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Abstract: Group B streptococcus (GBS) causes a high burden of neonatal and infant disease

globally. Implementing a vaccine for pregnant women is a promising strategy to prevent

neonatal and infant GBS disease and has been identified as a priority by the World Health

Organisation (WHO). GBS serotype-specific polysaccharide – protein conjugate vaccines are

at advanced stages of development, but a large number of participants would be required to

undertake Phase III clinical efficacy trials. Efforts are therefore currently focused on estab-

lishing serocorrelates of protection in natural immunity studies as an alternative pathway for

licensure of a GBS vaccine, followed by Phase IV studies to evaluate safety and effective-

ness. Protein vaccines are in earlier stages of development but are highly promising as they

might confer protection irrespective of serotype. Further epidemiological, immunological

and health economic studies are required to enable the vaccine to reach its target population

as soon as possible.
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Introduction
Group B streptococcus (GBS) is a leading cause of neonatal and infant sepsis and

meningitis globally.1–3 GBS can also cause stillbirths, prematurity and disease in

pregnant women, immunocompromised adults and the elderly but the highest

incidence of disease is in neonates and young infants.4

A systematic review and meta-analysis conducted in 2017 estimated a global

incidence of invasive infant GBS disease of 0.49 (95%Cl 0.43–0.56) per 1000 live

births.5 In 2015, GBS was estimated to have caused 319,000 cases of invasive

neonatal GBS disease globally, resulting in 90,000 deaths.3 Serotypes Ia, Ib, II, III

and V account for 98% of all rectovaginal colonisation in pregnant women

worldwide.6 The most frequent GBS serotype causing disease in infants is serotype

III (61.5%) followed by Ia (19.1%), V (6.7%) and Ib (5.7%).5 However, the

fulminating nature of disease during the first hours of life and the technical

difficulties in making an etiological diagnosis in many low- and middle-income

settings means that this might represent a significant underestimation of the true

GBS disease burden.7 Epidemiological data on the burden of GBS disease, espe-

cially from African countries, where most infant deaths from all-cause sepsis occur,

is urgently required.7 Infant mortality estimates are seven times higher in WHO

African region (51 per 1000 live births) compared to WHO European region (7 per

1000 live births).8
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Intrapartum Antibiotic Prophylaxis (IAP) has reduced

the incidence of early onset disease (EOD, occurring

from day 0 to 6 of life) in many countries using these

strategies, especially those that screen all pregnant women

for GBS rectovaginal colonisation during late pregnancy

and give IAP to all GBS-colonised women regardless of

presenting risk factors.9,10 However, IAP coverage is

incomplete even in the best of settings,11 has no impact

on late onset disease (LOD, occurring from day 7 to 90 of

life), stillbirths and prematurity due to GBS, as well as

a limited impact on disease in pregnant women.10,12

Widespread IAP use might also be an issue in the context

of international efforts to control antimicrobial resistance.

Furthermore, antibiotics might have an effect on the infant

gut flora. Effects of early life events on the neonatal

microbiome have been associated with increased rates of

allergy, asthma and obesity.13–15

Novel Features of a Maternal
Vaccine for GBS
A suitable vaccine against GBS given to pregnant women

could provide effective protection to those forms of inva-

sive disease that cannot be prevented with IAP or where

IAP is not feasible or is incomplete. Furthermore,

a vaccine would be more easily accessible than GBS

culture in all settings and would avoid the need for anti-

microbial administration, avoiding the potential negative

consequences of IAP in the long term.

Maternal immunisation is already a successful tool to

prevent tetanus,16 influenza17 and pertussis18 in young

infants. The placental transfer of maternal antibodies

from mother to infant reduces the window of susceptibility

to infections during the first months of life.19 This same

rationale has been used to investigate new vaccines against

common infections, such as respiratory syncytial virus

(RSV) and GBS.20 A major characteristic of these new

vaccines is that they are being specifically designed for

pregnant women.20

Vaccine Development: Overview of
Current Efforts
During the 2015 World Health Organisation (WHO)

Product Development for Vaccines Advisory Committee

meeting, GBS was identified as a high priority for the

development of a vaccine for maternal immunisation

because of the major public health burden posed by GBS

in low- and middle-income countries (LMIC), and the high

technical feasibility for successful development.21 Recent

estimates suggest that an effective GBS maternal vaccine

(>80% efficacy), with high (90%) global coverage, could

prevent 231,000 infant and maternal GBS cases, 41,000

stillbirths and 66,000 infant deaths annually.3

Evidence suggests that maternal immunisation with

protein-conjugated GBS capsular polysaccharides may

reduce the disease risk in neonates and young infants in

a serotype-specific manner.22–24 In addition, as there are

proteins that can be present in different serotypes, protein-

based vaccines have the potential to provide protection

across the serotype spectrum. These are also under

evaluation.25,26 Table 1 summarizes the development sta-

tus of current vaccine candidates.

