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Abstract: Experimental and epidemiological evidence shows that parasites, particularly hel-

minths, play a central role in balancing the host immunity. It was demonstrated that parasites can

modulate immune responses via their excretory/secretory (ES) and some specific proteins.

Extracellular vesicles (EVs) are nano-scale particles that are released from eukaryotic and prokar-

yotic cells. EVs in parasitological studies have been mostly employed for immunotherapy of

autoimmune diseases, vaccination, and diagnosis. EVs can carry virulence factors and play

a central role in the development of parasites in host cells. These molecules can manipulate the

immune responses through transcriptional changes. Moreover, EVs derived from helminths

modulate the immune system via provoking anti-inflammatory cytokines. On the other hand,

EVs from parasite protozoa can induce efficient immunity, that makes them useful for probable

next-generation vaccines. In addition, it seems that EVs from parasites may provide new diagnostic

approaches for parasitic infections. In the current study, we reviewed isolation methods, functions,

and applications of parasite’s EVs in immunotherapy, vaccination, and diagnosis.
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Introduction
Parasitic infections have a history as long as human living.1,2 Despite lethal

infections due to some parasites such as human-infecting species of Leishmania3

and Plasmodium,4,5 Naegleria,6 Entamoeba histolytica,7 most of them, particularly

helminths, live within their hosts without considerable symptoms.8,9 Parasitic

infections are the cause of economic loss in developing and developed countries.

Based on the latest reports, more than one billion people around the world suffer

from parasitic diseases.10,11 For example, it was estimated that 219 million cases in

2017 suffered from malaria with 435,000 deaths that makes this parasitic infection

a global public health problem and one of the most important debilitating infectious

diseases in developing countries.12 From the economic point of view, only single

malaria reduces economic growth in Africa by 1.3% per annum.12 Leishmaniasis is

the second lethal parasitic disease after malaria that the lack of effective vaccine has

led to serious problems in tropical regions.13,14 Therefore, the most important

challenges facing with these infections are detection, and immunization.

However, studies on different applications of EVs for in parasitic diseases and the

interesting roles of these micro/nano-particles in cellular and molecular biology are

being dramatically increased. In the current study, we comprehensively gathered and
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categorized different applications of EVs in the field of

parasitology that helps researchers for their future studies.

For this purpose, available English electronic major libraries

including: PubMed, Scopus and Web of Science were

searched with keywords: “Parasite” AND “Extracellular

Vesicles” AND “Immunotherapy” OR “Vaccination” OR

“Diagnosis” OR “Detection”.

Parasites and the Immune System
Apart from the traditional view emphasizing on the pathogenic

role of parasites, a body of evidence has demonstrated the

positive consequences of facing with some parasites in the

immune system homeostasis,15–18 which is famously dis-

cussed as “hygiene hypothesis”. This hypothesis was sup-

ported by studies showing less exposure to the parasite

infections during early childhood may increase the suscept-

ibility to immune disorders during adulthood.18,19 Actually,

parasites, particularly helminths, can modulate the immune

system through effective soluble mediators which interact

with the host immune cells to escape from the immune

responses.20,21 This subject has been supported by recent stu-

dies showing the manipulation of the immune system by

secreted proteins and carbohydrate molecules expressed by

helminths.22

During the contact between the normal immune system

and foreign antigens, a plethora of proteins are produced and

released from immune and non-immune cells.23,24

Accordingly, the role of some helminths and their compo-

nents were practiced to ameliorate the pathological condi-

tions and clinical manifestations of some autoimmune

diseases such as asthma, inflammatory bowel diseases

(IBD),25–27 multiple sclerosis (MS)28,29 and etc., using

in vivo/in vitro studies. However, the most important limita-

tions of these studies were either alive helminthic materials

such as eggs or low efficacy of the derived proteins.30,31

On the other hand, during the invasion of some parasite

protozoa such as Leishmania, Plasmodium, and

Toxoplasma gondii, the cellular immune responses are

the most important defense mechanisms. Studies on this

subject have been led to engage of either total antigen or

derived specific proteins of protozoan parasites as

a vaccination strategy against themselves or other intracel-

lular microorganisms.32–36

During the last decade, focuses on EVs released from

parasites or immune cells sensed by parasites have been

explosively increased. Up to now, several distinct types of

EVs were known of which exosomes (size between 30 to150

nm, spherical shape with membrane bound) are an important

subtype.37,38 Based on the growing evidence, the clinical

applications of EVs in the field of parasitology are mainly

categorized into three major classes.39 A) Immunotherapy by

EVs to modulate the immune responses. In this application,

EVs derived from helminths are mostly employed to attenu-

ate the immunological responses during autoimmune dis-

eases such as IBD and allergy. B) Increasing the immunity

responses against some parasitic infections, also known as

vaccine. This application has majorly been practiced for

parasitic protozoa in both medical and veterinary researches.

