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Abstract: Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and

hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis

appear to be highly complex due to the decade-long interactions between the virus, immune

system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily

accessible animal model system for HCV is a significant obstacle to understand the mechanisms

of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to

eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment

is determined by the SVRwhen the HCVis no longer detectable in serum. Interferon-alpha (IFN-

α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the

primary antiviral treatment of HCV for many years with a low cure rate. The cloning and

sequencing of HCV have allowed the development of cell culture models, which accelerated

antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral

(DAA)-based combination therapy that now offers incredible success in curing HCV infection in

more than 95% of all patients, including those with cirrhosis. However, several emerging recent

publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the

risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge

while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that

drive the risk of HCC in the absence of the virus are unknown. This review describes the

multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection.

In addition to the potential oncogenic programming that drives HCC after viral clearance by

DAAs, the current status of a biomarker development for early prediction of cirrhosis regression

and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full

protection against reinfection or viral transmission to other individuals, the recent studies for

a vaccine development are also reviewed.

Keywords: hepatitis C virus, HCV, hepatocellular carcinoma, HCC, interferon, IFN, direct-

acting antiviral, DAA, endoplasmic reticulum stress, ER stress, autophagy

Introduction
Primary liver cancer includes hepatoblastoma (liver cancer among children), angio-

sarcoma (cancer derived from blood vessels of the liver), cholangiocarcinoma

(cancer derived from bile duct), and HCC (cancer derived from hepatocytes).

Among those, HCC remains the most common form. Although a high incidence

of HCC has been reported in developing countries, the prevalence of HCC has

grown tremendously over the last three decades in Western countries as well.1
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Currently, HCC is the sixth most common cancer that

occurs three times more in males than in females.2

Approximately 800,000 individuals are diagnosed with

HCC worldwide causing more than 700,000 deaths

per year.3 In the US, deaths due to HCC and cholangio-

carcinoma are rising more rapidly than deaths from any

other type of cancer.4 The risk factor predominantly con-

tributing to the rise in HCC includes the high rate of HCV

infection, followed by increasing rates of alcohol abuse,

obesity, NAFLD, and uncontrolled type II diabetes.

Autoimmune liver diseases, hemochromatosis, tyrosine-

mia, glycogen storage diseases, and alpha-1 antitrypsin

deficiency can predispose to risk of liver cirrhosis and

HCC. Among all these risk factors, HCV alone has about

5 to 20 fold higher risk for HCC development.5–10

HCV is a blood-borne pathogen that infects the liver

exclusively. Most of the individuals infected with HCV

fail to clear the infection naturally, leading to a stage of

life-long chronic infection. The long-lasting liver inflam-

mation due to HCV causes the onset of advanced liver

diseases, such as liver fibrosis, cirrhosis, and HCC result-

ing in death. Approximately 71 million people are cur-

rently infected with HCV, of which only 20–30% of those

develop liver cirrhosis, and 1–4% of cirrhotic patients

develop HCC per year.11 In most cases, HCC develops

on the background of cirrhosis.12–18 Approximately 15%

of patients who developed HCC had no cirrhosis support-

ing the hypothesis that HCV infection can also induce

HCC directly.19 HCC can also develop in non-cirrhotic

liver related to NAFLD and HBV infection.20

IFN-α or PEG-IFN-α plus RBV combination antiviral

therapy has been used as the standard-of-care for patients

with chronic HCV infection for many years. This treat-

ment eliminates the virus in only a little more than half of

all patients, and many liver cirrhosis patients were unable

to clear the infection with this regimen.21,22 The low

responsiveness to IFN/RBV therapy for chronic HCV

infection found to be associated with specific IL-28B

genotypes.23 Because of the high association with liver

cancer, HCV-related liver research remained as one of

the rapidly evolving areas in Hepatology since its discov-

ery in 1989. The development of highly effective antiviral

drugs to eliminate chronic HCV infection continued to be

the primary focus in many academic laboratories and

pharmaceutical industries. Drug discovery efforts of

HCV have been hampered for a long time due to the

ongoing technical difficulties in the establishment of cell

culture models. There was swift progress in many areas of

basic and translational research after the cloning and

Figure 1 Progress in translational research that leads to significant breakthroughs

in DAA-based antiviral drug development resulting in HCV cure. Reprinted from

Semin Cell Dev Biol, Dash S, Aydin Y, Wu T. Integrated stress response in hepatitis

C promotes Nrf2-related chaperone-mediated autophagy: a novel mechanism for

host-microbe survival and HCC development in liver cirrhosis, Copyright (2019),

with permission from Elsevier.106
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sequencing of the HCV genome and development of infec-

tious chimpanzee clones (Figure 1). Although HCV is

known to replicate well in human hepatocytes, researchers

have struggled for a long time to grow the virus in the

laboratory using different hepatoma cell lines. It took more

than ten years to develop a cell culture model for HCV

minigenome (the replicon model), which was later fol-

lowed by the development of an infectious cell culture

system using a unique virus strain derived from

a Japanese patient with fulminant hepatitis. This virus

strain with a highly adapted Huh-7.5-based liver cell line

allowed us to study the replication and assembly of the

whole HCV genome.24 The availability of replicon and

infectious cell culture models accelerated the discovery of

newer DAAs. Approval of IFN-free DAAs targeting the

NS3/4A protease, NS5A, and NS5B polymerase have now

rapidly changed the therapeutic landscape for curing HCV

infection at a very high rate.25,26 In the future, HCV cure

by DAAs is expected to reduce the incidence of chronic

liver disease, liver cirrhosis, HCC, which result in

decreased liver-related mortality.27,28

Recently, emerging clinical studies with DAAs in

patients with liver cirrhosis created a heated debate about

the risk of HCC occurrence and recurrence after viral cure.

Some studies support that HCV cure by DAAs benefits

patients as the liver inflammation decreased, fibrosis

reversed, as well as a decreasing incidence of liver transplan-

tation and liver-related extrahepatic complications.28–39

However, some recent emerging publications from the US,

Europe, and Asia indicate that DAA-induced HCV clearance

in patients with liver cirrhosis decreases but does not elim-

inate the risk of HCC occurrence or recurrence.40–45 In light

of this new development, the overall objective of this article

is to review relevant pieces of literature about the long-term

benefits and risks of HCC development post viral cure by

DAAs as compared to previously used IFN-based antiviral

therapy. This review has also discussed potential overlapping

viral-induced and host-related mechanisms implicated in

HCC risk after viral cure by DAAs.

The Risk of HCC Occurrence and
Recurrence After HCV Cure
Chronic HCV infection is the major risk factor for HCC.

A natural course of HCV based on observational model

predicts that 60% of infected individuals will develop

cirrhosis and 14.4% will develop HCC and remaining

37% will die of other complications related to HCV

infection.46 Many earlier publications concluded that the

IFN-based antiviral therapy prevented HCC risk and

reduces all causes of mortality among patients with

chronic HCV infection, including patients with liver

cirrhosis.46–54 The overall trends of HCC occurrence and

recurrence after HCV clearance by IFN-based antiviral

therapy were verified through meta-analyses.55–57

Morgan et al analyzed 30 observational studies of com-

promising 31,528 chronic HCV patients in which 10,853

patients achieved SVR (34.4%) by IFN-based antiviral

therapy, and 1742 patients developed HCC, suggesting

viral cure by IFN does not eliminate the risk of HCC.

When they adjusted HCC incidence per year according

to the follow-up period and viral clearance, they found

that HCV-cured patients develop HCC at a rate of 0.33%/

year.55 Rutledge et al performed similar analysis from 31

studies involving 71,443 HCV patients treated with IFN-

based regimens showing that SVR rate with IFN was

45.9%. When they adjusted HCC incidence per year in

the SVR population, it was 0.7%.56 Waziry et al examined

HCC occurrence and recurrence in patients treated with

IFN-based treatment using an extensive electronic data-

base. Their analysis revealed that the overall risk of HCC

development is 1.13%/year. This study also reported the

HCC recurrence rate was 9.2%/year when SVR was

achieved.57 Amalgamation of these data is that the risk

of HCC occurrence and recurrence was decreased but not

eliminated by IFN-based antiviral therapy. The risk and

benefit of HCV clearance by DAA therapy have not been

fully established since the follow-up timing of DAA-

treated patients is not long enough. However, there have

been three significant developments on addressing the

HCC risk after viral cure since the approval of the

DAAs. These results have generated considerable debates

among researchers. First, a number of investigators found

that, DAA-based antiviral therapy reduced the incidence of

HCC development in chronic HCV patients with pre-

existing cirrhosis, but did not eradicate the risk, suggesting

these patients need ongoing surveillance for HCC after

viral clearance.58–67 Second, some investigators have

reported that there is a high chance of HCC recurrence

in cirrhotic patients who received DAAs.68–73 Third, low

SVR rate was seen with DAAs in patients with active

HCC associated to HCV74–80 suggests that the DAA-

based HCV therapy should be carried out after HCC

treatment. There are now considerable debates and dis-

agreements among researchers all over the world on

these observations. We will discuss selected publications
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addressing the HCC risk after HCV cure by DAAs in

patients with liver cirrhosis.