Capsular Polysaccharide Conjugate
Vaccines
A number of virulence factors expressed by GBS are

involved in colonisation, adherence, invasion and immune

Table 1 Summary of Different Vaccine Candidates

Vaccine Candidate Preclinical Phase I Phase II Trials in Pregnant Women Phase III

Monovalent and bivalent conjugates (tetanus toxoid/

CRM197-CPS)

x x x x

Trivalent CRM197-CPS conjugates x x x x

Hexavalent CRM197-CPS conjugates x x x x

N-terminal domains of the Rib and AlphaC proteins x x

Pilus proteins x

Other proteins x

Biotinylated CPS conjugates x
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evasion27–29 and these could be used as potential vaccine

candidates. One of the most well-studied virulence factors of

GBS is its unique sialic acid-rich capsular polysaccharide

(CPS) which inhibits complement deposition and protects the

bacteria from opsonophagocytosis by immune cells, thus

contributing to the evasion of host immune defense

mechanisms.30,31 The CPS also enhances biofilm formation,

inhibits the binding of antimicrobial peptides and neutrophil

extracellular traps (NET) as well as disturbing bacterial

adherence to the epithelium and mucus, thus increasing

GBS invasiveness.32–38

GBS expresses 10 types of CPS (Ia, Ib, II–IX) that are

structurally and antigenically different.39–41 Variously

arranged monosaccharides and a sialic acid residue on

the branching terminus of the repeating unit make up the

CPS. According to recent meta-analyses, 97% of invasive

isolates in all geographical regions are caused by five of

the most common serotypes of GBS (Ia, Ib, II, III and V)

with serotype III the most commonly found cause of dis-

ease in infants.5 Serotype IV is an emerging and increasing

cause of invasive disease, especially in non-pregnant

adults, with the potential to become an important cause

of neonatal disease, with some cases already reported.42–45

As polysaccharides are T-cell independent antigens, the

polysaccharide is conjugated to a protein carrier in order to

trigger both a protective and a memory B-cell response.

Earlier vaccines were conjugated to a tetanus toxoid, such

vaccines might have particular value in LMIC where neo-

natal tetanus is still a concern.46,47 However, the main

carrier protein currently used is CRM197, a nontoxic

mutant of diphtheria toxin, which is highly immunogenic.

Studies using either carrier protein demonstrated better

immunogenicity with high levels of antibodies with CPS-

conjugates compared to unconjugated vaccines.48,49

The first clinical trials were conducted with monova-

lent vaccines (Ia, Ib, II, III and V).48–52 However, single

serotypes do not generally produce cross-reactive immu-

nity against other serotypes, thus multivalent vaccines

were developed. A phase I/II clinical trial (registered as

NCT01193920 at the ClinicalTrials.gov database) of

a trivalent (Ia, Ib and III) CRM197 conjugate vaccine in

pregnant women reported higher levels of CPS-specific

antibodies in infants at birth and no safety concerns .53

In 2017, a clinical trial of a GBS polysaccharide conjugate

vaccine targeting serotypes Ia, Ib, II, III and V was started

but, more recently, in view of the increase of disease

caused by serotype IV, this serotype was added to create

an hexavalent vaccine (Ia, Ib, II, III, IV, and V) with the

aim to cover at least 98% of GBS isolates causing neonatal

invasive disease (NCT03170609).5,54 In order to verify the

clinical safety and immunogenicity of this hexavalent vac-

cine, further clinical trials will be required. Currently,

a phase I/II clinical trial (NCT03765073) is being con-

ducted in South Africa to evaluate the safety, tolerability

and immunogenicity of a hexavalent vaccine in healthy

non-pregnant and pregnant women.

It has been shown that opsonophagocytosis is the main

mechanism for the host to clear GBS infection.24 A recent

Phase II study (NCT01446289) demonstrated that mater-

nal antibodies of pregnant women vaccinated with

a trivalent glycoconjugated vaccine composed of CPS Ia,

Ib and III result in opsono-phagocytic killing (OPK) titers

against each GBS serotype. Analysis of cord sera revealed

a strong positive correlation between IgG concentrations

and OPK titers, which is predictive of functional activity

against GBS infection.55

The role of anti-capsular antibodies in preventing GBS

maternal colonisation, as well as ascending infection and

neonatal transmission was recently evaluated in an animal

model.56 Results show that systemic immunisation with

a type III CRM197-glycoconjugate vaccine produces high

levels of IgG that can reduce vaginal acquisition of ser-

otype III during pregnancy.56 Studies in pregnant women

showed the same association with natural immunity.57,58

Further studies will be needed to confirm the same results

in vaccinated women.