C) Detection of specific EVs (particularly their contents) as

a promising tool for diagnosis of parasitic diseases, particu-

larly blood protozoa (Figure 1).

EVs in the parasitology studies have mostly been

employed for immunization against a parasitic infection

(8/17; 47.05%) while only four studies (23.53%), particu-

larly in recent years, were carried out to use EVs for

detection of parasitic infections (Table 1). In addition,

ultracentrifugation more than 100,000 × g for at least 1

hr at 4ºC has been the most common technique for isola-

tion and purification of EVs.

Furthermore, IBD was the autoimmune diseases that

were frequently investigated for evaluation of the effects

of EVs. In most of the studies, mice were the choice of

host models and laboratory chickens were mostly the

choice animal model for study on Eimeria (Table 2).40–56

Parasite’s EVs
Parasites are eukaryotic microorganisms that during the

time have learnt to communicate with their hosts to pro-

vide favor conditions in their niches.1,2 Although some of

the parasites such as human-infecting species of

Plasmodium and Leishmania, E. histolytica, and some

other parasites usually hurt their hosts, the hygiene

hypothesis claims that some parasites, as an old friend of

humans, have played an important role in evolution,

improvement and homeostasis of the immune system.31

However, it seems that parasites are mostly companied

with their host via ES products.57,58 Numerous studies have

explored the role of EVs released from either parasites or

different types of host cells sensed by parasites in communica-

tion between parasites and host cells.59 Actually, derived EVs

from parasites can manipulate the target cells via delivering

the pathogenic, immunomodulatory, and genetic materials to

provide a pleasant condition for surviving and multiplication

of parasites.39,60 Furthermore, it was suggested that during the

unpleasant environments, host cells may release EVs recruit-

ing immune cells to defense against parasites.39 Experimental
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studies have demonstrated that EVs mostly contain lipid,

proteins, DNA, RNA, and metabolites61–63 (Figure 2).

Apparently, EVs have also played a crucial role during trans-

ferring of drug-resistant,64 virulence,65,66 and regulatory

genes67–69 into the host cells.

Extracellular Vesicles: Classification
and Isolation Techniques
Up to now, there is no consensus terminology on the EVs.

Based on the size and origin of the mother cell, a spectrum of

terms has been given to the extracted cells.70 As a traditional

nomenclature that categorized EVs based on their size and

origin, microvesicles, apoptotic bodies, and exosomes are the

major classes with size range from 5 µM to 30 nm.39,70

During recent years, a class of EVs originally released from

tumor cells, known as oncosomes, was described which has

the size of 10 µm.71,72 Nevertheless, two main types of EVs,

endosomes, and ectosomes, based on their biogenesis have

been defined. Accordingly, endosomes are mostly smaller

which as an organelle, formed within the mammalian cells.

Exosomes are considered as endosomes and fused to the

plasma membrane of the recipient cells. Contrary, ectosomes

are formed as budding from the plasma membrane of the

donor cells and included microvesicles, apoptotic cells, and

oncosomes.73,74 Over the recent years, a couple of terms have

been used for the EVs based on the study context and the

mother cells of the released EVs. However, EVs reflect the

donor cell conditions.70 Over the past decade, many isolation

and purification techniques have been practiced based on the

purpose of studies, available facilities, and the type of EVs.

