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Purpose: Simple methodology for preparation of metal nanoparticles such as AgNPs uses

an methanolic aqueous medium at room temperature or a solvent-free procedure under

microwave irradiation. The prepared AgNPs showed a significant antimicrobial effect against

Gram-positive bacteria, Gram-negative bacteria, and fungi.

Methods: The modified methoxypolyethylene glycol bishydrazino-s-triazine (mPEGTH2)

showed remarkable activity for reducing Ag+ to Ag0 in an aqueous methanolic solution and

using a solvent-free method (solid phase) under microwave irradiation. In the solid phase synthesis,

the size and shape of the AgNPs can be controlled by varying the weight ratio of mPEGTH2 to

AgNO3 used. In addition, the antimicrobial activity depends on the ratio of mPEGTH2 to AgNO3.

The mPEGTH2-AgNPs (2:1) demonstrated higher antimicrobial activity compared to mPEGTH2-

AgNPs (1:1) against Gram-positive bacteria, Gram-negative bacteria, and C.albicans.

Results: This work presents simple methods for the synthesis of AgNPs using modified

methoxypolyethylene glycol with bishydrazino-s-triazine (mPEGTH2); a solution method,

using methanol-water medium at room temperature, and a solvent-free (solid phase) method,

employing microwave irradiation or direct heating which could be used for the preparation of

AgNPs on large scale. In the solid phase, ratios ofmPEGTH2 toAgNO3 (1:1 or 2:1, respectively)

are very important to control the size and shape of AgNPs. While in solution phase is not

necessary where the molar ratio used is 10:1. Most of the experimental methods resulted in

AgNPs ranging in size from 7 to 10 nm as observed from XRD and TEM characterization. The

antimicrobial activity of the AgNPs was also dependent on the weight ratio of mPEGTH2 to

AgNO3, with a large effect as observed when using the solvent-free method. The mPEGTH2-

AgNPs (2:1) demonstrated higher antimicrobial activities compared to mPEGTH2-AgNPs (1:1)

against S. aureus, S. epidermidis, E. faecalis, E. coli, P. aeruginosa, S. typhimurium, and C.

albicans. In all cases, the MICs and MBCs of mPEGTH2-AgNPs (1:1) were lower than those of

mPEGTH2-AgNPs (2:1).

Conclusion: In summary, mPEGTH2-AgNPs (2:1) is a promising candidate to kill patho-

genic microbes. In particular, the method used for the preparation of AgNPs by using

polyethylene glycol polymer modified with bishydrazino-s-triazine has the most potential

and would be the most cost-effective method. This method of the synthesis of nanoparticles

may be suitable for the preparation of other metal nanoparticles, which would allow for

numerous applications in medicinal and industrial.
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Introduction
Nanoparticles have important roles in materials science,

chemistry, physics, medicine, and numerous other fields.1–4

Therefore, there is a strong need to create a newmethodology

for the synthesis of metal nanoparticles in large scale. Silver

nanoparticles are utilized with increasing frequency in var-

ious fields, including medicine and agriculture, due to their

unique physical and chemical properties.5 Most notably,

AgNPs have been used for pharmaceutical applications,

such as antibacterial6 agents and anticancer agents.7,8

Recently, the use of AgNPs has expended to other applica-

tions, such as textiles, wound dressings, and biomedical

devices.9–11

Various methods have been used for the preparation of

AgNPs. Generally, the synthesis of nanoparticles has been

carried out using three different approaches: Physical

methods;12,13 chemical methods using water or organic

solvents;1,14,15 and biological methods.16–19

Chemical methods usually employ three main compo-

nents, which are metal precursors, reducing agents, and

stabilizing/capping agents. The major advantage of chemi-

cal methods is that they have high yields compared to that

of physical methods. On the other hand, chemical methods

are tremendously expensive; additionally, the materials

used for AgNPs synthesis, such as citrate, borohydride,

thioglycerol, and 2-mercaptoethanol are toxic and hazar-

dous materials. Furthermore, during the synthesatic pro-

cess, numerous toxic and hazardous byproducts are

generated.20

Unlike chemical methods used for AgNPs synthesis,

biological methods21 are simple, rapid, non-toxic, depend-

able, and green; additionally, the AgNPs produced are of

well-defined size and morphology under optimized condi-

tions. However, particle characterization is necessary

because the physicochemical properties of the particles

could have a significant impact on their biological

properties.22,23

Several methods have been presented for the synthesis of

AgNPs using green, cost effective, and biocompatible meth-

ods without the use of toxic chemicals. In this green chemistry

approach, researchers have used several different types of

bacteria.21,24–26 Additionally, several biomolecules, such as

biopolymers,27 starch,28 and amino acids29 have been used.