Some studies claimed that the risk of HCC is not

decreased after HCV cure by DAA therapy.58–62 These

investigators demonstrated that the annual incidence of

HCC development after viral treatment with DAAs is

3–5%, which is much higher than the risk observed with

IFN-based therapy. In contrast, some other studies have

tried to verify these observations and showed that HCV

cure does reduce the risk but does not eliminate the risk of

HCC development.63–67 These studies found that the annual

incidence of HCC occurrence was higher in DAA-induced

HCV cure as compared to IFN-induced HCV cure (2.9% vs

1.14%). On the other hand, one large study demonstrated

that DAA-induced HCV clearance is associated with

reduced HCC risk, similar to IFN-induced HCV clearance

among veteran patients.68 Interestingly, a few reports

expanded the debates claiming that HCV cure makes the

liver cancer grow faster. Mainly, HCVinfected patients with

HCC who had a complete response to hepatic resection or

local ablation subsequently developed high rates of HCC

when they received DAAs.69–71 These results are consistent

with two small European studies that have shown a high

percentage of HCC recurrence (27.6% and 28.8%) among

patients who first received treatment for HCC then received

DAAwithin six months.59,72 Another study by Cabibbo et al

reported a relatively high rate of HCC recurrence among

patients who received DAAs after curative HCC therapy

with occurrence rates of 12%, 26.6%, and 29.1% in 6-, 12-

and 18 months.73 Moreover, a report from the US shows

that 5 out of 18 patients (28%) who were transplanted for

HCV-related HCC show unusually high rates of recurrent

HCC within six months post DAA therapy. In contrast, only

9.5% recurrence of HCC was seen in those who did not

receive HCV treatment.74 However these unexpected find-

ings were not verified by other publications, which reported

no such risk for HCC recurrence after viral cure by DAAs

therapy.75–77

HCC Risk After HCV Cure Through
Meta-Analysis
The risk of HCC occurrence and recurrence after HCV

cure by DAAs has been determined through meta-

analyses. These reports found that the risk of HCC occur-

rence and recurrence is almost similar between DAAs and

IFN-therapy. However, the data agree with the fact that the

risk of HCC occurrence persists after HCV treatment.55–57

To determine the incidence of HCC occurrence after HCV

treatment with DAAs, Rutledge et al performed a more

rigorous data analysis of 44 studies with a large number of

patients (n=91,249). It is found that the risk of HCC

development was 3.57%/year in patients who achieved

SVR by DAAs and 9.83%/year in patients who did not

achieve SVR.56 The study of Huang et al involving 61,334

patients who received DAAs from 16 sites showed that the

risk of HCC development in SVR-achieved and SVR non-

achieved groups was 3.5%/year and 9.1%/year

respectively.81 Waziry et al analysis presented evidence

that the overall risk for HCC occurrence is 2.96%/year

and recurrence 12.16%/year when HCV infection is

cleared by DAA-based therapy.57 A meta-analysis using

16 studies of IFN-based treatment of 1043 patients and 33

studies of DAA-based treatment of 4876 patients deter-

mined the risk of HCC recurrence. The recurrence rate of

HCC was 16.7%/year in the DAA-based treatment group

and 14.3%/year in IFN-based treatment group.56 In addi-

tion, Huang et al analysis revealed that the HCC recur-

rence rate is 17.4%/year following DAA-induced viral

clearance.81 A comprehensive review by Singal et al sum-

marized data of the studies that reported the risk of HCC

occurrence and recurrence after DAAs treatment.82 These

findings suggest that the risk of HCC occurrence and

recurrence remains after viral cure by DAAs treatment.

Therefore, most of the authors recommend that patients

with advanced liver fibrosis (F3-4) need continuous sur-

veillance for early HCC detection after HCV eradication

by DAAs.

HCC Mechanisms Associated with
Chronic HCV Infection
Hepatitis C virus infects hepatocytes, the major cell types

that constitute the liver. Only 25% of individuals acutely

infected with HCV can eliminate the virus naturally while

the rest develop a persistent infection, and chronic liver

disease, including liver fibrosis, cirrhosis, and HCC.83

Chronic HCV infection causes breakdown of immune toler-

ance leading to a prolonged inflammatory reaction in the

liver. Awide range of non-viral agents induces cellular stress

and liver injury leading to sterile chronic inflammation.

During the early stage of injury, the functional and morpho-

genic alterations in the liver are reversible if the damage-

causing agents or stress factors are removed. The persistence

of chronic injury can cause irreversible harm, where the liver

undergoes changes from physiological adaptation to
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pathological adaptation. Liver cirrhosis is a pathological

adaptation to cellular stress causing structural and functional

changes in the liver parenchyma to escape from injury. The

nature and severity of cellular stress determine whether cel-

lular adaptation to virus infection is reversible or irreversible.

Over the years, studies using transgenic mice and cell models

revealed that HCV viral proteins altered multiple cell signal-

ing pathways implicated in cell survival, proliferation, migra-

tion, and transformation. Many of these cell-signaling

pathways overlap among hepatic steatosis, alcoholic liver

disease, insulin resistance, and oxidative stress, which

cause inflammation, cell death, and liver cirrhosis. The evo-

lution of HCC from cirrhosis is a pathological adaptive

response to ISR. Only 1–3% of patients with chronic HCV

infection develop HCC after 30 years and HCV does not

infect HCC tumor cells as compared to surrounding non-

tumorous hepatocytes, supporting the conclusion that HCVis

not directly oncogenic. It is possible that HCV infection

creates a tumorigenic environment that promote cellular

transformation of uninfected hepatocytes through

a bystander mechanism as seen in the case of colorectal

cancer associated with Fusobacterium nucleatum and gastric

cancer related to Helicobacter pylori. Based on these evi-

dences, we propose that HCC mechanisms associated to

HCV infection can be direct virus-induced cellular program-

ming, indirect host-related inflammatory response, and an

overlapping host metabolic bystander effect (Figure 2). In

the following sections, we discuss the molecular basis of

hepatic pathological adaption to the virus-associated stress

response, indirect stress related to inflammation, and meta-

bolic stress response of host that contributes to the persistent

fibrosis and HCC. In the end, we discuss possible overlap-

ping synergy mechanisms between viral-induced oncogenic

and host-related pathways due to concomitant liver diseases

that contribute to the persistent HCC risk after DAAs treat-

ment independent of the virus.

Direct Oncogenic Mechanisms
HCV Replication in Hepatocytes

Generates an Integrated Stress Response
HCV is a small, enveloped, positive-stranded RNA virus

belonging to the Flaviviridae family. The complete enveloped

HCV particles are icosahedral with a diameter of 56–65 nm,

and an embedded viral core around 45nm in size.84,85

Hepatocytes are the only cell type in the human liver that

support the entire life cycle of HCV through multiple steps:

attachment and entry, viral protein synthesis, virus replication,

virus assembly, and release.86,87 The infection cycle involves

the attachment and entry of HCV particles into hepatocytes

through the interaction of its two viral envelope proteins (E1

and E2) with the cell surface receptors. Multiple host cell-

surface proteins are involved in the attachment and entry of

the HCV particles into hepatocytes.88,89 During the entry pro-

cess, the fusion of the HCV viral envelope with the host

endosomal membrane results in pH-dependent uncoating,

releasing the genomic RNA into the cytoplasm. The HCV

RNA genome makes viral proteins for its reproduction in

a specific region of the ER called the rough ER. The positive-

strandHCVRNAgenome binds directly to ribosomes through

an Internal ribosome entry site present in its 5ʹ untranslated

region. Translation of theHCVgenome leads to the production

of a single large polyprotein of 3000 amino acids. This protein

is subsequently cleaved by cellular and viral proteases into the

structural proteins (core and envelope proteins E1 and E2), and

non-structural proteins (P7, NS2, NS3, NS4A, NS4B, NS5A,

and NS5B).90,91 The viral proteins assemble in the ER mem-

brane vesicles to reproduce more genomic HCV RNA and

progeny viral RNA. The non-structural proteins are needed

for genome replication.90 Multiple rounds of viral replication

lead to increased accumulation of positive-strand RNA, repli-

cative intermediates (negative-strand RNA), and viral proteins

in theER. Sustained virus replication results in the proliferation

and remodeling of the ER membranes into a structure referred

to as themembranous web. Structural proteins remodel the ER

membranes to recruit more protein components needed for

virus replication, assembly, and release.92 It is not clear how

the replication and assembly processes occur one after the

other, but they appear to occur in lipid droplets accumulated

in the ER vesicles. Intrahepatic HCV replication stimulates

lipid metabolism, leading to the accumulation of lipid droplets

in multilayer membrane vesicles, which facilitates virus

Figure 2 Hepatocellular carcinoma mechanisms related to chronic HCV infection

are the combination of virus-mediated (direct), host-mediated (indirect), and host-

related bystander effects.
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assembly and maturation. Virus particle assembly and release

occur in the membranous web, a link to very low-density

lipoprotein synthesis and secretion. HCV RNA replication is

catalyzed by the viral NS5B, an RNA-dependent RNA poly-

merase, via the negative-strand RNA. The protease and heli-

case domains of NS3 play essential roles during the viral

genome replication. The NS5A protein is required for the

formation of the membranous web that supports viral replica-

tion and assembly. Studies have shown that NS5A inhibitors

prevent the formation ofmembranousweb structures in the ER

by decreasing the complex formation with phosphatidylinosi-

tol 4 kinase III alpha.93 Several viral proteins and host cellular

factors essential for HCV replication could be promising tar-

gets for antiviral therapy. Among these, the most successful

viral marks used in DAAs treatment are the HCV NS3 pro-

tease, NS5A, and the NS5B viral RNA polymerase (Figure 3).

A recent review describes the mechanism of how different

DAAs inhibit HCV replication.94 Although the causal

relationship between chronic HCV infection and the develop-

ment of HCC has been established, the exact HCV cancer

mechanism is unknown.95,96 Hepatocytes are specialized

cells in the liver with an elaborate ER membrane network.

The ER membrane network transports proteins and lipids to

lysosomes, mitochondria, secretory vesicles, the Golgi appa-

ratus, endosome, and the cell membrane. The ER plays an

essential role in maintaining hepatocyte function in the liver.

The proteins synthesized in the ER must be correctly folded

and undergo post-translational modifications such as glycosy-

lation, disulfide bridge formation, and oligomerization. All of

these processes take place in the ER. The ER stress response

can develop due to alterations in protein synthesis, degradation

or folding during viral infection. Due to these reasons, the

stress response in the ER can activate pathways that trigger

cell injury, inflammation associated with chronic liver disease,

liver cirrhosis, and HCC related to both viral and non-viral

causes.97

Figure 3 Chronic HCV replication in liver cells induces a multifaceted stress response. The infection is initiated by the attachment and entry of the virus particle through

several cell surface receptors. The HCV RNA binds to the ribosome and translates a single large polyprotein, which is processed into structural and non-structural proteins.

Accumulation of viral proteins induces proliferation of ER-membranes and formation of membranous web structure. HCV replication in the membranous web produces

many new genomic positive-strand and negative-strand RNA. Genomic HCV positive-strand RNA packages into complete infectious virus particles that release through the

secretory pathway. Arrows show the emerging new DAAs targeting the viral protein and HCV replication cycle.