Overviews of the isolation techniques represented that

there are two major isolation methods: (1) size-dependent

and (2) size-independent techniques.75–77 Size-dependent

techniques comprise a broad spectrum of methods which

isolate EVs based on their size, buoyant density, and physical

features. In this approach, differential centrifugation ranged

Figure 1 Extracellular vesicles (EVs) extracted directly from parasites or indirectly from host cells sensed by parasites. Indirectly released EVs from host cells sensed by

parasites are mostly used for vaccination and immunotherapy while for diagnosis, EVs originated from parasites are a regular target. EVs can also change the cytokine/

chemokine pattern in recipient cells. Protozoan parasites mostly increase the level of cytokine/chemokine pattern involved in polarization of cellular immunity while EVs

from helminths usually increase the level of immunomodulatory cytokines such as IL-4 and TGFβ. However, there are studies showing elevated levels of immunomodulatory

cytokines in host cells affected by EVs from parasite protozoa or vice versa.

Abbreviations: IL, interleukin; TNF, tumor necrosis factor; IFN- γ, interferon-gamma; TGF-β, tumor growth factor-beta; CCL, chemokine (C-C motif) ligand.
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from 300 × g to 200,000 × g is the most frequently used

method.75,78 In this technique, cell debris and dead cells sedi-

ment in 300 × g, apoptotic bodies sediment in 2000 × g,

microvesicles sediment in 10,000 × g, and exosomes sediment

in 100,000–200,000 × g.79 Although searching among litera-

ture reveals that most of the studies employed differential

centrifugation to recover exosomes, it seems that the recovery

rate and purity of this technique are insufficient.80 However,

utilizing differential centrifugation followed by floatation

using sucrose or iodixanol gradient improves the purity and

recovery rate of EVs.77,81,82

Precipitation-based techniques using polyethylene glycol

(PEG), protamine, acetate, and precipitation of proteins with

organic solvent (PROSPR) are used to cover the limitations

of differential centrifugation-based techniques.75,83 Although

precipitation-based methods improve the recovery rate of

EVs, the purity of EVs remains as a challenge.

Ultrafiltration is used to separate EVs based on their

molecular weight and size, and increases recovery of EVs

compared to the conventional differential centrifugation.

However, this technique is not able to differentiate EVs

type in a sample based on their size; therefore, the purity of

EVs is still insufficient.77 To overcome the limitations of

conventional ultrafiltration, size-exclusion chromatography

(SEC), and asymmetrical flow field-flow fractionation (AF4)

were developed.76,77 Recent studies performed byMol et al84

and Gamez-Valero et al85 represented the higher functional-

ity and lower alteration of EVs isolated by SEC compared to

ultracentrifugation and precipitating agents in clinical prac-

tices, respectively. EVs separation based on the microfluidic

technology was recently developed and practiced. This tech-

nique isolates EVs according to their size. However, this

method has not been standardized and needs to be compared

to the available common isolation techniques.43,86-88

Although many techniques based on the size of EVs have

been developed, improved, and practiced, two major size-

independent EVs isolation methods were described during

the recent years. In this regard, immunoaffinity isolation and

flow cytometry are two techniques which isolate EVs regard-

ing the expressed proteins on their surface, not their physical

criteria. These techniques are usually performed to character-

ize EVs based on the expressed proteins on their surface in

a small volume of samples.However, immunoaffinity isolation

followed by a magnetic isolation was described to increase the

volume of isolated EVs for further analyses.89,90 There are

available commercial kits which employ specific antibodies

to detect CD markers and EVs proteins such as heat shock

proteins (HSP).90–92 Some studies designed and developed

flow cytometry-based method for detection of EVs in which

the most important limitations for this technique are the parti-

cles smaller than 600 nm and low refraction index.90,93

The Major Content of EVs
It is widely accepted that EVs contain divergent molecules

such as lipids, proteins, genetic materials, and even metabo-

lites which affect the recipient cell’s functions.70 EVs released

Table 1 All Eligible Studies Were Categorized Based on Methods of Isolation of EVs, Clinical Applications and Target Parasites

No. Author Year Method of Isolation Applications Parasite

1 Roig40 2018 Ultracentrifugation 120,000 × g for 1h at 4ºC Immunotherapy F. hepatica

2 Shears41 2018 Ultracentrifugation 100,000 × g for 2 h at 4ºC Vaccination T. muris

3 Eichenberger42 2018 Ultracentrifugation 120,000 × g for 3h at 4ºC Immunotherapy N. brasiliensis & T. muris

4 Wang43 2018 Ultracentrifugation 105,000 × g for 1.5h at 4ºC Diagnosis A. suum

5 Bautista-López44 2017 Ultracentrifugation 100,000 × g for 16h at 4°C Diagnosis T. cruzi

6 Li45 2018 ExoEasy Maxi Kit Vaccination T. gondii

7 Coakley46 2017 Ultracentrifugation 100,000 × g for 2 h at 4ºC Vaccination H. polygyrus

8 del Cacho47 2011 Ultracentrifugation 100,000 × g for 1 h at 4ºC Vaccination E. tenella