The use of biological molecules for the synthesis of AgNPs is

eco-friendly and environmentally safe, and appeared to be

useful for controlling of particle size and shape, which is an

important factor in biomedical applications.30,31

Poly(ethylene glycol) (PEG) is a biocompatible poly-

mer used extensively in many fields, including drug deliv-

ery, gene delivery, lithium polymer electricity storage

systems, etc.32 Two approaches have been previously

used to activate the hydroxyl terminal of PEG through

the changing the hydroxyl group to a more reactive

group.33

In addition, methoxypolyethylene glycol (mPEG) is a

mono-protected form of PEG that is a biocompatible poly-

mer and has unique properties that make it particularly

useful for many pharmaceutical applications.34 The unique

solubility behavior of mPEG in water and several organic

solvents allowed mPEG and its derivatives to be easily to

purify from low molecular weight organic impurities by

using simple methods, such as precipitation and centrifuga-

tion. However, the hydroxyl group of mPEG is not reactive

enough to allow direct reaction with other molecules. Thus,

the terminal hydroxyl group of the mPEG must be deriva-

tized to a more reactive group to allow for reaction with

other groups present in the biomolecule. Cyanuric chloride

(2,4,6-trichloro-s-triazine) is typically used to activate the

terminal hydroxyl group of mPEG due to its low cost,

commercially availability, chemo-selective reactivity, and

biocompatibility due to its having three reactive sites.35–38

In this regard, we report here the synthesis of an mPEG

bishydrazino-s-triazine derivative and its use as a reducing

agent to produce AgNPs using solution phase (methanol-

water) or solvent-free method (solid phase) under microwave

irradiation, the antimicrobial activity of the synthesized

AgNPs was evaluated as well.

Materials and Methods
Methoxypolyethylene glycol (mPEG) with molecular

weight 2000 or 5000 and 2,4,6-trichloro-s-triazine (cyanu-

ric chloride) were purchased from Sigma-Aldrich. The

AgNO3 salt was purchased from Merck. All of the chemi-

cals used were analytical grade and were used without

further purification. A Fourier transform infrared (FT-IR)

spectrometer (Nicolet, NEXUS-670); a UV-vis spectro-

photometer (Shimadzu UV-1208 model); and an X-ray

diffractometer (XRD) (X’Pert PRO, PANalytical BV,

Almelo, the Netherlands) using CuKα radiation were

used for the characterization of AgNPs.39 Transmission

electron microscopy (TEM), equipped with energy disper-

sive X-ray (EDX) analysis, was used to study the size,

morphology, and composition of the AgNPs. Histograms

of the size distribution of the AgNPs were calculated from
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the TEM images by measuring the diameters of at least 50

particles.39

Synthesis of Methoxypolyethylene Glycol

Dichloro-s-Triazine (mPEGTC2)
Methoxypolyethylene glycol (mPEG, 20 g of 2000 M.wt.

or 50 g of 5000 M.wt.) was dissolved in anhydrous ben-

zene (200 mL), and then cooled to a temperature between

5°C and 10°C. Cyanuric chloride (fivefold molar excess,

9.2 g in 200 mL benzene) was slowly added to the solution

of mPEG, followed by the addition of anhydrous sodium

carbonate (5.25 g, fivefold molar excess). The reaction

mixture was stirred at room temperature for 24h, and

then the solid inorganic salt was filtered out of solution.

Excess petroleum ether 40/60 was added to the filtrate and

mPEGTC2 derivative was precipitated as a white solid.

The precipitate was collected, then dissolved in benzene

(200 mL) and precipitated again with petroleum ether 40/

60. This process was repeated twice to remove any

unreacted cyanuric chloride and afford the pure intermedi-

ate product in 82–84% yield.