Note: Adapted from Chapter 8, Figure 2 of Viral Polymerases: Structures, Functions and Roles as Antiviral Drug Targets, Dash S, Aydin Y, Stephens CM. In: Gupta SP, editor.

Hepatitis C Virus NS5B RNA-Dependent RNA Polymerase Inhibitor: An Integral Part of HCVAntiviral Therapy, 211-235, copyright (2019), with permission from Elsevier. 383
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Hepatocytes in the Liver Undergo

Pathological Adaptation to HCV Microbial

Stress
The increase in cellular energy demand during chronic virus

infection imposes all types of caloric restrictions, and low

levels of ATP, amino acids, and sugar, leading to increased

ER stress.98 Autophagy is activated when the ATP and amino

acid levels are depleted during infection. Low intracellular

sugars will cause a defect in protein glycosylation and alter

ER and Golgi function leading to the stress response. Low

oxygen supply (hypoxia) during viral replication creates

oxidative stress that generates ROS, which can cause ER

stress. Chronic HCV infection induces lipid metabolism in

the liver, leading to the accumulation of fat in hepatocytes

and hepatic steatosis. To study the complex lipid metabolic

remodeling in infected cells, Hofmann et al determined the

lipid composition of whole cells and subcellular fractions of

HCV–infected culture using a bioinformatics approach. They

showed that HCV infection accumulates membrane lipids,

especially cholesterol and phospholipids, with a higher abun-

dance of phosphatidylcholines and triglycerides with longer

fatty acyl chains. The accumulation of longer fatty acids and

cholesterol in the infected cells could inhibit the ubiquitin-

dependent protein degradation pathway; therefore, increas-

ing ER stress.99 Persistent virus replication increases cellular

DNA damage response, the frequency of DNA repair, tran-

scriptional fidelity, and genomic instability, all of which

create additional cellular stress. If the viral-induced stress

becomes persistent and severe, that results in irreversible

injury or death of infected cells. Hepatocytes experience

different levels of cellular stress during virus infection that

activates various cell death cascades (apoptotic, necrotic, or

autophagic) during chronic liver disease. The release of

DAMP from lysed necrotic cells can produce ROS and

RNS, which are known to cause lipid peroxidation.100 This

process can activate the unfolded protein response and NF-

κB pathway, which is the hallmark of an inflammatory

response implicated in the development of liver fibrosis and

HCC during chronic HCV infection.101 In some individuals,

combinations of multiple non-viral insults may contribute to

liver disease progression. One of the host-related factors

responsible for the progression of liver disease is the degree

of hepatocellular injury. Aminotransferases are a group of

enzymes that synthesize and break down amino acids and

convert them into energy storage molecules. Increased ALT

and AST levels in the blood are a direct indication of a liver

injury. Prior studies found that 1–14% of cells in the HCV–

infected liver showed Ki-67 labeling, suggesting that the

hepatic parenchymal mass is maintained through continuous

hepatocyte regeneration and self-replication.102,103 The phy-

siological adaptions at the level of cellular metabolic activity

and cellular function, which often occur during chronic

infection, are reversible. However, pathological adaptation

due to severe microbial stress can result in an increase or

decrease in cellular appearance and cell proliferation. Due to

these reasons, hepatocyte proliferation rates drop signifi-

cantly during the stage of liver cirrhosis due to pathological

adaption to stress.104,105 Infected hepatocytes canmanage the

stress response through the induction of ISR that promotes

the transcription of numerous genes for cell survival.106 The

significant reduction of hepatocyte proliferation in liver cir-

rhosis could activate stem cell compartment through epige-

netic programming.107–109 The stress signal reprograms to

switch cell death to cell proliferation, and it will abet the

emergence of malignancies like HCC. In a previously pub-

lished series, we showed that chronic HCV infection induces

ER stress and the expression of ER stress marker remains

high in patients with liver cirrhosis.110 Using the HCV cell

culture model, we showed that excessive ER stress activates

NRF2-mediated autophagy switching to promote cell

survival.111 The excessive stress contributes to HCC devel-

opment in liver cirrhosis. HCC grown in the cirrhotic liver

undergoes autophagy switching from a protective state char-

acterized by high macroautophagy with low CMA to an

HCC-promoting state characterized by low macroautophagy

with high CMA.112,113 Our data are also consistent with

previous reports suggesting that persistent activation of

NRF2 through the accumulation of p62 is involved in HCC

development.114,115 In the following section, we review how

pathological adaptation to HCV–induced stress results

in cellular oncogenic programming implicated in HCC

development.

Hepatic Adaptation to HCV Microbial

Stress Induces Oncogenic Cell

Programing
An integrated analysis of whole-exome sequencing of HCV-

related HCC tumors demonstrated many mutations in cancer

driver genes associated withmalignant transformations.116–125

The exome sequencing study found that tumor suppressor

genes are downregulated due to promoter hypermethylation,

and genomic instability in HCC due to the gains and loss in

chromosomes was found in more than 80% of HCC asso-

ciatedwith chronic HCVinfection.119–125 Themost significant
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cellular pathways that are altered in HCV–induced HCC are

TERT, β-catenin, p53, Rb, chromatin remodeling/epigenetic

modifications, hepatocyte differentiation, PI3K-mTOR path-

way, and NRF2-kelck-like ECH-associated protein (KEAP),

cancer stem cells, angiogenesis and RTKs (Figure 4). In the

following section, we discuss the molecular mechanism by

which HCV regulates these cancer pathways.

Telomerase Reverse Transcriptase (TERT)

Telomeres are DNA-protein structures located at the end

of each chromosome. They are composed of a tandem

repeat of six-nucleotide sequence (5ʹ-TTAGGG-3ʹ) coated
with shelterin proteins. The telomere can reach a length of

15,000 base pairs. Telomeres function by preventing chro-

mosomes from losing base pair sequences and fusing at

their ends. When the telomere length becomes too short,

the cell dies by apoptosis. Telomere length is maintained

by an enzyme called TERT. Telomerase is an enzyme

made of protein and RNA subunits that elongates chromo-

somes by adding TTAGGG sequences to the end of exist-

ing chromosomes. Telomeres and telomerase play an

essential role in the progression of liver disease and liver

cirrhosis. Hepatocyte senescence and development of liver

cirrhosis relate to the absence of telomerase activity and

shortening of telomeres. Telomerase detected in human

cancer cells is found to be 10–20 times more active than

in healthy body cells.126 Increase telomerase provides

a selective growth advantage to tumor cells. Complete

HCC genome sequencing found many host spots activat-

ing mutations in the promoter regions of the TERT gene in

about 85% of human tumors, including HCC.127,128 The

modifications are present at nucleotides 124 (mostly G>A

and rarely G>T) or 146 (G>A) before the ATG start site in

the TERT promoter region.127 These mutations favor the

binding of transcription factors to the promoter, causing

TERT overexpression and activation. The long telomeres

and increased TERT activity are found to be associated

with aggressive HCC with poor prognosis.129 A previous

study showed a mutation in the TERT gene among patients

with liver cirrhosis of diverse etiologies: alcohol, hepatitis

B, and hepatitis C infection as compared to healthy

controls.128 Reduced telomerase activity could result in

telomere shortening, chromosomal instability through end-

to-end chromosome fusion, and HCC if the p53 and Rb are

defective. Recent publications by Zhu et al suggest that

HCV core and NS3 proteins can activate TERT expression

and reverse transcriptase activity.130,131

The p53-Rb Pathway

The two tumor suppressors, Rb and the p53 are involved in

the etiology of many cancers. The p53 protein levels are

increased in response to DNA damage, hypoxia, and

Figure 4 Hepatic adaptive response to chronic HCV infection activates hepatocyte cell survival programming. HCV structural and non-structural proteins activate multiple

cellular pathways.
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oncogene activation. p53 regulates gene expression that leads

to cell cycle arrest or apoptosis. The Rb protein prevents cell

proliferation by repressing the activation of E2F transcription

factors. The interaction between Rb and E2F transcription

factors are critical, preventing the S-phase of the cell cycle

and mitosis.132 Many earlier studies have shown that transi-

ent expression core, NS3, and NS5A proteins of HCV alter

p53 tumor suppressor function without using the infectious

HCV replication model. We discuss here some of the studies

that examined the impact of HCV infection on the roles of

p53 and Rb tumor suppressors. Mitchell et al showed that

HCV infection disrupts p53 function through activation of

cellular protein kinase R.133 Stanley Lemon’s laboratory

demonstrated that HCV infection negatively regulates Rb

protein stability mediated by NS5B protein.134,135 Studies

conducted in our laboratory showed that excessive ER stress

due to HCV replication degrades p53 in the lysosomes. The

degradation of p53 in HCV culture occurs independently of

MDM2. We showed that CMA activation by stress degrades

p14ARF, another alternative open reading frame protein

(ARF), a tumor suppressor that activates p53.136 The subse-

quent publication showed that excessive ER stress induces

MDM2-mediated Rb degradation.137 All these results are

consistent with human studies that show more than 70% of

HCC cases having alterations in the p53-Rb pathway that

leads to mitosis, cell cycle progression, and genomic

instability.

The Wnt/β-Catenin/c-Myc Pathway

TheWnt/β-catenin pathway is altered in 66% of HCC, and in

51% of these cases, activation ofWnt/β-catenin occurs due to

altered gene expression.117 The Wnt/β-catenin pathway is

activated when a Wnt ligand binds to the frizzled receptor,

leading to activation of the transcription factor β-catenin and

subsequent activation of pro-survival genes. Wang et al

showed that HCV infection could activate the Wnt/β-

catenin pathway. The HCV core protein was shown to acti-

vate Wnt/β-catenin signaling at multiple steps, including

elevated expression of Wnt ligands, and frizzled receptor,

and downregulation of the expression of low-density lipo-

protein receptor-related protein 5/6. Core protein has been

shown to decreases the expression of the Wnt antagonists;

dickkopf and secreted frizzled-related protein by recruiting

DMT1, and HDAC1 to their transcription start sites.138,139

The NS5A protein activates PI3K/Akt signaling, leading to

the inactivation of GSK3β and subsequently reducing the

degradation of β-catenin.140,141 The activation of c-Myc

oncogene through Wnt/β-catenin pathways has been shown

to promote HCC in HCV transgenic mice model.142

Receptor Tyrosine Kinases (RTKs)

The RTKs are a large superfamily of cell surface receptors

representing for a wide variety of growth factors, including

epidermal growth factor, nerve growth factor, PDGF, VEGF,

FGF, insulin and the insulin-like growth factors. Among

these, EGFR controls the cascade of oncogenic cell signaling

involved in cell proliferation that contributes to hepatocarci-

nogenesis. The EGFR is highly expressed in the adult liver

and plays an essential role in hepatocyte proliferation. The

EGFR pathway is activated in 60–80% of HCC and corre-

lates with aggressive tumors and patient survival.143–150 The

receptor-mediated endocytosis and lysosomal degradation

are the major negative feedback loops for EGFR signaling.