9 Meningher48 2017 Ultracentrifugation 100,000 × g at 4ºC Diagnosis Schistosoma spp.

10 Trelis49 2016 Ultracentrifugation 120,000 × g for 1 h at 4ºC Immunotherapy E. caproni

11 Olmos-Ortiz50 2017 Ultracentrifugation 100,000 × g for 2 h Immunotherapy T. vaginalis

12 Martin-Jaular51 2011 Ultracentrifugation 100,000 × g for 2 h at 4ºC Vaccination P. yoelii

13 Buck52 2014 Ultracentrifugation 100,000 × g for 2 h at 4ºC Immunotherapy H. polygyrus

14 Schnitzer53 2010 Ultracentrifugation 100,000 × g for 5 h Vaccination L. major

15 del Cacho54 2012 Ultracentrifugation 100,000 × g for 1 h at 4ºC Vaccination E. tenella, E. maxima, and E. acervulina

16 del Cacho55 2016 Total Exosome Isolation Reagent (from serum) Vaccination E. tenella

17 Antwi-Baffour56 2019 Ultracentrifugation 100,000 × g for 90 min Diagnosis P. falciparum

Abbreviation: EVs, extracellular vesicles.
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Table 2 Targeted Diseases, Cytokine Profile, Cell Line and Animal Models Employed in Each Study

No. Helminths

/Protozoa

Parasite Diseases Cytokine/

Chemokine

In vitro/Cell Line In vivo/Host Refs

1 Helminths F. hepatica IBD IL-17 (Dec)

IL-6 (Dec)

IL-10 (NC)

TNFα (Dec)

- Female C57BL/6

mice

40

A. suum Ascariasis - Murine macrophage cell line J774A.1 - 43

H. polygyrus Heligmosomoidesis IL-10 (Dec)

IL-33(Dec)

IL-6 (Dec)

CCL 17 (Dec)

TNF (Dec)

RAW246.7 macrophage cell line, MODE-

K (small intestinal epithelial cell line)

Female C57BL/6

mice, BALB/c mice

46

H. polygyrus Allergy due to

Alternaria

IL-5 (Dec)

IL-13 (Dec)

IL-33R (Dec)

MODE-K cells BALB/c mice 52

N. brasiliensis,

T. muris

IBD IL-6 (Dec)

IL-1β (Dec)

IFNγ (Dec)

IL-17a (Dec)

IL-10 (Inc)

TGFβ (Dec)

- B10.BR mice 42

T. muris Trichuriasis - - C57BL/6 and

SCID mice

41

2 Protozoa T. cruzi Chagas - - - 44

T. gondii Toxoplasmosis IL-10 (Dec)

IL-12 (Inc)

TNF-α (Inc)

IFN-γ (Inc)

IL-4 (NC)

HEK293T cell line, RAW 264.7 Female BALB/c

mice

45

E. tenella Coccidiosis IL-2 (Inc)

IL-16 (Inc)

IFN-γ (Inc)

- White Leghorn

chickens

47

Schistosoma spp. Human

Schistosomiasis

- - - 48

E. caproni - IFN-c (Inc)

IL-4 (Inc)

TGF-β (Inc)

IL-10 (Inc)

BALB/c mice 49

T. vaginalis Trichomoniasis * RAW264.7 BALB/c mice 50

P. yoelii Malaria - - BALB/c mice 51

L. major Leishmaniasis * - Female BALB/c

mice

53

E. tenella,

E. maxima, and

E. acervulina

Coccidiosis IL-2 (Inc)

IL-16 (Inc)

IFN- γ (Inc)

IL-4 (Dec)

IL10 (Dec)