Synthesis of Methoxypolyethylene Glycol

Bishydrazino-s-Triazine (mPEGTH2)
The synthesized mPEGTC2 (10 g) was suspended in

200 mL of ethanol, followed by the slow addition of

20 mL of hydrazine hydrate (80%) under stirring at

room temperature. The reaction mixture was refluxed

for 6 to 8 h, and then cooled to room temperature; the

excess solvent and hydrazine hydrate were removed

under vacuum. The crude product was treated with

excess ether to afford a white solid, which was collected

by filtration, washed with ether, and then dried under

vacuum to produce the final product, mPEGTH2, in

nearly quantitative yield.

Synthesis of Silver Nanoparticles
Liquid Phase Synthesis of AgNPs at Room

Temperature

A solution of 10−3 M AgNO3 in 20 mL of deionized water

was added to a suspended solution of 10−2 M mPEGTH2

in 20 mL methanol with stirring at room temperature.

Stirring of the reaction mixture was continued for 24h.

The color of the solution changed from colorless to yel-

lowish-red then to black (Figure S1). The AgNPs were

collected using an ultracentrifuge (8000 rpm), washed with

aqueous methanol, and then dried under vacuum.

Solid Phase (Solvent-Free) Synthesis of AgNPs Using

Conventional Heating

AgNO3 salt was mixed with mPEGTH2 in two weight

ratios (1:1 and 1:2, respectively) and then heated directly

at 80°C for 30-sec (at 5-sec intervals) with continuous

mixing; during heating, the color changed from white to

grey and then to dark grey. The mixed solid product was

washed with aqueous methanol, then collected using ultra-

centrifuge, and then dried under vacuum for 24h.

Solid Phase (Solvent-Free) Synthesis of AgNPs Using

Microwave Irradiation

The AgNO3 was mixed well with mPEGTH2 in two

different weight ratios (1:1 and 1:2, respectively) at room

temperature. The solid mixture was heated using micro-

wave irradiation at 60°C, 600 W for 5-sec to 10-sec. The

AgNPs were suspended in a 1:1 methanol-water mixture,

collected using an ultracentrifuge, washed with aqueous

methanol, and then dried under vacuum.

Biology
Test-Microorganism

The antibacterial activities of mPEGTH2Ag (2:1) and

mPEGTH2Ag (1:1) were assessed against two bacterial

groups and one fungus. Gram-positive bacteria

(Staphylococcus aureus ATCC 29213, Staphylococcus epi-

dermidis ATCC 12228, and Enterococcus faecalis ATCC

29212) and Gram-negative bacteria (Escherichia coli

ATCC 25922, Pseudomonas aeruginosa ATCC 27853,

and Salmonella typhimurium ATCC 14028) were main-

tained in a Brain Heart Infusion (BHI) medium at 20ºC;

300 mL of each stock culture was added to 3 mL of BHI

broth. Overnight cultures were kept for 24h at 37 ± 1ºC.

After 24h of incubation, the purity was checked, and the

bacterial suspension (inoculum) was diluted with a sterile

physiological solution (for the diffusion and indirect

bioautographic tests) to 108 CFU/mL (turbidity =

McFarland barium sulfate standard 0.5). In the case of

the fungus Candida albicans ATCC 60193, the medium

used for antagonistic activity against tested fungi was

Potato Dextrose Agar (PDA).

Antimicrobial Activity Evaluation (Well Diffusion

Method)

The samples of mPEGTH2Ag (2:1 and 1:1) were prepared

at a concentration of 3 mg/mL, dissolved in dimethylsulf-

oxide (DMSO). Preparation of sterilized Mueller-Hinton

agar plates seeded with pathogenic bacteria was per-

formed; 60 µL of each ratio of mPEGTH2Ag was
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prepared and placed in wells on the agar plates. The

bacterial plates were incubated at 37°C for 24h, while in

case of fungi; the used medium in antagonistic activity

against tested fungi.40 Antimicrobial activities were deter-

mined by the inhibition zone after incubation. Discs of

gentamicin (30 µg) was used as a positive control in all of

the experiments.

Minimum Inhibitory Concentration (MIC)

Determination

The antibacterial activity of mPEGTH2Ag (2:1) and

mPEGTH2Ag (1:1) was studied by employing a micro-

dilution method, using Mueller-Hinton broth according to

the clinical and laboratory standards institute (CLSI)

guideline.41 The inoculum was prepared as described pre-

viously. Stock concentrations of mPEGTH2Ag (2:1) and

mPEGTH2Ag (1:1) were both 3 mg/mL. Further 1:2 serial

dilutions were performed by addition of the culture broth

to reach concentrations ranging from 1.5 to 0.235 mg/mL.