Few studies have evaluated the number of doses that

will be required per pregnancy for full immunity. In one

study in healthy, non-pregnant women, no increase in anti-

body levels was shown after a second dose of a trivalent

CRM197-glycoconjugate vaccine administered one month

after the first dose.59 A recent study published in 2019

(NCT02690181) evaluated the safety and immunogenicity

of a second dose of a trivalent (Ia, Ib and III) CRM197

conjugate vaccine in non-pregnant women over a long per-

iod of time (4 to 6 years) after the administration of the first

dose. Antibody levels from previously GBS-vaccinated

women increased ≥200-fold after a second dose. Women

presenting with undetectable antibody levels after first dose

also experienced an increase of anti-GBS concentrations

after a second dose.60 These results suggest that further

doses might be required in subsequent pregnancies.

Serocorrelates of Protection
Although several vaccine candidates are undergoing pre-

clinical and clinical trials, in order to achieve licensure of
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a vaccine for GBS, phase III clinical trials may be

required. These would need to be very large in order to

demonstrate efficacy in countries able to conduct such

trials.61 As there is a good correlation between immune

response and clinical protection, licensure of a GBS vac-

cine could also be based on antibody measurement, if

a specific antibody response can be correlated with

protection.62–65 A review undertaken in 2019 synthesised

the scientific evidence to define a serocorrelate of protec-

tion against GBS disease based on studies of natural

infection.66 In such a scenario, a phase IV study will be

required post-licensure to assess effectiveness. This is the

same approach used for meningococcal B vaccine licen-

sure in the United Kingdom.67

Assays for Antibody Quantification and

Evaluation
The concentration of antibodies against serotype-specific

CPS antigens can be quantified using standard immuno-

genicity assays (IA). However, there are several limitations

to using current IA as the concentration measurement is

very dependent on how well CPS is immobilized on an

ELISA plate. There are other technical difficulties including

inconsistent binding of immobilized CPS to the solid phase

or a nonspecific serotype-independent binding, of antibo-

dies with lower avidity.49 There has been much debate

about the methods of CPS-binding, for example that used

in pneumococcal assays (poly-L-lycine) or the novel biotin-

streptavidin methods.66,68,69 The biotinylated method has

the advantage of being able to use mass spectroscopy to

determine the exact binding site of the biotin to the CPS,

enabling the monitoring of any potential conformational

changes to the CPS.69 However, whether this affects the

performance of the assay is unknown.

The radio-antigen binding assay (RABA) had been

used successfully to quantify levels of anti-GBS antibody

as it measures antibody in its native state;70 however, as

with most assays, there are several limitations, including

low detection sensitivity, difficulties in obtaining and using

radioisotopes and limited ability to quantify IgG isotopes.

Therefore, it is imperative for techniques quantifying cap-

sular serotype-specific antibodies in serum to be sensitive

as well as serotype-specific.71 Multiplex immunoassays

(MIAs) based on the Luminex technology are very useful

in simultaneously quantifying the concentration of IgG

antibodies against the capsule of multiple GBS serotypes.

A Luminex-based direct immunoassay (dLIA) was

recently developed for pneumococcal CPS.68 The latter

could generate up to 143 test results in a single 96-well

plate using similar principles to an ELISA assay for eval-

uating vaccines in clinical trials. MIAs quantifying IgG

antibodies against the six most frequent GBS capsular

variants (Ia, Ib, II, III, IV and V) would prove to be

extremely useful in the standardisation of the assay used

for GBS vaccine development.

The functionality of antibodies may also have

a significant role in protection against GBS infections.

ELISAs are limited in this aspect as they cannot distin-

guish between antibodies with low avidity and those with

high avidity. Therefore, the opsonophagocytosis killing

assay (OPkA) enables the measurement of antibody

functionality.72 For the validation of the pneumococcal

vaccine, the granulocytic cell line (HL60) was used, mak-

ing the assay more reproducible.73 The assay was also

multiplexed, which proved to be advantageous as it was

less time-consuming and the amount of serum needed for

the assay was reduced.74,75 Although a multiplexed OPkA

for GBS (GBS-MOPA) has been developed for use in

newborns, it only targets serotypes Ia, III and V.76

Therefore, a GBS-OPA targeting all possible vaccine ser-

otypes is necessary for future GBS vaccine development

and evaluation.