- White Leghorn

chickens

54

(Continued)
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from parasites contain a complex of molecules ranged from

genetic materials to functional proteins. Firstly, Couper et al94

demonstrated that microparticles with size <1 µm derived

from the plasma of mice infected with P. berghei were able

to activate macrophages. Although it seems that the isolated

microparticles were EVs, one of the first studies which showed

the presence of EVs in parasites was performed by Marcilla

et al95 who demonstrated the presence of EVs in ESP of

Echinostoma caproni and Fasciola hepatica. Moreover, the

proteome analysis of the isolated EVs indicated the similarity

of 54% and 52% of protein content of isolated EVs from

E. caproni and F. hepatica with their secretome, respectively.

Furthermore, the protein content of F. hepatica comprised

a higher number of proteases (such as cathepsins and leucine

aminopeptidase) and detoxifying enzymes compared to

E. caproni. Later, Bayer-Santos et al96 described two types

of EVs which were derived from the plasma membrane and

within the flagellar pocket of both epimastigotes and metacyc-

lic trypomastigotes stages of Trypanosoma cruzi, respectively.

The proteome analysis showed that there was EVs content

exclusive for either epimastigote or metacyclic trypomasti-

gote, while major identified proteins were known to play

crucial roles in metabolism, signaling, nucleic acid binding,

parasite survival, and virulence of the parasite.

Later, a couple of small RNAs were characterized within

the EVs derived from T. cruzi and it was suggested that the

parasite can modulate its communication with the host cells

via the small RNAs.97–99 During recent years, focusing on the

non-coding small RNA content of the EVs derived from both

helminths and protozoa demonstrated a couple of unique

small RNAs together with common small RNAs which pre-

viously identified in hosts.100–102 Juntao Liu et al,103 deter-

mined the RNAs content of EVs released by Schistosoma

japonicum using high-throughput sequencing and then eval-

uated up taking the EVs by peripheral blood immune cells.

Accordingly, they demonstrated that approximately 32% of

the RNA content was micro RNA consisted of mir-125b, mir-

61, mir-3505, and a helminth-specific micro RNA, bantam.

However, they concluded that S. japonicum derived EVs

increased macrophage proliferation and TNF-α production in

host cells via mir-125b and bantam.

The Role of EVs in Pathogenicity of
Parasites
Parasite–host interaction studies have elucidated that inva-

sive parasites usually release EVs in response to the envir-

onmental changes to provide suitable conditions for their

pathogenicity. It was shown that EVs are able to modulate

the immune system and carry virulence factors to the

target- or the related cells in order to manipulate their

life cycle using switching on/off the signaling pathways

involved in cell death.104 Recently, it was reported that

promastigotes of L. infantum release major surface pro-

teases (MSP), an important virulence factor, via EVs.66

Furthermore, it was shown that the released EVs can

induce transcriptional changes in the target cells, modulate

the immune responses, and affect the severity of diseases.

Sampaio et al105 elucidated that monocytes sensed with

EVs derived from PfEMP1 transport knock-out

P. falciparum-infected RBC, induced more transcriptional

changes. Furthermore, it was demonstrated that the released

EVs carried drug-resistant and virulence genes, and affect

the expression level of some host genes. Studies in animal

models showed that the released EVs from parasites may

affect the pathogenicity of them. Lovo-Martins et al106

showed that EVs released from T. cruzi led to parasitemia

and reduced the level of inflammatory biomarkers such as

nitric oxide (NO), IL6, and TNFα. It was reported that EVs

released from L. amazonensis could provide favor condi-

tions in host cells which led to the recruitment of Th2

responses and higher parasite burden.107 However, it

seems that EVs play a central role in the development of

a parasite in the host cells.108

Table 2 (Continued).

No. Helminths

/Protozoa

Parasite Diseases Cytokine/

Chemokine

In vitro/Cell Line In vivo/Host Refs

E. tenella Coccidiosis IL-2 (Inc)

IL-6 (Inc)

IFN- γ (Inc)

IL-4 (Inc)

- Cobb 500 broilers 55

Note: *In these studies, several times and combinations were investigated. For details, please see the cited references.

Abbreviations: IBD, inflammatory bowel diseases; Dec, decreased; Inc, increased; NC, no changes; IL, interleukin; TNF, tumor necrosis factor; IFN- γ, interferon-gamma;

TGF-β, tumor growth factor-beta; CCL, chemokine (C-C motif) ligand.
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EVs as a Promising Target for
Immunotherapy of Autoimmune
Diseases
History of the role of parasites, particularly helminths, in the

modulation of the immune system in autoimmune diseases

backs to the theory firstly described by Strachan, so-called

“Hygiene hypothesis”.109,110 Regarding the chronic infections

due to helminth parasites, distracting the immune system

seems to be the most important defense tool of these parasites.