We showed that HCV induces impaired autophagy response

to inhibit degradation of EGFR at the level of autophago-

some-lysosome fusion leading to the activation of down-

stream RAS/RAF/MEK/ERK signaling.111 In principle,

impaired autophagy due to HCV could potentially stabilize

RTK on the cell surface of infected cells by impairing their

endocytosis and lysosomal degradation. Other researchers

have also shown that EGFR activation favors the HCV

entry process through co-internalization of an HCV-CD81-

EGFR complex following binding of EGFR ligands to the

receptor and subsequent endocytosis.151 The viral NS5A

protein disturbs EGFR trafficking and degradation, therefore,

activates EGFR signaling.152 All these data support that

HCV infection activates EGFR signaling, which contributes

to the HCV-associated HCC development. The EGFR path-

way activation can cross-talk with Wnt/β-catenin since

EGFR can phosphorylate β-catenin at residue Tyr654, there-
fore dissociating from the multi-receptor complex and lead-

ing to nuclear entry and gene expression.153 The EGFR

stimulates PI3K/Akt and RAS/RAF/MEK/ERK cascade

that can activate β-catenin through GSK3β activity. Wnt/β-
catenin signaling also activates FGF signaling implicated in

HCC development secondary to chronic HCV infection by

inducing expression of FGF18 and FGF20.154,155

PI3K/Akt/mTOR Pathway

The activation of the mTOR pathway is associated with HCC

development related to chronic viral infection.156,157

Immunohistochemical staining revealed that 33 out of 73

(45%) HCC patients showed increased expression of total

S6k, which is correlated with mTOR activation and tumor

size.158 In a large cohort of HCC patients, the activation of the
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mTOR pathway was associated with tumor differentiation,

staging, vascular invasion, and expression of phosphoS6.159

The mTOR pathway can be activated by growth factors,

cytokines, TLR ligands, low cellular energy (ATP/AMP

ratio), hypoxia, and DNA damage. The activation of mTOR

can confer many growth advantages to cancer stem cells or

progenitor cells, such as promoting cell proliferation and

resistance to apoptosis induced by various stress signals such

as hypoxia and nutrient deficiency.160 In addition, the mTOR

pathway can regulate telomerase activity in HCC since rapa-

mycin significantly decreases telomerase activity at the pro-

tein level.161 NS5A can activate PI3K-mTOR signaling by

directly binding to the p85 subunit of PI3K.162 The mTOR

activation by the NS5A protein blocks apoptosis through

binding to FKBP38, an immunosuppressant FK506-binding

protein.163

Angiogenesis

Angiogenesis, a physiological process that generates new

blood vessels from the existing vessels, is linked to HCC

development. It has been shown that HCV promotes

angiogenesis process during an advanced stage of liver

disease.164,165 In healthy tissues, the angiogenesis process

is inhibited by interactions between proangiogenic and

antiangiogenic factors.165 Angiogenesis is activated when

tumor tissue requires additional nutrient and oxygen

supply.166 HCC cells secrete proangiogenic factors and

activate endothelial cells by VEGF and FGFs. The expres-

sion levels of angiogenic growth factors, VEGF-A, angio-

poietin-2, and PDGF are elevated in HCC patients.167,168

HCV infection can trigger hepatic angiogenesis and HCC

growth through HIF-1α and VEGF regulation.169,170 The

VEGF activation can occur through several other cell

survival pathways, including PI3K/Akt, ERK1/2, NF-κB,
and STAT3, which stabilize HIF-1α. It has been demon-

strated that the core protein of HCV can trigger angiogen-

esis through a mechanism that involves cross-talk between

TGF-β2, VEGF, and CD34 expression.171

Cancer Stem Cell

Pathological adaptive response to microbial stress results in

altered gene expression through epigenetic alterations with-

out changing the DNA nucleotide sequences.172,173 The epi-

genetic modifications of chromatin are involved in the

maintenance of viral latency and reactivation of human

viruses such as HIV, cytomegalovirus, Epstein-Barr virus

and many others.174 The potential role of epigenetic modifi-

cation in cell differentiation, tissue homeostasis, and

regeneration has been recently understood through stem

cell research. The pluripotent embryonic stem cells are cap-

able of giving rise to different cell types in embryo that serve

as a valuable model to study epigenetic mechanisms involved

in tissue development and tissue-specific gene expression.175

Disruption of epigenetic processes can lead to altered gene

expression and malignant transformation.176 The chromatins

that package chromosomes are the macromolecular complex

of DNA and histone proteins. The basic functional unit of

chromatin includes a nucleosome that contains 147 base pairs

of DNA, which wrapped around a histone octamer that con-

tains two of each histone H2A, H2B, H3, and H4. Condensed

chromatin called heterochromatin that leads to gene silen-

cing, whereas open chromatin called euchromatin leads to

active gene transcription.177 The epigenetic modifications

occur through DNA methylation, histone modifications,

nucleosome positioning, and ncRNAs. The interplay

between these chromatin modification mechanisms creates

an epigenetic landscape of mammalian gene expression.

DNA methylation of CpG-rich DNA sequences called CpG

island leads to gene silencing. Histone proteins N-terminal

tails undergo a variety of post-translational modifications,

including methylation, acetylation, ubiquitination, sumoyla-

tion, and phosphorylation. Histone modification can lead to

either gene activation or repression, depending upon which

histone residues are modified. For example, lysine acetyla-

tion correlates with transcriptional activation, whereas lysine

methylation leads to transcriptional activation or repression

depending on which residue is modified and the degree of

methylation. The trimethylation of lysine four on histone H3

(H3K4Me3) is enriched at the promoter that is transcription-

ally active, whereas trimethylation of H3K9 (H3K9Me3) and

H3K27 (H3K27Me3) of the promoter are transcriptionally

inactive.176 For example, embryonic stem cells possess biva-

lent domains with both active (H3K4Me3), and repressive

(H3K27Me3) marks at the promoters of the developmental

genes that regulate multiple cell types in a tissue. The activity

of such bivalent domains is regulated by two counteracting

groups of chromatin proteins called the trithorax group and

polycomb group proteins.178,179 In mammals, the polycomb

group proteins are an epigenetic modifier that promotes

H3K27 trimethylation and condenses chromatin resulting in

gene silencing. This interaction favors the binding of the

trithorax group of proteins to the activating H3K4 trimethy-

lation mark that leads to open chromatin and active gene

transcription. This bivalency hypothesis has been found to

contribute to phenotypic plasticity and initiation of cancer

stem cells. This condition allows differentiated cells to lose
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this bivalency through rigid chromatin structure, whereas the

maintenance of active chromatin states favors tumorigenesis,

stem cell renewal, and proliferation. Some reviews describe

the importance of epigenetic modification on cell fate and

cancer initiation.179–181 The polycomb repressive protein

complexes (PRC1 and PRC2) are involved in CSCs to estab-

lish dynamic epigenetic changes needed for the embryonic

stem cell gene signature.180–182 These advances have led to

the discovery of epigenetic drugs that have been now FDA-

approved for the treatment of cancer, and viral infection

including DMT inhibitors (azacytidine, decitabine) and

HDAC inhibitors (vorinostat, romidepsin, belinostat,

panobinostat).183 A study published by Ali et al shows that

HCV replication in cultured cells can induce expression of

cancer stem markers including, doublecortin and CaM

kinase-like-1, LGR5, CD133, AFP, cytokeratin-19, LIN28,

and c-Myc. They showed that curing HCV replication of

these cells results in diminished expression of these

factors.184 Another report showed HCV NS5A transgenic

mice fed with alcohol developed HCC with stem cell regu-

lator Nanog expression through the TLR4 signaling.185

Human genome microarray study using a Huh-7.5 cell line

stably-replicating HCV sub-genomic RNA revealed the

upregulation of cancer stem cell markers: octamer-binding

protein 3, SOX2 and suppressor of zeste 12 homolog.186,187

The authors showed that the expression of enhancer of zeste

homolog 2, a member of PRC protein was overexpressed in

HCC as compared to the normal liver.186 Notch signaling is

involved in the maintenance of CSCs.188 Studies found that

NS3 protein can activate notch signaling through binding

Snf2-related CBP activator protein and enhances hairy

enhancer of split-1 promoter activity that leads to increased

hairy enhancer of split-1 expression, a transcriptional repres-

sor of cell differentiation, thus providing a mechanism on

how HCV infection promotes cancer stemness.189–191 The

Hedgehog pathway is also important for the maintenance of

stem cell homeostasis is activated during HCV

infection.192,193 One study found that the Hedgehog pathway

plays a role in HCV replication and viral permissiveness.194

We showed that HCV–induced cellular ER stress could acti-

vate MDM2 that degrades Rb tumor suppressor independent

of p53.136 A recent report shows that MDM2 can associate

with the PRC2 and enhances stemness through chromatin

modification independent of p53.195 This evidence suggests

there are many oncogenic pathways that HCV replication

probably induces epigenetic cell programing that induces

CSCs leading to HCC.

