT system

has enabled detailed biometry measurements from the

corneal surface to the posterior surface of the lens by

elongation of the imaging depth range and improvement

of the sensitivity level of performance.23,24 In the present

study, we attempted to analyze the effects of cycloplegics

by using the CASIA2 swept-source AS-OCT system.

Materials and Methods
Subjects
Participants of the study included 20 healthy volunteers (7

males and 13 females, aged 22–34 years [mean ± standard

deviation: 28.6 ± 3.5 years]). All subjects had no history of

eye disease, except for refractive errors, and had a best-

corrected visual acuity of 20/20 or better. Exclusion cri-

teria were a history of any previous history of ocular

disease, ophthalmic surgery, or laser treatment. Subjects

who took systemic medication that might affect accom-

modation were also excluded.

Each subject’s refraction was examined by the ARK-1

autorefractor (NIDEK Co. Ltd., Gamagori, Japan). The dry

refraction of the right eye was −5.3 ± 3.4 D (mean ±

standard deviation), ranging from −0.25 to −11.0 D,

while that of the left eye was −5.5 ± 3.4 D, ranging from

0.00 to −11.75 D. Thus, there was no statistically signifi-

cant difference in the refraction of both eyes (p = 0.909,

Mann–Whitney U-test). The subject’s accommodation was

also examined using the ARK-1 autorefractor to ensure the

ability to accommodate 5 D or more.

Guidelines outlined by the World Medical

Association’s Declaration of Helsinki were followed. All

subjects received a full explanation of the procedures and

provided written informed consent prior to their participa-

tion in the study. The study protocol was approved by the

institutional review board of Kyorin University School of

Medicine (project H30-099).

Methods
Both eyes of all subjects were examined using the

CASIA2 swept-source AS-OCT system. This AS-OCT

device has a swept-source laser that operates at a central

wavelength of 1,310 nm and a scan rate of 50,000 A-scans

per second. The maximum imaging area is 16.0 mm ×

16.0 mm and the maximum imaging depth is 11.0 mm.

The simultaneous biometry of all anterior segment struc-

tures, including the cornea, anterior chamber, and crystal-

line lens, can be performed.

All OCT images were obtained in a dim examination

room. During measurements, subjects were asked to fixate

on the co-axial accommodative target image in the OCT

device. The negative or positive lens was set to compen-

sate for the subject’s spherical ametropia for near-

equivalent spherical refractive correction. Afterward,

−5.0 D lens was added to stimulate the physiologic accom-

modation using an optical system in the OCT system. The

eye was centered by the active eye tracker of the OCT

system. All images were collected by two experienced

operators (M. Y. and S. S.).

Measurements were conducted with or without cyclo-

plegia. A compounding agent (tropicamide/phenylephrine)

consisting of 0.5% tropicamide and 0.5% phenylephrine

(Mydrin-P ophthalmic solution; Santen Pharmaceutical

Co., Osaka, Japan) was instilled into the right eye, while

1% cyclopentolate (Cyplegin 1% ophthalmic solution;

Santen Pharmaceutical Co.) was instilled into the left

eye. These eyedrops were instilled twice with a 5-min

interval in between and the OCT images of the eye were

measured at 45 min after the second instillation.

The biometric parameters in this study included central

corneal thickness (CCT), pupil diameter (PD), anterior cham-

ber depth (ACD), lens thickness (LT), and horizontal radii of

the lens’ anterior and posterior surface curvatures (LAC and

LPC). The measurement tool provided with the CASIA2 was

used to determine these biometric components. The bound-

aries of the cornea and lens were outlined semi-manually to
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achieve the anterior-segment biometry. The positioning of the

anterior and posterior surfaces of the lens on the horizontal

meridian was traced; additionally, the radius of the crystalline

lens was determined by measurements that permitted circular

fitting to the anterior and posterior lens surface.

Prism 7 for Mac OS X (GraphPad Software Inc., La

Jolla, CA, USA) was used for statistical analyses. The

Wilcoxon signed-rank test or Mann–Whitney U-test was

used for comparison. P-values of less than 0.05 were

considered to be statistically significant.

Results
Table 1 shows biometric parameters in the relaxed and

accommodative states of both eyes with/without cycloplegia.

There were no statistically significant differences in any

biometric parameters between the right and left eyes in the

relaxed state without cycloplegia (Mann–Whitney U-test).

As shown in Figure 1, ACD, LAC, and LPC decreased and

LT increased during 5.0 D accommodative stimulation in

both eyes with statistical significance (P = 0.012 and 0.020

for PD of right eyes and left eyes; P < 0.0001 for ACD, LT,

and LAC of both eyes; and P = 0.012 and 0.042 for LPC of

right eyes and left eyes, respectively).

Tropicamide/phenylephrine was instilled in the right eye

and cyclopentolate was instilled in the left eye for cycloplegia.