Actually, helminths modulate the host’s immunity via chan-

ging the surface antigen or releasing the immunomodulatory

components. The ES components are also the well-known

mechanism used by helminths to escape from the immune

system.22,58 Until know, ESP of helminths were described to

be able to manipulate the immune responses in humans.111–113

In fact, helminth parasites provoke the polarization of the Th2

responses that lead to the secretion of anti-inflammatory cyto-

kines such as IL4, IL5, IL10, IL13, as well as regulatory

cytokine, transforming growth factor (TGFβ).31 These unique

features of helminth parasites were established based on the

use of non-human- or human-infecting worms and their

eggs,114,115 released ESP from helminths111,112 and specific

synthesized proteins,116,117 which are originally secreted from

helminths.

The most important autoimmune diseases which have

been included in worm therapy plans are IBD, rheumatoid

arthritis (RA), MS, diabetes type 1 and asthma.118 Despite

the promising results of worm therapy in almost all of

these autoimmune diseases, the major challenge was work-

ing with alive worm/egg in humans. Therefore, recent

studies employed either natural proteins from the worms

or recombinant proteins modeled based on their specific

secreted proteins. Tissue inhibitory metalloproteinase-2

(TIMP-2), which is currently known as anti-inflammatory

protein-2 (AIP-2), is a major protein secreted in ESP of

hookworms that showed favorable results in the attenua-

tion of the clinical manifestations of asthma and IBD in

animal models.119

During the recent decade, it has been focused on the

applications of EVs extracted from either helminth ESP or

macrophages stimulated by helminths and their products to

ameliorate the clinical manifestations of Th1 autoimmune

diseases. EVs as a cargo carry a heterogenic complex of

genetic and metabolic materials which are deployed by

parasites to communicate with hosts.39,120 Recently,

a growing number of studies experienced both in vitro

and in vivo applications of EVs derived from helminths

or immune cells stimulated with parasites to cure the

symptoms of autoimmune diseases, particularly IBD, that

the results of most of them have been satisficing.40,42,52

However, there is still no clinical trial to demonstrate the

pleasant consequents of parasite-released EVs to control

the clinical manifestations of autoimmune diseases.

EVs as a New Hope for Designing
Next-Generation Vaccines
EVs-based vaccines were widely introduced, practiced, and

even proved for bacterial infections and some cancer types,

until now. Among bacterial infections, EVs extracted from

Helicobacter pylori,121 Salmonella enterica (typhimurium),122

Neisseria meningitis,123 Staphylococcus aureus,124,125

Escherichia coli126 and Acinetobacter127 have been studied.

Notably, a vaccination strategy based on EVs with trade name

“Bexcero” for N. meningitis was performed in some

countries.128,129 There is evidence showing that EVs released

from tumor cells may control the growth of tumor cells via

presenting MHC I and MHC II, and immune system stimula-

tory molecules.130,131 Furthermore, during recent years,

bioengineered EVs using interference RNA (iRNA) have

motivated scientists around the world to design a cost-

benefit and effective vaccination strategy for cancers.132,133

In case of parasitic diseases, immunization with atte-

nuated parasites or specific synthetic proteins has a long

history while there are few studies focusing on the ability

of EVs to induce protection against parasites. Although

protective effects of EVs were reported in Trichuris

muris,41 these experiences were mostly successful in case

of parasitic protozoa due to the immunological pathways

involved in defending against protozoa.45,47,55

Macrophages and dendritic cells, as the progeny of

monocytes, stimulated with EVs are able to manage the

innate and adaptive immunity against a pathogen.

Macrophages and dendritic cells act as antigen-presenting

cells (APCs) and are the first barrier against microbial

pathogens. These cells after up taking EVs derived from

parasites and presenting antigen can initiate cellular or

humoral immune responses. However, it seems that shift-

ing towards Th1 responses together with releasing some

cytokines, such as IL2, IL12, IL16, and IFNγ, is the main

immune system’s arms against parasitic protozoa.