Protein Vaccines
Although CPS-conjugate vaccines have been demonstrated

to induce good immunogenicity, there are still several lim-

itations, including potential immune interference with other

types of conjugate vaccines such asHaemophilus influenzae

type b, meningococcal and pneumococcal conjugate

vaccines.77,78 There is also the possibility of serotype repla-

cement and switching post vaccination, as well as an

increase in non-encapsulated GBS strains.79–81 Alternative

vaccine candidates include structurally conserved protein

antigens which can induce a strong immune response

against most GBS strains. In order to develop a vaccine

that can confer broad protection against GBS, several stu-

dies have identified proteins common to all GBS strains.

Members of the Alp family, including AlphaC, Alp1

(Epsilon), Alp2, Alp3 (R28), Alp4 and Rib, are the most

well-known and abundant surface proteins. These proteins

are expressed by different serotypes (Table 2).82–85

Although there have been preclinical vaccine investigations

using AlphaC, Alp3 and Rib proteins, the heterogeneity of

the Alp sequence restricts the use of Alp proteins as poten-

tial vaccine candidates.86,87 Nonetheless, a protein vaccine
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based on the highly immunogenic N-terminal domains of

AlphaC and Rib (GBS-NN) has been studied in a Phase

I clinical trial (NCT02459262). The participants included

240 healthy women who were immunised with one or two

doses of GBS-NN, generating an elevated level of GBS-NN

specific antibodies by over-30 fold in both groups.82,88 GBS

expresses either one of two-allelic serine-rich repeat 1

(Srr1) and serine rich-repeat 2(Srr2) proteins,89 both of

which can bind to fibrinogen Aα chain through the “dock,

lock and latch” mechanism, thus contributing to the patho-

genesis of GBS meningitis and GBS colonisation of the

vaginal surface.89–91 The antigenic latch domain consisting

of 13 amino acids containing both Srr1 and Srr2, was shown

to play a significant role in GBS pathogenesis. Murine

models have exhibited serotype-independent protection

against GBS infection after being vaccinated with the latch-

peptide vaccine.92 C5a peptidase, which is a GBS virulence

factor, was also considered as a universal protein vaccine or

a carrier for GBS-CPS.93 C5a peptidase encapsulated

within microspheres composed of lactic acid and glycolic

acid co-polymer triggered systemic and mucosal immune

responses in murine models, thus protecting them against

multiple GBS serotypes.94,95 Another type of surface pro-

tein are the pilus proteins, which, in preclinical and human

studies, were found to induce immune responses against

different GBS serotypes.30,96,97

Next Steps, New Perspectives
The most advanced vaccine candidates are hexavalent

vaccines including serotypes Ia, Ib, II, III, IV, and V,

which are now in phase II trials.54 Immunogenicity and

safety of these candidates has been demonstrated in non-

pregnant and, more recently, in pregnant women.22 Protein

vaccines are in phase I trials including human studies in

non-pregnant women.88,92,94-96

Several obstacles exist in moving the most advanced vac-

cines into phase III clinical trials. Given the relatively low

incidence of GBS disease in Europe and the USA, large

numbers of participants would be needed to determine vaccine

efficacy.98 In addition, obstacles exist in determining what

concentration of antibody is required to protect the infant for

the duration of the period at risk (the 3 first months of life) as

there are currently no internationally recognised correlates of

protection with which to interpret individual study results.99

Therefore, a serocorrelate of protection against GBS is needed

to accelerate the licensure of a vaccine. The standardisation of

reagents to measure antibodies against GBS is crucial for the

establishment of serological correlates of protection and for the

development ofGBS vaccines. TheGASTONconsortiumwas

recently set up with this aim.66

On the other hand, efforts to identify common proteins

to all GBS strains have been made in order to find

a vaccine that confers protection against all GBS sero-

types. Recent use of molecular techniques, such as multi-

locus sequence type (MLST) and whole-genome sequen-

cing (WGS), have allowed us to better characterise the

GBS structure, as well as to identify the virulent lineages

such as ST17 hypervirulent strain, strongly associated with

serotype III. As it is important to understand the genetic

lineages that are more likely to cause GBS disease in order

to better define vaccine targets, a global genomic survey of

GBS has been established (the JUNO project).100

Other Areas for Future Research
As mentioned above, it is important to establish rates of

maternal colonisation and GBS disease worldwide, as well

as to understand the relationship between colonisation and

invasive infection, to assist assessments of vaccine efficacy.