Epigenetic Modifications

Epigenetic modifications are frequently seen in human HCC

with hypermethylation of tumor suppressor genes, hypo-

methylation of oncogenes, and methylation of repetitive

elements. Stefanska et al reported that approximately

3700 promoters that are hypomethylated in HCC using

a combination of methylated DNA immunoprecipitation

and hybridization. The demethylated genes are mainly

involved in cell growth, cell adhesion and communication,

signal transduction, mobility, and invasion, functions that are

essential for cancer progression and metastasis.196 A study

by Nishida et al indicates that the number of tumor suppres-

sor genes is hypermethylated in human HCC.197 Some recent

publications have examined genome-wide epigenetic

changes during the progression of HCV-associated cirrhosis

to HCC, and their findings showed a potential prognostic

value of DNA methylation of some specific gene promoters,

CpG islands and CpG island shores.198,199 Alterations in

histone modifications also have been observed in HCC

development.200 Increased expression of HDACs that are

aberrantly expressed in HCC, which provides a rationale

for HCC treatment using a novel pan-HDAC inhibitor

(panobinostat).201 Numerous small RNA and ncRNAs are

also involved in the epigenetic mechanisms involved in

HCV–induced HCC development. Some of them have been

used as biomarkers for early detection of HCC.202,203

A recent report showed that long ncRNAs are highly

expressed in HCC, and they promote liver cancer stem cell

growth through epigenetic regulation.204 Cheng et al study

showed that liver-specific miR-122 is epigenetically sup-

pressed by HOTAIR, leading to activation of Cyclin G1

and HCC growth.205 Recent research from our laboratory

shows that hepatic adaptive response to HCV–induced ER

stress and oxidative stress can silence miR-122 through

induction of the STAT3-HNF4α-miR-24 inflammatory feed-

back loop.206 In this study, we found that miR-122 levels

severely depleted among patients who developed cirrhosis.

These data suggest that pathological adaptive response to

HCV microbial stress epigenetically silence HNF4α and

miR-122.

Indirect Oncogenic Mechanisms
The liver is the most immune-privileged organ in the

human body. It filters most of the microbial pathogens

that enter through the hepatic artery and portal vein

blood. The liver is also regularly exposed to the gut

microbiota, toxic metabolites, food allergens derived
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from the gastrointestinal organs through the portal vein.

A durable protective innate immune response through the

activation of immune and non-immune cells eliminates

pathogens to prevent liver injury. In this section, we

describe basic molecular mechanisms of how persistent

HCV replication breakdown immune tolerance in the

liver that leads to the chronic infection and liver disease

progression. The liver is composed of primary hepatocytes

(80%), and the remaining non-parenchymal cells are KCs,

stellate cells, sinusoidal endothelial cells that are essential

for innate immune surveillance.207 The liver contains

many other cell types that constitute the innate and adap-

tive immune cells of lymphoid origin, such as T cells, NK

cells, NKT cells, MAIT cells, and B cells.208 The liver

houses abundant APCs, such as MDCs, PDCs, KCs, sinu-

soidal endothelial cells, monocytes/macrophages, neutro-

phils, stellate cells.209,210 During HCV infection, a both

innate and adaptive immune response is activated through

multiple mechanisms. For example, hepatocytes and other

antigen-presenting cells quickly sense the conserved

PAMP receptors present in HCV (HCV genomic RNA,

structural and non-structural proteins) by different pattern

recognition receptors such as RIG-1, TLRs, The acute

inflammatory response can also be generated by the

DAMP released in response to cell death (called sterile

agents) during integrated cellular stress and cell damage.

The innate immune signaling pathways are amplified

through the production of IFN (type 1 and type III),

ISGs, and proinflammatory cytokines to eliminate virus.

In the case of HCV, a very few individuals are resolved

infection; naturally, the majority of cases disease becomes

chronic. It has been demonstrated that several HCV pro-

teins impair the cytotoxic and immunoregulatory activities

of immune cells such as APCs, NK cells, CD4 T cells, and

CD8 T cells, therefore, overcomes the host innate and

adaptive immune response leading to a stage of chronic

infection.211–214 We review different immune cells that

involved in innate and adaptive immune response and

basic mechanisms of how the rapid expansion of early

T cell exhaustion or depletion leads to chronic HCV infec-

tion (Figure 5).

Antigen-Presenting Cells
KCs are the primary tissue-resident macrophages located in

the liver sinusoids play an essential role in the intrahepatic

innate antiviral response during HCV infection. These cells

first encounter microbial pathogens that enter the liver

through the natural antiviral program.215 A number of

researchers have shown that HCV core and NS3 proteins

can activate KCs via TLR to produce inflammatory cyto-

kines (IFN-β, IL-1β, IL-6, TNF-α) and these inflammatory

cytokines suppress HCV replication.216–220 Numbers and

expression of KCs specific markers (CD163 and CD33)

were found increased during chronic HCV infection.221,222

Figure 5 Hepatic adaptive response to inflammatory stress progresses to cirrhosis. Blood supply to the liver by both the hepatic artery and the portal vein brings potential

pathogens, including HCV. Kupffer cells and sinusoidal endothelial cells recognize HCV-derived pathogen-associated molecular pattern (PAMP). The activation of the innate

immune response through Kupffer cells recruit new adaptive immune cells (CD4 and CD8 T cells) and B cells. Sustained inflammation can lead to liver fibrosis, cirrhosis, and

HCC. Chronic hepatitis is a physiological adaptation that can be reversible after HCV cure. Pathological adaptation of the inflamed liver can lead to cirrhosis and HCC.
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Chronic HCV patients have higher levels of IL-1β as com-

pared to healthy controls. Some researchers showed that the

NLRP3/caspase-1 inflammasome activation by hepatic

macrophages during HCV infection produces IL-1β leading
to proinflammatory cytokine production implicated in the

liver disease progression.223 Although these reports support

that HCV generates a strong innate immune response, sev-

eral studies demonstrated that HCV infection is able to

neutralize the proinflammatory innate immune signaling

(TLR and RIG-1) in KCs and hepatocytes. Some research-

ers have shown that HCV is able to neutralize the inflam-

matory activity of peripheral mononuclear cells and

hepatocytes by interfering with TLR and RIG-1

signaling.224–231 The liver also contains some populations

of DCs and macrophages. Liver DCs can be two categories:

MDCs and PDCs. The myeloid-derived mononuclear cells

(monocytes) are the primary antigen-presenting cells that

prime the innate and adaptive immunity during HCV infec-

tion. These cells support T cell activation leading to the

generation of Th1 response with the production of IL-12

and TNF-α. The PDCs in the liver express PD-L1,

a molecule that induces antigen-specific tolerance.232

Natural Killer Cells (NK Cells)
About 30–50% of total intrahepatic lymphocytes are NK cells

in humans. ActivatedNK cells can kill target cells by releasing

perforin and granzyme from cytotoxic granules or by engage-

ment of death receptors on target cells. During acute infection,

NK cell activation leads to increased production of IFN-γ and
cytotoxicity. NK cells secrete TNF-α and IFN-γ that inhibit

HCV replication as well as cytolytic enzymes that destroy

HCV–infectedcells.233 The role of NK cells in HCV infection

is supported by an earlier publication showing that gene

encoding NK cell receptor KIR2DL3 and its ligand HLA-C1

was associated with spontaneous resolution of infection.234

The explanation for this genetic association was that the NK

cells from HLA-C1 homozygous individuals show increased

production of IFN-γ and greater degranulation than those from
nonhomozygous individuals.235 The NK cell phenotypes and

functional changes were found among patients with chronic

HCV infection. Increased expressions of activating NK cell

receptors such as NKp30, NKp44, NKp46, and NKG2Dwere

reported to be increased during chronic HCV infection.236–238

Some researchers published data showing the variation of NK

cell effector function, with increased cytotoxicity with

reduced production of IFN-γ and TNF-α.237–239 This dichot-
omy of NK cell function was found to be more pronounced

among patients who were receiving IFN-α antiviral

therapy.240 The mechanistic insight into this observation was

found to be due to the preferential activation of STAT1 expres-

sion over STAT4 by IFN-α treatment.241 At present, one report

claim that DAAs-induced HCV clearance corrects the altered

NK cell phenotypes and reduces STAT1 expression and

phosphorylation.242 Another recent study claims that HCV–

induced NK cell functional imprinting is not reversible.243 NK

Tcells are another group of innate cells, which comprise 26%

of intrahepatic lymphocytes and secrete IFN-γ, TNF-α, and

IL-2.244,245 Though its precise role in chronic infection is yet

unclear, there are indications that NKTcells may influence the

balance of Th1 versus Th2 responses to an HCV infection.246

CD4 and CD8 T Lymphocytes

Adaptive immune response in acute infection is acti-

vated when HCV antigen-specific T cells are primed by

APCs in the lymphoid organs, where they proliferate

and then migrate to the liver to execute their effector

functions.247 HCV-specific CD8 T cells can kill HCV–

infected hepatocytes via the perforin/granzyme lytic

pathway, but also by secretion of Fas ligand (CD178

or CD95L) and inflammatory cytokines, mainly IFN-γ to

clear HCV infection. The success of the adaptive

immune response to HCV requires proper interactions

between CD4 T cells and CD8 T cells. In addition to

acute resolving infection, the CD4 T cells also contri-

bute to the maturation of memory CD8 T cells that

prevent reinfection.248,249 However, impairment of CD8

T cells response is associated with chronic HCV

infection.250 The expansion of T-reg, expression of mul-

tiple co-stimulatory molecules, impaired proliferation

capacity, and cytokine production are some of the

mechanisms of impaired CD8 T cell response.251–255

During the chronic stage of HCV infection, CD4

T cells exhibit different phenotypes with a high expres-

sion of inhibitory receptors (TIM3, PD-1, and CTLA-4)

decreasing the production of IL-21.256,257 In chronic

HCV infection, PD-1 expression was associated with

impaired function of CD8 T cells with studies showing

that PD-1 inhibition reactivates CD8 T cells function,

proliferation, IFN-γ production, and viral clearance.258–

261 Tacke et al study show that HCV infection accumu-

lates CD33+ MDSCs in human peripheral blood that

suppresses CD8 T cell response through ROS.262 Lack

of resolution of HCV infection due to insufficient CD8

T cell response during chronic HCV infection relate to

the fibrogenic response in the liver.263

Dovepress Dash et al

Journal of Hepatocellular Carcinoma 2020:7 submit your manuscript | www.dovepress.com

DovePress
57

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


B Cell Response

The role of neutralizing antibodies and B cells in the

progression of HCV–induced chronic liver disease is

unclear. B cells may contribute more towards to humoral

immunity and antibody-dependent cellular cytotoxicity of

HCV–infected cells in the liver. Increasing evidence sug-

gests that neutralizing antibodies are associated with spon-

taneous clearance of HCV infection and reinfection.264–267

HCV accounts for 85–95% of mixed cryoglobulinemia,

a common extrahepatic manifestation of HCV. The cryo-

globulinemia occurs by HCV antigen-driven B cell clonal

proliferation leading to the deposition of circulating

immune complexes in small vessels of the skin, nerves,

kidney, liver, and joints. About 50% of patients with

chronic HCV virus infection have circulating cryoglobu-

lins, only about 10–15% show clinical disease of palpable

purpura, arthralgias, neuropathy, and glomerulopathy.268

Pathological Adaption to Chronic

Inflammation Leads to Liver Cirrhosis
The immune activation cross-talks with the metabolic path-

ways of immune and non-immune cells to allocate more

nutrients (ATPs, amino acids, sugar, and lipids) therefore

creating integrated immune stress response. However,

chronic inflammation results in repeated cell death, cell

injury, DNA damage leading to liver injury. Inflammatory

cells also produce chemokines, metabolites, and growth fac-

tors. Production of inflammatory cytokines activates cell

signaling, thus creates ISR pathways.269 Prolonged inflam-

mation and immune activation in the liver lead to pathologi-

cal adaptation. Due to this mechanism, chronic inflammation

promotes liver regeneration, fibrosis, and aberrant accumula-

tion of collagenous connective tissue leading to liver fibrosis.