Refraction of the right eye was −5.0 ± 3.3 D and that of the left

eye was −5.0 ± 3.3 D, respectively, following the instillation of
the cycloplegics. The refractions of both eyes become less

myopic after cycloplegia, with statistical significance

(P = 0.0068 for the right eye and P < 0.0001 for the left eye,

respectively). Biometric parameters in the pre-cycloplegia

state and the postcycloplegia state of both eyes are presented

in Table 2 and Figure 2. A significant increase in PD was

observed after the administration of tropicamide/phenylephr-

ine and cyclopentolate (P < 0.0001 for both eyes). PD of right

eyes was significantly larger than that of left eyes (P = 0.0026).

There were no changes in CCT (P = 0.79 for the right eye and

P = 0.76 for the left eye, respectively). Both tropicamide/

phenylephrine and cyclopentolate eyedrops led to outcomes

of deeper ACD, thinner LT, and flatter LAC (P < 0.0001 for

ACD and LAC of both eyes, P = 0.030 for LT of right eyes,

and P < 0.0001 for LT of left eyes, respectively). LPC did not

show statistically significant changes after either tropicamide/

phenylephrine or cyclopentolate instillation in this study.

When both eyes of ACD, LT, LAC, and LPC with cycloplegia

were compared, all parameters were not statistically different

(P = 0.79, P = 0.92, P = 0.86, P = 0.88, respectively).

Biometric parameters in the relaxed state (Re.) and

accommodative state (Acc.) of both eyes were examined

after cycloplegia (Table 1). There were no significant

differences in any parameters despite 5.0 D of accommo-

dative stimulation in both eyes.

Discussion
In the present study, we successfully analyzed the ocular

biometric components, including lens parameters, using

Table 1 Biometric Parameters in the Relaxed State (Relax) and with Accommodative Stimulation (Accom.) of Both Eyes with/Without

Cycloplegia

Eye Cycloplegia State PD (mm) CCT (µm) ACD (mm) LT (mm) LAC (mm) LPC (mm)

Right None Relax 4.44 ± 0.77 527.4 ± 33.2 3.17 ± 0.24 3.73 ± 0.27 11.97 ± 1.50 5.86 ± 0.57

Accom. 4.07 ± 0.80 528.0 ± 33.6 3.03 ± 0.25 3.90 ± 0.29 9.41 ± 1.70 5.62 ± 0.49

P 0.012 0.29 ≤0.0001 ≤0.0001 ≤0.0001 0.012

Tropicamide Relax 6.95 ± 0.45 529.6 ± 33.9 3.26 ± 0.24 3.71 ± 0.25 12.71 ± 1.72 5.91 ± 0.48

/phenylephrine Accom. 6.96 ± 0.43 530.5 ± 33.9 3.23 ± 0.24 3.75 ± 0.26 12.02 ± 1.77 5.80 ± 0.49

P 0.41 0.35 0.47 0.52 0.23 0.48

Left None Relax 4.35 ± 0.68 526.7 ± 33.0 3.15 ± 0.23 3.77 ± 0.27 11.35 ± 1.92 5.84 ± 0.55

Accom. 4.06 ± 0.83 526.7 ± 33.4 3.04 ± 0.24 3.90 ± 0.28 9.54 ± 1.46 5.61 ± 0.41

P 0.020 0.79 ≤0.0001 ≤0.0001 ≤0.0001 0.042

Cyclopentolate Relax 6.41 ± 0.63 528.5 ± 32.9 3.26 ± 0.22 3.70 ± 0.24 12.79 ± 1.75 5.99 ± 0.60

Accom. 6.40 ± 0.69 527.8 ± 33.9 3.24 ± 0.27 3.72 ± 0.24 12.65 ± 1.84 5.87 ± 0.57

P 0.67 0.14 0.66 0.76 0.68 0.58

Notes: Results are given as means ± standard deviations. Tropicamide/phenylephrine was instilled in the right eye and cyclopentolate was instilled in the left eye. P-values are

calculated by Wilcoxon matched-pairs signed-rank test.

Abbreviations: PD, pupil diameter; CCT, central corneal thickness; ACD, anterior chamber depth; LT, lens thickness; LAC, radius of the lens’ anterior surface curvature;

LPC, radius of the lens’ posterior surface curvature.
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a commercially available AS-OCT system (CASIA2). The

AS-OCT system used in the current study was capable of

simultaneous visualization of all optical components of the

anterior segment in a single frame.22,23 Biometric compo-

nents such as LT, LAC, and LPC in our study appeared

comparable to findings of such in previous studies.17–23

The results of our study during accommodation are also in

accordance with previous reports of biometric analysis.17–23

The biometric analysis showed that the LT increased, both

LAC and LPC decreased, and the ACD decreased with

accommodation, which suggested the occurrence of both

steepening and anterior movement of the lens. Although

both the anterior and posterior surfaces of the lens became

steeper, the steepening of the anterior lens curvature was

greater than that of the posterior curvature.

With the application of cycloplegics, the LT decreased

resulting in an essentially equivalent increase in ACD.