However, successful induction of protective immunity

against Leishmania, Toxoplasma, and Eimeria suggest

EVs and their contents as the next generation

vaccines45,47,53,55(Figure 1).
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EVs are Specific Targets for
Detection of Parasitic Diseases
Rapid and reliable diagnosis of the infectious agents provides

all choices on the table for clinicians for on-time interven-

tions. Since EVs represent the features of their mother’s cell,

these particles have been considered as new biomarkers for

diagnosis of different types of cancers, and also detection of

infectious diseases. Although it is controversial,134 based on

the infrastructure of the envelope of EVs that is similar to

liposomes, it seems that these particles remain stable enough

to employ as a diagnostic biomarker. This feature of EVs

makes themmore applicable to be a biomarker than miRNAs

and specific proteins.133

A meta-analysis conducted by Zhou showed that the

prediction of exosomal miRNA such as miR21, miR-451a,

miR-1290, and miR-638 were significantly correlated with

the prognosis of solid tumors.135 EVs (in this study exo-

some) due to carrying oncogenic materials, were suggested

as a prediction tool for human malignant mesothelioma.136

Studies on EVs for diagnosis of infectious diseases have

suggested these interesting tiny particles as a biomarker

for the detection of infectious diseases. Anyanwu et al137

observed human immunodeficiency virus (HIV) protein in

EVs released in urine of infected patients and concluded

that EVs might be a diagnostic tool for the detection of

HIV. EVs as biomarkers were recently employed for para-

sitic infections as well. In this regard, released EVs carry-

ing ESP of T. cruzi, from mammalian cells were suggested

as reliable diagnostic tools.44 EVs for diagnosis of para-

sitic infections were later investigated and proposed for

Ascaris43 and Schistosoma.48

However, regarding the high specificity and reliability

of EVs, particularly their contents, for the detection of

infectious diseases, it seems that a diagnostic panel based

on EVs would be a useful, applicable and rapid method for

the detection of infectious diseases.

Conclusion and Future Perspectives
During the recent decade, the number of studies that inves-

tigated the potential applications of EVs has explosively

grown. The most important reason of this growth backs to

the interesting results of studies on EVs. Many studies char-

acterized the EV’s content in human- and animal-parasites.

However, characterization of the specific contents such as

micro RNAs and proteins can provide a reliable panel for

diagnosis of parasitic diseases, particularly lethal infections.

Although there are well-successful attempts for diagnosis of

malaria, leishmaniasis, and schistosomiasis using EVs-based

approaches, we think that there is a gap for rapid and reliable

diagnosis of primary amoebic meningoencephalitis (PAM)

Figure 2 Host cells usually release EVs in response to the environmental changes such as contact with parasites or their products. EVs contain DNA, messenger RNA,

MicroRNA, proteins and lipids, and express MHC I and II. EVs are released via budding and vesicle cargo. EVs may affect the recipient cell through direct fusion, receptor–

ligand interaction, as well as phagocytosis.

Abbreviations: EVs, extracellular vesicles; MHC, major histocompatibility complex; ER, endoplasmic reticulum; mRNA, messenger RNA; miRNA, micro RNA.
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caused by free-living amoeba (FLA), Naegleria fowleri. The

disease caused by this FLA is almost always fatal and

because of the rapid progress of the disease, diagnosis mostly

happens post-mortem. Therefore, a rapid and reliable diag-

nosis panel using the parasite-specific EVs probably

improves on-time intervention and prognosis.

There are only a few studies evaluating the effects of

parasite-derived EVs on the host cells in vivo or in vitro.

Since infections caused by parasites are mostly chronic,

parasites communicate with their host for a long time.

Therefore, the role of parasites-derived EVs in the mod-

ulation of the immune system seems to be an important

portion of host-parasite interaction. This fact makes para-

site’s EVs a terra incognita that needs to explore, particu-

larly in the correlation with autoimmune diseases.

Furthermore, it seems that together with increasing our

knowledge on the content of released EVs from parasites,

new opportunities will be opened in the field of EVs bioengi-

neering. In the other words, parasites can communicate with

the hosts using their EVs; therefore, characterization of the

EVs content may describe new useful parasite-specific mole-

cules which makes packaging of EVs using some parasite-

specific proteins, metabolites, and iRNA (such as micro RNA,

siRNA and Inc RNA) achievable interesting target during the

next years, particularly for immunotherapy and vaccination.
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