Liver cirrhosis represents the pathological adaptation to

a long-lasting inflammation secondary to HCV infection

(Figure 5). Chronic inflammation can increase the risk of

HCC. The impaired immune regulation due to KCs, NK

cells, CD4 T cells, CD8 T cells, CD4 T-reg cells, and inflam-

masome activation are associated with HCC development.

A full discussion of the mechanism of chronic inflammation,

liver cirrhosis, and HCC falls outside the scope of this review

but can be found elsewhere.270,271

Inflammation and HCC Connection
Inflammation is a critical component of liver cirrhosis and

HCC development. It is unclear whether the HCV–induced

inflammation prevents HCC development (tumor

suppressor) or promotes HCC (oncogenic). For example,

the presence of life long chronic inflammation with

repeated cycles of hepatocyte death and regeneration

could be a driver of liver cancer in chronic HCV infection.

The inflammatory cells promote HCC by releasing ROS,

RNS, lipid peroxidation, and aberrant expression of cyto-

toxic cytokines. Many inflammatory cytokines released

during chronic inflammation such as TNF-α, IL-1β, IL-

23, IL-6 are associated with HCC development.272–274

This hypothesis is supported with the study by Ramzan

et al, which showed the presence of high-level liver-

infiltrating T and B cells in the cirrhotic liver with HCC

as compared to cirrhotic livers without HCC. In this case,

the presence of CD8 T cells in the cirrhotic liver promotes

HCC development supporting the pro-carcinogenic role of

inflammation.275 On the other hand, lymphocytes infiltrat-

ing the liver can be a host response to the virus when the

liver failed to clear the virus leading to chronic disease.

The sustained accumulation of lymphocytes in the liver

can be an unsuccessful host inflammatory response to

HCC as well. In this case, the virus-targeted sustained

immune activation, and cell death are an anti-tumorigenic

response or tumor-suppressive inflammation. The removal

of virus-associated immune surveillance by DAAs therapy

promotes HCC development, suggesting that HCV-

associated inflammation may be tumor suppressive. The

presence of low CD8 T cells and a high population of

suppressive T-reg cells correlate with HCC recurrence,

suggesting that antitumor surveillance role of inflamma-

tory cells inhibited by T-reg cells. In this case, the cirrhotic

microenvironment favors recruitment and expansion of

committed T-reg cells, thus establishing a state of immune

tolerance, ultimately contributing to the evolution of cir-

rhosis into cancer. A decreased number of innate immunity

members, NK and NKT cells, and increased accumulation

of T-reg cells supporting the hypothesis that suppressive

antitumor immunity correlates with HCC development in

chronic HCV infection.276 The changes in the immune

landscape after HCV cure lead to the reactivation of

HBV and herpes virus infection, suggesting that HCV

induced immune response may also suppress the growth

of other microbial contamination.277,278 The contribution

of inflammation in the development of HCC is unclear.

Lack of an animal model remains a significant challenge to

study the function of different immune components

against HCC development related to chronic HCV

infection.
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Bystander Oncogenic Mechanisms
Overlapping Host-Related Non-Sterile

Inflammation
The concomitant liver disease related to non-viral etiolo-

gies accelerates HCV–induced liver disease, cirrhosis

development, and HCC.279–287 Obesity is associated with

metabolic syndromes such as insulin resistance, type 2

diabetes, and NAFLD. A recent study using more than

900,000 US adults showed that the risk of death related

to HCC was 2-fold higher in men with BMI of 30–34.9

and 4.5 times higher with BMI greater than 35.279 Obesity

accelerates liver disease progression and HCC risk among

patients after HCV cure.280 Individuals who have meta-

bolic syndrome with obesity, plus diabetes with HCV

contributes to increased risk for HCC development.

Diabetes with HCV infection has a 2 to 3-fold increase

in HCC risk.281–284 The researchers also showed that HCC

development increased due to the combined effect of alco-

hol and chronic HCV infection.285–287 In addition to non-

viral agents, co-infection with the hepatitis B virus or

human immunodeficiency virus increases the risk of

HCC after HCV cure. Patients who have active HBV

replication have double risk of HCC development and

increased mortality as compared to single virus

infection.288 Likewise, patients with HIV infection have

an increased risk of developing liver cirrhosis and

HCC.289–291 The mechanism of chronic inflammation,

liver cirrhosis, and HCC development in the non-viral

insults are not different than HCV. ER stress regardless

of the etiology of liver disease leads to increased inflam-

mation, cell death, tissue-regeneration, fibrosis, and HCC

(Figure 6).

Bystander HCC mechanisms through non-

sterile inflammation:
The activation of oncogenes through point mutation and

loss of tumor suppressor was thought to be a dominant

mechanism for viral-induced cancer. The tumor suppressor

loss and the oncogene activation are not consistent with data

generated from the whole-genome sequencing of HCC

tumors. This tumor centric-view is changing because HCC

still develops in the absence of HCV after DAA treatment.

The viable alternative hypothesis is that the cirrhotic micro-

environment promotes HCC through bystander mechan-

isms. The recent development of microbiota studies

suggesting that microbe alters the microenvironment that

transform the surrounding cells through a bystander

mechanism. Studies found that the metabolites derived

from gut bacteria-infected cells enter the surrounding

cells, induces DNA damage, and chromosomal instability

that causes colon cancer.292–294 This new information has

generated considerable interest in understanding whether

HCV infection-associated cellular stress can promote can-

cer by promoting the survival of nearby uninfected cells

through a bystander mechanism. A study by Kofahi et al has

shown that HCV infection of cultured cells induces apop-

tosis and pyroptosis in both infected and uninfected bystan-

der cells.295 The HCV–induced bystander apoptosis

occurring in neighboring cells is cell-cell contact-

dependent. Intracellular communication between cell-cell

occurs through adhesion complexes, including adherens

junctions, tight junctions, and gap junctions. Among

those, intracellular communication mediated by gap junc-

tions is vital for cell survival in various tissues.296 This

observation suggests that GJIC plays an essential role in

Figure 6 Sterile inflammation associated with host-related non-viral factors accelerates HCC progression during chronic HCV infection. Multiple host-related factors induce

hepatic stress (ER stress) and low-grade inflammation in the liver. The most common causes of hepatic stress and inflammation include metabolic syndrome, type 2 diabetes,

NAFLD associated with obesity and high-calorie diet, alcohol, gut microbiota, and autoimmune diseases. The bystander effect of inflammation associated with these non-viral

causes can accelerate liver damage, persistent fibrosis, and HCC risk.
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tissue homeostasis, and its downregulation causes many

human diseases. In the liver, normal hepatocytes express

Cx26 and Cx32, forming gap junction at the cell-cell con-

tact areas.297,298 Altered expressions of these proteins occur

in HCC tumors. One study shows that Cx26 expression

abolished in HCC,299 and other studies show that Cx32

remained cytoplasm instead of the plasma membrane.300

Subsequent research indicates that the cytoplasmic Cx32

is critical for the expansion and self-renewal of cancer stem

cells in hepatocellular carcinomas.301 The cytoplasmic

expression of Cx32 is an integral part of cancer stem cells

and high-grade malignancy.302 The radiation therapy is the

most widely cited inducer of the bystander effect in cancer

cells. Molecules such as ROS, RNS, protein factors, and

DNA molecules can also utilize GJIP to spread from

damaged cells to the surrounding healthy cells. The exoso-

mal transfer of cargoes is implicated in the bystander cancer

mechanism. The number of molecules, including TNF-α,
TGF-β1, IL-6, IL-8, and nitric oxide are involved in cell-

cell communications.303,304 Earlier studies showed that the

overexpression of Cx32 reduces HCC growth.305 Cx32

knockout mice show increased susceptibility to chemical

hepatocarcinogenesis.306–308 A similar mechanism trig-

gered by the overlapping metabolic liver disease promoting

HCC after viral cure needs to be determined.

Mechanisms of HCC Development
After Viral Cure by DAAs
In this section, we review literature showing the impact of

antiviral medicine on the long-term healing of liver inflam-

mation and hepatic parenchymal injuries associated with

chronic infection. We discuss some of the recent publica-

tions that have examined the benefits of viral cure at the

level of cirrhosis regression, virus-induced cell program-

ming, and indirect effect of a component of innate and

adaptive response after HCV cured by DAAs.

Reversal of Cirrhosis After DAAs

Treatment
Patients who have not developed cirrhosis at the time of

DAAs treatment have a significantly lower risk of develop-

ing HCC as compared to those who have established

cirrhosis.309 The status of cirrhosis after viral treatment is

an essential predictor of HCC development. Cirrhosis is

also a risk factor for increased mortality due to liver failure.