A flattening of the lens anterior surface was observed, but

the change in the lens posterior surface was not significant in

this study. Refractive changes after cycloplegia found in this

study appear to reflect the changes in these biometric para-

meters of the lens. No significant alterations were observed in

Table 2 Biometric Parameters in the Precyclopegia State (Pre.) and Postcycloplegia State (Post.) of Both Eyes in the Relaxed State

Eye Cycloplegia PD (mm) CCT (µm) ACD (mm) LT (mm) LAC (mm) LPC (mm)

Right Pre. 4.44 ± 0.77 527.4 ± 33.2 3.17 ± 0.24 3.73 ± 0.27 11.97 ± 1.50 5.86 ± 0.57

Post. 6.95 ± 0.45 529.6 ± 33.9 3.26 ± 0.24 3.71 ± 0.25 12.71 ± 1.72 5.91 ± 0.48

P ≤0.0001 0.79 ≤0.0001 0.030 ≤ 0.0001 0.98

Left Pre. 4.35 ± 0.68 526.7 ± 33.0 3.15 ± 0.23 3.77 ± 0.27 11.35 ± 1.92 5.84 ± 0.55

Post. 6.41 ± 0.63 528.5 ± 32.9 3.26 ± 0.22 3.70 ± 0.24 12.79 ± 1.75 5.99 ± 0.60

P ≤0.0001 0.76 ≤0.0001 ≤0.0001 ≤ 0.0001 0.37

Notes: Tropicamide/phenylephrine was instilled in the right eye and cyclopentolate was instilled in the left eye. Results are given as means ± standard deviations. P-values are

calculated by Wilcoxon matched-pairs signed-rank test.

Abbreviations: PD, pupil diameter; CCT, central corneal thickness; ACD, anterior chamber depth; LT, lens thickness; LAC, radius of the lens’ anterior surface curvature;

and LPC, radius of the lens’ posterior surface curvature.

Figure 1 Biometric parameters in the relaxed state (Relax) and with accommodative stimulation (Accom.) without cycloplegia of both eyes. Anterior chamber depth

(ACD), radius of the lens’ anterior surface curvature (LAC), and radius of the lens’ posterior surface curvature (LPC) decreased and lens thickness (LT) increased during 5.0

D accommodative stimulation in both eyes with statistical significance (*P < 0.05, **P < 0.0001, respectively).
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any biometric parameters with −5.0 D accommodative sti-

mulation in both eyes after cycloplegia. Our results suggest

that the cycloplegic effects of tropicamide/phenylephrine are

comparable to those of cyclopentolate, although subjects’

profiles should be taken into consideration.4,7-10 Our study

only included young adults with myopia. Cyclopentolate is

reported to produce a significant refractive change that is

more positive than that of tropicamide in children and in

subjects with hyperopic refractive errors.4 Similar measure-

ments among subjects of younger ages or different refractive

statuses might yield different results.

Further, there are several limitations in our study. First,

as in most other studies using AS-OCT, the whole lens

shape cannot be analyzed through the pupil.17–24 The cur-

vature radius obtained by fitting the circular curves may not

exactly express the shape of the lens because the variability

of the measurements and the asphericity of the lens.25

Second, we tested a compounded agent consisting of tropi-

camide and phenylephrine in this study because it is fre-

quently used for mydriasis and cycloplegia in clinical

settings in Japan. We assume that the cycloplegic effects

of this compounded agent are mostly derived from tropica-

mide because previous reports showed that phenylephrine

has no effect on the accommodative system performed by

objective measurement methods, including AS-OCT.21,26,27

However, it is impossible to fully distinguish the effects of

tropicamide and phenylephrine individually in the present

research. Third, we measured the biometric components 45

min after administration. According to the literature, the

cycloplegic effect of cyclopentolate begins at 25–75 min

after the administration of the drop and recovery occurs

through 6–24 h later.4 Tropicamide is characterized by

a rapid onset of action; its cycloplegic effect appears

20–30 min after administration and recovery occurs

6 h later. We chose the time point of 45 minutes to

compare the pharmacological actions of both cycloplegics.

Measurements at multiple time points may support a better

understanding of cycloplegics.

In conclusion, we successfully analyzed the ocular

biometric components, including lens parameters, using

a commercially available AS-OCT system. After the topi-

cal administration of cycloplegic eyedrops, changes in

ACD, ACL, and LT extinguished regardless of accommo-

dative stimuli. Our results suggest that both tropicamide/

phenylephrine and cyclopentolate eyedrops have enough

cycloplegic effects in young adults.

Figure 2 Biometric parameters in the pre-cycloplegia state (Pre.) and postcycloplegia state (Post.) of both eyes. Tropicamide/phenylephrine was instilled in the right eye and

cyclopentolate was instilled in the left eye for cycloplegia. Both tropicamide/phenylephrine and cyclopentolate eyedrops led to outcomes of deeper anterior chamber depth

(ACD), thinner lens thickness (LT), and flatter radius of the lens’ anterior surface curvature (LAC) (*P < 0.05, **P < 0.0001, respectively). Radius of the lens’ posterior

surface curvature (LPC) did not show statistically significant changes.
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