Regional serotype distribution is also required, especially from

many LMIC were few data are currently available.

Once a vaccine is licensed, the number and timing of

doses for optimum coverage during pregnancy and the num-

ber of doses required for full protection needs to be deter-

mined. There are other knowledge gaps remaining, including

the placental transfer of vaccine-induced immune responses

in special populations, such as women infected with HIV,

malaria, syphilis and hepatitis B, among others. These infec-

tions, highly prevalent in LMIC, may alter the immune

response to vaccines and impair antibody transfer across

the placenta. A phase II trial using a GBS trivalent vaccine

(Ia, Ib, III) undertaken in Malawi and South Africa among

270 pregnant women with or without HIV infection

(NCT01412801) showed that the immune response to

Table 2 Alp Family Proteins Commonly Expressed in Different

GBS Serotypes

GBS Serotype Alp Family Protein Commonly Expressed

Ia AlphaC, Alp1, Alp2

Ib AlphaC

II AlphaC, Rib

III Rib, Alp2

V Alp2, Alp3

Notes: This table includes only the Alp family proteins that are mostly expressed

by the common serotypes causing infant GBS disease; The uncommon serotypes IV,

VI–IX have not been included as their expression of proteins in the Alp family have

not yet been characterized. Alp1 can also be referred to as Epsilon and Alp3 as R28.
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vaccines and serotype-specific antibody concentrations in

infants at birth were lower in the HIV infected group.101

Maternal immunisation policies require understanding of

the role of these endemic infections in generating immune

responses that ensure adequate protection of infants in these

challenging environments.102,103

Finally, cost-effectiveness evaluation is required. Cost-

effectiveness studies have indicated that the predominant

cost drivers are disease incidence, immunisation coverage

and vaccine efficacy.104 In high income countries, where

GBS disease is well characterized, it has been shown that

a maternal vaccine would be more cost-effective compared

to IAP and doing nothing.105 A population-based eco-

nomic analysis in the USA concluded that vaccinating

80% of pregnant women with a vaccine that prevents

80% of cases among infants born at or after 34 weeks of

gestation would prevent approximately 4100 neonatal

cases annually with a net savings of 131 million USD.105

A study in South Africa also concluded that GBS maternal

vaccination would be very cost-effective by WHO

guidelines.106 This study reported that, assuming that vac-

cine efficacy varies from 50% to 90% with a 75% cover-

age, GBS immunisation alone, without IAP prevention,

would prevent 30–54% of infant GBS cases compared to

doing nothing. In contrast, risk factor based-IAP alone

prevents 10% of infant GBS cases compared to doing

nothing. Furthermore, at a vaccination cost between 10

and 30 USD, and mid-range efficacy, vaccine introduction

costs range from 676 to 2390 USD per disability-adjusted

life-year (DALY) averted, compared to doing nothing.106

A modeling study of different sub-Saharan African coun-

tries showed that maternal GBS immunisation could be

a cost-effective intervention, with cost-effectiveness ratios

similar to other recently introduced vaccines.107 37

African countries were clustered in four different groups

according to their economic and health resources and

public health outcomes. One country of each cluster was

chosen as representative: Guinea-Bissau, Uganda, Nigeria

and Ghana. At equal coverage to that of pregnant women

that attend four or more antenatal visits and with vaccine

efficacy of 70%, maternal vaccination would prevent one-

third of GBS cases in Uganda and Nigeria, 42–43% in

Guinea-Bissau and 55–57% in Ghana. For a vaccine price

of 7 USD per dose, maternal vaccination would cost from

320 to 350 USD per DALY averted in Guinea-Bissau,

Nigeria and Ghana, as well as 573 USD in Uganda. The

vaccine would be less cost-effective in Uganda as neonatal

mortality seems to be lower.107 A recent study by our

group of cost-effectiveness of a potential hexavalent vac-

cine in the Gambia indicated that disease incidence was

the key factor in determining cost-effectiveness in a low

income setting as the cost of doing nothing is very inex-

pensive as infants would classically die at home without

receiving treatment.108 These studies, together with more

epidemiological data in LMIC, might raise the impact

resulting from a vaccine prevention strategy.

Data provided in this review demonstrate that obtaining

a vaccine for pregnant women is a promising strategy to

prevent neonatal and infant GBS disease. Consensus among

public health institutions and sponsors is now a priority to

allow this breakthrough that will help reduce neonatal and

infant mortality, especially in the most vulnerable populations.
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