The survival of patients with cirrhosis varies considerably

based on the stage of the disease. For instance, one-year

mortality for stage 1 fibrosis is 1%, stage 2 is 3%, stage 3 is

20%, and stage 4 is nearly 57%.310 Not all patients show

cirrhosis regression after viral cure by IFN-based antiviral

therapy. Previous studies have shown that SVR is asso-

ciated with cirrhosis regression in nearly 55% of patients.

A meta-analysis of a large number of multicenter clinical

studies demonstrated that SVR by IFN-based antiviral ther-

apy have a three-fold increased chance of cirrhosis regres-

sion that those who did not show SVR.310–316 Data on

cirrhosis regression after HCV cure by DAAs is emerging

based on the assessment of liver stiffness assessment by

transient elastography.317–322 The available data suggest

that viral cure by DAAs display significant benefits and

cirrhosis regression. A study reported by Fehily et al

summarizes that the DAA-induced HCV treatment

improves clinical outcome and mortality associated with

cirrhosis.323 Tacke et al study examined the baseline risk

factors related to the success of DAAs treatment using 4946

chronic HCV patients. They found that obesity, diabetes,

cirrhosis, and alcohol consumption are associated with per-

sistent liver enzyme elevation post HCV cure.324 These data

suggest that overlapping liver injury related to non-viral

etiologies also contributes to persistent cirrhosis after

HCV cure.

Reversal of Direct Mechanisms After

DAAs Treatment
To understand the reason for increased risk of HCC after

DAA-based antiviral treatment, the number of investigators

started examining the cancer pathways either in liver and

tumor samples after viral eradication. As discussed earlier,

epigenetic changes can contribute to open chromatin,

increase expression of the cancer-specific gene that leads to

HCC development. Two studies have used chromatin immu-

noprecipitation and DNA sequence analysis from chronic

HCV patients with or without DAAs treatment.325,326

Hamdane et al showed that the expression levels of 2

genes: sphingosine kinase 1 and SOX-2, a transcription fac-

tor, did not change after HCV cure. The expression levels of

these two genes were examined in the samples of patients

before and after HCV cure as well as HCV–induced HCC

samples. These two genes are important in HCC develop-

ment since the functional knockout of these two genes has

been shown to inhibit HCC growth.325 A recent publication

supports the data showing that SOX gene signatures are

associated with the expression of liver cancer dedifferentia-

tion markers.327 The development of an oncogenic signature
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relates to SOX expression. Perez et al also found that epige-

netic signature was maintained after viral cure by DAAs, not

by IFN treatment, therefore explaining as to why HCC is

more frequent in DAA-treated group as compared to IFN.

They identifiedWnt10A, JUNB, FOSL2,MYCN, TNFAIP3,

KLF4, and EDNA1 genes that are not reversed after DAAs.

The study identified numerous genes related to cytoskeleton

remodeling, endocytosis, virus release, and host cell cycle.326

Exosomes are major modulators of tumor microenvironment

in cirrhosis as they carry numerous miRs implicated in can-

cer. Santangelo et al examined the impact of DAAs on

exosomal miRs in plasma samples of chronic HCV patients.

They have looked at miR-122 since it is involved in HCV

replication, and miR-122 loss is associated with HCC devel-

opment. They showed that miR-122-5p, miR-222-3p, miR-

146-5p, miR-150-5p, miR-30C-5p, miR-378a-3p, miR-20a-

5p were enriched in exosomes derived from HCV–infected

cells. They found liver-specific miR-122 levels showed

a significant decrease after DAAs therapy. They also found

decreased expression of all thesemiRsmentioned above after

DAAs.328 Koberle et al study also demonstrated that serum

miR-122 levels remained low among patients who had SVR

after DAAs.329 Villani et al study tested the hypothesis that

DAAs treatment-induced VEGF expression promotes liver

cancer angiogenesis. They performed an observational study

using 117 cirrhotic patients who have been treated with

DAAs to determine whether increased serum VEGF levels

correlate with HCC development. They found serum VEGF

levels increased after four weeks and remained elevated up to

the end of treatment.330 Fallaci et al verified a similar hypoth-

esis on HCC occurrence and recurrence among cirrhotic

patients after DAAs. They showed that the VEGF expression

was significantly related to serum angiopoietin-2 levels.

They also showed that angiopoietin-2 expression in HCC

and cirrhotic tissue before DAAs treatment relates to the

risk of HCC recurrence and occurrence.331 Recently, we

reported that HCC developed in the cirrhotic liver when the

hepatic adaptive response reprogrammed to switch from pro-

death to the pro-survival state through autophagy switching.

In addition, our laboratory illustrated that virus-associated

ER stress and tumor suppressor loss (p53 and Rb, miR-122

levels) were restored more by IFN-induced HCV clearance

than DAAs in cell culture models.136,137,206 Based on these

data, we propose that understanding the impact of viral cure

on the resolution of direct hepatic parenchymal injuries and

indirect immune restoration may explain as to why specific

individuals remain at risk of HCC occurrence and recurrence.

DAAs Treatment on Innate Immunity
In the following section, we will review data correlating

with the impact of HCV cure on the reversal of immune

mechanism that could explain the possible reason of HCC

recurrence after HCV cure. Meissner et al examined the

impact of HCV clearance by DAAs on endogenous intra-

hepatic IFNs. They compared the expression level of type

I, type II, and Type III IFN and ISGs before and after HCV

treatment. The study showed that HCV clearance resulted

in decreased expression of type II and type III IFNs, their

receptors, and ISG in the liver. Unexpectedly, HCV cure

by DAAs did not reduce the appearance of type I IFN

signaling, IFNA2 gene expression remained high among

those who achieved SVR. The study concluded that acti-

vation of type I IFN signaling is important for HCV

elimination.332 A study by Alao et al showed that patients

who achieved SVR at 12 weeks after treatment displayed

higher ISG expression levels in baseline liver biopsies and

a higher frequency of pSTAT1 and TRAIL-expressing,

degranulating NK cells in baseline blood samples than

those who experienced a virological breakthrough. The

downregulation of ISGs was rapid after HCV RNA sup-

pression by DAAs.333 Another study by Sung et al showed

that the expression levels of IFN-β, IFN-induced protein

44, and CXCL10 cytokine levels decreased and normal-

ized after DAAs treatment in the peripheral blood mono-

nuclear cells. The conclusion of this study was that DAAs

treatment normalizes type I IFN response.334 Debes et al

study measured serum cytokines levels among 13 patients

who developed HCC after DAAs. Among 22 different

cytokines, nine of them (MIG, IL-22, TRAIL, APRIL,

VEGF, IL-3, TWEAK, SCF, and IL-21) presented signifi-

cantly higher in serum before treatment, which eventually

developed HCC.335 These studies now provide informa-

tion regarding that DAA-induced HCV clearance does not

restore the innate immune surveillance completely. NK

cells are an essential component of the innate immune

response in HCV infection. People who clear HCV infec-

tion naturally show increased expression of the activating

receptors (NKp44 and NKp46) and decreased expression

of the inhibitory receptors NKG2A associated with strong

T cell response.336 Golden-Mason et al reported that rapid

viral clearance by DAAs results in normalization of NK

cell function, reduced cytotoxicity and downregulation of

cytotoxic NK cell signaling by TRAIL, NKp30, and

NKp46.337 Spaan et al showed downregulation in TRAIL-

mediated killing by NK cells during DAAs therapy.338
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A report by Stevenson et al demonstrated that DAAs

therapy normalized NK cell function, and decreased

expression of CXCL-10, CXCL-11 levels associated with

NK cell activation and function suggesting functional

restoration of NK cells after viral cure by DAAs.339

However, some researchers claim that rapid decrease or

normalized immunosurveillance causes early HCC occur-

rence after DAAs. The activating receptor NKG2D and its

ligands play a crucial role in the immune response to

HCC. Two studies found that reduced NKG2D and ligand

expression in HCC correlates with HCC recurrence and

early occurrence.340,341 MICA, which is one of the ligands

for the NKG2D and their interaction, is vital for NK-cell

cytotoxic effect for HCC cells. HCC sheds membrane-

bound MICA as soluble MICA and downregulates the

expression of NKG2D on the NK cell surface, explaining

a mechanism of how HCC escape NK-cell mediated

immune surveillance.342,343

DCs play a critical role in sensing virus infection through

pattern recognition receptors. This process coordinates the

innate and adaptive immune response to HCV infection.

Several reports claim that the impairment of MDC function

and production of cytokines (IL-12, TNF-α, IFN-α/IFN-β) in
chronic HCV infection.344–346 Laursen et al examined solu-

ble CD163 released from activated liver macrophages in

chronic HCV, and histological activity after DAAs. They

found that serum CD163 levels decline rapidly after success-

ful DAAs therapy and are associated with histological

inflammatory activity and fibrosis.347 Kostadinova et al eval-

uated the serum level of ALTwith the plasma level of sCD14,

sCD163, autotaxin, and Mac2BP with HCV treatment

response to DAAs. They found levels of these immune

activation markers declined and normalized after DAAs.