Then, 90 µL samples of the different dilutions were dis-

tributed in separate wells of a 96–well plate, as well as a

sterility control and a growth control (containing culture

broth plus DMSO, without antimicrobial substance). Each

test and growth control well was inoculated with 10 µL of

a bacterial suspension (108 CFU/mL). All experiments

were performed in triplicate and the micro-dilution trays

were incubated at 37 ºC for 24 h. After incubation, the

culture broth of each dilution was inoculated on nutrient

agar to detect MIC and MBC.

Results and Discussion
Synthesis of mPEGTH2
The chemical reduction method is the most commonly

used method for the production of silver nanoparticles

(AgNPs) despite the fact that it requires toxic and hazar-

dous inputs and produces environmentally harmful

byproducts.22 In order to avoid using and producing

toxic substances, many green methods have been

reported.42,43

In this respect and in our ongoing research for the

synthesis of metal nanoparticles (MNPs),39 we report here

that the modification of mPEG to mPEG-bishydrazino-s-

triazine derivative (mPEGTH2) and its application to the

synthesis of AgNPs by employing methanolic aqueous

medium or solvent-free conditions under microwave irra-

diation or conventional heating to provide a suitable alter-

native to traditional, chemical-based methods for the

synthesis of AgNPs.

In the first step of this method, mPEGwas activated using

cyanuric chloride 1 to afford the dichloro-s-triazine deriva-

tive mPEGTC2 2, and then reacted with hydrazine hydrate to

afford the bishydrazino-s-triazine derivative mPEGTH2 3 in

approximately quantitative yield (Scheme 1).

The FTIR of mPEGTH2 showed two sharp peaks at

3540 and 3420 cm−1 related to the NH (NH stretching

vibration) of the hydrazino groups, 2860 showed weak –

C-H stretch, and 1560 cm−1 (NH bending vibration), and

1097 cm−1 (C-O stretching vibration) (Figure S2).

Synthesis of AgNPs
The first approach was using an aqueous solution method

in which a solution of AgNO3 was added to a methanolic

solution of mPEGTH2 at room temperature and the mix-

ture was gently stirred overnight at room temperature to

reduce the Ag+ to Ago. The color of the solution changed

from colorless, to yellow, and then to red (Figure S1). The

AgNPs were collected using an ultracentrifuge for 20 min

(8000 rpm), dried, and then characterized using several

techniques. The proposed mechanism for reduction of Ag+

to Ago is illustrated in Scheme 2. From this proposed

mechanism, it is implied that the presence of van der

Waals forces between the positive charge of Ag+ and the

oxygen of the mPEGTH2 increase the capping efficiency

of mPEGTH2 for the surface of the AgNPs.44

In the second approach, both the microwave irradiation

and the conventional heating assisted the reduction of Ag+

to Ago via dimerization. This is likely due to the aggrega-

tion of Ag clusters into nanoparticles (Scheme 2).45 In

Scheme 1 Synthesis of mPEGTH2.
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addition, increasing the weight ratio of mPEGTH2 to

AgNO3 (from 1:1 to 2:1, respectively, for the solvent-

free method), is recommended to enhance the reduction

step and ensure the capping of AgNPs. In addition,

increasing the ratio of mPEGTH2 would also help to

control the particle size of AgNPs and increase their sta-

bility for several months in typical environmental

conditions.

Characterization of AgNPs
FTIR and UV-Spectroscopy Characterization

The FTIR spectrum for the mPEGTH2-AgNPs (Figure S3)

was analyzed to identify the active group of the

mPEGTH2, which are responsible for the reduction of

the Ag+ to Ago. The FTIR results of mPEGTH2-AgNPs

showed broad absorption peak at 3450 cm−1 related to the

NH (stretching vibration) of the hydrazino groups, 2885

weak –C-H stretch, and peak at 1467 cm−1 for the NH

(bending vibration), 1360 cm−1 represented the CH2 bend-

ing and the 1109 cm−1 represented the C-O stretching

vibration.

The broadness of the peaks at 3444 cm−1 for the NH

groups, confirmed that the hydrazine group responsible for

the reduction of Ag+ to Ag0. The obtained data agreed

with the proposed mechanism shown in Scheme 2 for the

formation of AgNPs.