AST level was well correlated with sCD163, which is a KC

activation marker.348MAITcells are innate-like lymphocytes

that are activated in chronic HCV infection due to the syner-

gistic action of IL-18, IL-12, IL-15, and IFN-α/IFN-β that

trigger granzyme B release. MAIT cell number is signifi-

cantly decreased and inversely correlates with liver inflam-

mation and fibrosis.349 One report claims that DAA-induced

HCV clearance does not restore MAIT cell defects, which

seems different than IFN-based antiviral therapy.350

Cannizzo et al also found that MAIT cell function is not

restored after DAAs in HIV/HCV co-infected patients.351

DAAs Treatment and Adaptive Immunity
Cytotoxic T cell response is restored when someone recovers

from HCV infection naturally, which is characterized by the

appearance of HCV-specific T cells expressing IL-7 receptor

alpha (CD127), a marker of memory T cells and anti-

apoptotic molecule Bcl-2.352 Chronic HCV infection results

in T cell exhaustion and the loss of effector T cell function

with the eventual disappearance of the majority of HCV-

specific CD8 T cells from the blood and liver. Burchill et al

examined the composition of CD8 T cells in the peripheral

blood from nineteen HCV patients treated with DAAs. They

found that HCV clearance leads to a rapid increase in the

frequency of HCV-specific CD8 T cells. In contrast,

a significant reduction of the PD-1 on HCV-specific T cells

was observed, suggesting the partial restoration in the HCV-

specific CD8Tcell exhaustion state.353Weiland et al reported

that TCF1+CD127+PD-1+ HCV specific T cells expressing

both exhaustion and memory markers were found in subjects

with chronic HCV infection, and those T cell subsets levels

were found to remain unchanged during and after DAAs

treatment. This subset was increased in one patient who

relapsed and differentiated into terminally exhausted HCV-

specific CD8 T cells. These cells express higher levels of

eomes and produce low IFN-γ and TNF-α upon antigen

challenge. These CD8 T cells were distinct from memory

CD8 Tcells (CD127+ PD-1-) that appear during spontaneous

resolution.354 Aregay et al studied whether HCV cure by

DAAs could restore the functionality of exhausted HCV-

specific CD8T cell response. Their data showed that the

exhausted HCV-specific CD8 T cells remain functionally

impaired after HCV cure in all 40 patients treated with

DAAs.355 Vranjkovic et al evaluated the function of circulat-

ing CD8Tcells inHCV-related cirrhotic patients. They found

a progressive shift in CD8 T cells subset distribution in all

cirrhotic patients even after HCV cure. The authors con-

cluded that the severity of liver fibrosis in these patients

relates to the presence of hyperfunction CD8 T cells in the

liver.356 All these results suggest DAA-induced HCV cure

does not restore the exhausted phenotype of HCV-specific

CD8 T cell response.

CD4 helper T cells are essential for mounting appropri-

ate HCV-specific CD8 T cell response and are needed for

natural clearance of infection.357,358 Intrahepatic regulatory

CD4 T cells and CD4(+)CD25(+)FoxP3(+) T-reg cells are

expanded in the blood and liver of patients with chronic

HCV infection, and they are not decreased after viral cure

by IFN-based or DAA-based therapy.359,360 Langhans et al

analyzed T-reg cells before and after DAAs at 12 and 24

weeks. They found that DAAs do not normalize the activa-

tion status of T-reg cells, and these cells persist for a long

period after viral elimination.361 One recent study showed
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that gamma delta T cell dysfunction in chronic HCV infec-

tion is not reversed after HCV cure by DAAs, indicating

this functional defect may have implications for suscept-

ibility to HCC.362 Burchill et al showed that DAAs therapy

results in (i) the reconstitution of lymphocyte populations in

the peripheral blood; (ii) re-differentiation of memory

T cells towards an effector phenotype; (iii) a reduction in

the expression of some, but not all inhibitory molecules on

bulk and viral-specific CD8 T cell populations; and (iv)

a reduction in the activation status of circulating NK cells.

B cells are the source of humoral anti-HCV antibodies that

are important in resolving HCV infection.353 Although the

human immune response is not the sole contributor to HCV

resolution, activation of B cell response is associated with

B cell-related abnormalities such as mixed cryoglobulins

among 40–60% patients and CV in 5–10% patients.

Comarmond et al tested the impact of DAAs treatment on

HCV-related CV of 27 patients. They reported that about

88.9% of patients show the complete clinical response of

CV after DAAs and restored disturbances in peripheral

B cell homeostasis.363 Saadoun et al examined the remis-

sion of vasculitis after the DAAs treatment of 41 patients,

and they reported 37 patients (90.2%) showed complete

clinical response, which was associated with virological

response.364 A study by Chang et al demonstrated that

resolution of HCV infection with DAAs leads to a marked

reduction in the frequency of T-bet+ B cells. Re-exposure of

convalescent (cured) B cells to viremic plasma and recom-

binant HCV E2 protein led to the re-expression of T-bet.

This study posited that the antigen-driven T-bet expression,

a critical suppressor of B cell activation in chronic HCV

infection, is reversed after DAAs therapy.365

Development of Accurate
Biomarker for Cirrhosis Regression
and Early HCC Detection
The current DAAs therapy is inducing an incredibly high

rate of HCV clearance in most patients, including those

with liver cirrhosis. It is expected that the cured patient

population will increase in the future, and many of these

cured patients will have overlapping non-viral liver dis-

eases. There is substantial evidence showing liver injury

persists after HCV cure among cirrhotic patients. These

patients remain at risk of persistent cirrhosis and HCC

development. The regression of liver fibrosis is a slow

process after HCV treatment. Some cirrhotic patients

who have underlying liver disease related to alcohol,

type 2 diabetes, and obesity are still at risk of HCC

development. Screening for HCC is recommended among

patients who have cirrhosis at the time of DAAs treatment.

There remains a clinical challenge to develop accurate

tests for persistent risk of HCC in the early stratification

of these patients. Liver biopsies are no longer performed to

diagnose cirrhosis. The assessment of liver cirrhosis is

now performed by noninvasive approaches, including

liver imaging (hepatic elastography/fibroscan) and serum

biomarkers.366 Two serum fibrosis scores, namely fibrosis

4 (FIB-4) and the AST to platelet ratio index (APRI), have

been widely used in staging liver fibrosis.367–369 The only

currently accepted HCC tumor biomarker, AFP is a 70-

kDa-serum glycoprotein produced by fetal liver during

development. The serum levels of AFP are increased dur-

ing HCC. AFP is present in three different forms based on

the lectin-binding pattern: AFP-L1 AFP-L2 and AFP-L3.

Serum levels of AFP-L1 increased during chronic hepatitis

and cirrhosis whereas AFP-L3 levels increased during

HCC. The AFP generally has suboptimal sensitivity and

specificity for HCC surveillance.370 This protein can be

detected in ovarian, pancreatic, stomach and testicular

cancers as well. Des-γ-carboxyprothrombin is an abnormal

form of prothrombin induced by vitamin K absence-II that

serum levels are elevated in patients with HCC. In addition

to these serum proteins, ultrasound-based imaging is also

recommended for HCC screening. Recently, computed

tomography scanning and magnetic resonance imaging

have shown to have better sensitivity for HCC screening.

As discussed in this review, there are many potential

targets that can be explored in the development of

a serum biomarker for early HCC. Since the current

method still lacks sensitivity for early prediction of neo-

plastic growth in liver, its is necessary to develop a novel

biomarker that accurately measures the hepatic adaptive

response to virus-associated cellular stress, immune cell

activation, and liver injury.

Development of Protective Vaccine
Although the DAA-based antiviral treatment is inducing

a very high rate of viral cure, the number of new HCV

infection rates is increasing worldwide. Most of the new

infections remain undiagnosed because both acute and

chronic HCV infections are primarily asymptomatic. In

the US, only 50% of infected people are aware of their

HCV status.371 The risk of reinfection after DAAs treatment

remains a major problem especially among intravenous

drug users.372,373 The current DAA-induced viral clearance
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does not provide protection for reinfection or reversal of

liver disease-related complications. A prophylactic vaccine

is needed since DAAs treatment is unaffordable in many

developing nations. Protective immunity to HCV reinfec-

tion requires expansion of a broad and polyclonal memory

of CD4 T and CD8T cell response374,375 as well as genera-

tion of neutralizing antibodies.376 There are a number of

challenges that exist for the development of a multivalent

vaccine for HCV, including the extraordinary diversity of

the virus, seven genotypes with more than 80 subtypes, viral

variants associated with resistance to T cell and antibody

response. At present, there are two main vaccine candidates

moving for clinical trials. The first vaccine was based on

purified recombinant proteins targeting the viral envelope

glycoproteins called E1E2 mixed with MF59 adjuvant (an

oil-in-water emulsion). The initial study shows that this

formulation induced neutralizing antibody responses in

chimpanzee.377,378 Preclinical evaluation of this vaccine in

human volunteers showed that it generates a neutralizing

antibody response as well as CD4 T cell response against

viral envelope proteins E1 and E2.378,379 A second vaccine

was developed based on the use of recombinant replication-

defective adenovirus containing the entire non-structural

proteins.380,381 The second generation of this vaccine

approach includes heterologous priming first with the

Chimpanzee Adenovirus 3 Nonstructural (AdCh3NS), fol-

lowed by boosting with another Modified Vaccinia Ankara

NS (MVA NS) vaccine. This approach appears to be gen-

erating a broad and strong T cell response. A recent study in

human volunteers shows that optimal priming and boosting

of these vaccine generate high frequencies of polyfunc-

tional, elicited broad CD8 T cells response, IFN-γ produc-
tion, memory cell development, and durable maintenance of

HCV-specific T cell response.382 A Phase II clinical trial of

this vaccine is underway in a cohort of HCV–infected

intravenous drug users (clinicaltrails.gov, NCT01436357).

Vaccines are available for hepatitis A and hepatitis

B. Availability of vaccine for HCV will be a step forward

for global immunization strategies for hepatitis viruses.

Summary and Conclusions
HCV infection is one of the major causes of cirrhosis and HCC

worldwide and is associated with high mortality. It is expected

that DAA-based antiviral treatment will reduce the progressive

liver disease and liver-related mortality associated with HCV

infection. However, the risk of HCC persists after HCV treat-

ment among cirrhotic patients. The population of HCV-cured

cirrhotic patients is expected to increase. These patients remain at

risk for liver disease progression due to non-viral risk factors

including obesity, alcohol, diabetes, and other autoimmune dis-

eases. Fatty liver is a particular threat to the long-term healing of

cirrhotic patients after HCV cure. These patients need to remain

under surveillance for liver complications, includingHCC. Since

cirrhosis regression is a slow process, the long-term benefits of

viral cure among cirrhotic patients are uncertain. This review

provided molecular basis on how hepatic pathological adaption

to viral insults and the immunological mechanisms associated

with development of cirrhosis and HCC occurs during chronic

HCVinfection. The fibrosis regression and restoration of hepatic

injury are important for reduction ofHCC risk. The development

of novel biomarkers to evaluate the extent of immune restoration

and reduction of cellular injuries is needed for early prediction of

persistent cirrhosis and HCC. The current DAA-induced viral

elimination does not provide immune protection for reinfection

among intravenous drug users. Theprevention ofHCVtransmis-

sion and reinfection throughvaccination is an important aspect of

post-cure management and a key to the global elimination of

HCV infection.
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