The UV-visible spectroscopy (Figure 1) also confirmed

the formation of AgNPs in the presence of mPEGTH2. A

strong and slightly broadband for mPEGTH2Ag was

observed at 424 nm. This band is correlated to the surface

plasmon absorption band, which explains the formation of

the uniform, dispersed spherical AgNPs capped with

Figure 1 UV-visible spectra of AgNPs coated with different weight ratio of

mPEGTH2. (A) AgNPs from AgNO3:mPEGTH2 1:2 w/w; (B) AgNPs from

AgNO3:mPEGTH2 1:1 w/w.

Scheme 2 Synthesis of mPEGTH2AgNPs.
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mPEGTH2.19,46 The broadness of the band decreased in

intensity, with appearance of a shoulder at 375 nm, for

mPEGTH2-AgNPs (AgNO3:mPEGTH2, 1:1) as shown in

Figure 1A. This observation indicates an accumulation of

AgNPs with the change in chemical structure of

mPEGTH2.44 The obtained data agreed with the proposed

mechanism shown in Scheme 2 for the formation of

AgNPs, confirming a dependence on the weight ratio of

mPEGTH2 to AgNO3. This ratio is necessary in solid

phase synthesis to control the size and shape of the

AgNPs. While in case of the solution phase method, it is

not necessary because the molar ratio used is 10:1

mPEGTH2:AgNO3.

EDX and XRD Analysis
The elemental analysis of the AgNPs was performed using

EDX analysis, as represented in Figure 2; the EDX analy-

sis confirmed the presence of the silver signal related to

the AgNPs. Signal peaks were observed in the range of

2.5–4.0 keV, which corresponds to the binding energies of

crystalline silver.47 The strong signal peak near 0.2 keV

corresponds to the carbon in the mPEGTH2, connected to

the AgNPs. These results were confirmed by previous

reports that showed that AgNPs are crystalline in nature,

as supported by the same EDX results.19,47

The crystal structure of the mPEGTH2-Ag nanoparticles was

determined from the XRD patterns, as represented in Figure 3

(solution and solid-phasemethod). The data show a broad peak at

2θ = 20°, confirming the amorphous structure of mPEGTH2. The
mPEGTH2-AgNPs sample showed peaks at about 38.1°, 44.09°,

64.36°, 77.29°, and 81.31° for both of the prepared materials,

which related to the 111, 200, 220, 311, 222, 400, 331, and 420

planes, respectively. The intensive diffraction peak at 38.1°, which

is related to the {111} lattice plane of face-centered cubic silver,

indicates that pure AgNPs were formed.21,48 The diffraction

planes of the mPEGTH2-AgNPs indicated the presence of a

typical face-centered cubic structure of silver, according to the

available literature (Joint Committee on Powder Diffraction

Standards, JCPDS file No 04–0783).

TEM Analysis
The uniform and well-dispersed spherical shape of the

produced AgNPs and the resulting histogram were

observed from the TEM images (Figure 4A–C). The uni-

form shape is caused by the good coordinating and cap-

ping capability of the N-atom in mPEGTH2 to reduce the

Ag+ to Ago.

The Average particle sizes (D) were calculated using

the following equation:39

D = 0.9 λ/β cos θ
where β is the full-width at half–maximum of peaks

and λ is the X-ray wavelength.

The data showed that the particle sizes of mPEGTH2-

AgNPs synthesized using the solvent-free and the solution

phase methods (Figure 5), showed the formation of AgNPs

with diameter of 7 to 10 nm; this confirms that the weight ratio

of mPEGTH2 related to the AgNO3 is important in coating all

silver particles, especially in the solvent-free method.

Antimicrobial Activity
The antimicrobial activities for the prepared mPEGTH2-Ag

nanoparticles were evaluated against selected microorganismsFigure 2 Energy dispersive X-ray spectra of the prepared AgNPs from solution.

Figure 3 XRD results confirming the formation of AgNPs in an aqueous solution

and solvent-free method.
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(Table 1, Figure 6). The results indicated that mPEGPTH2-

AgNPs obtained from the weight ratio 2:1 (mPEGTH2:

AgNO3) exhibited a wide range of antimicrobial activity

against tested Gram-positive and Gram-negative bacteria, in

addition to the inhibition of C. albicans. In addition, they are

more effective than mPEGPTH2-AgNPs obtained fromweight

ratio 1:1 (mPEGTH2:AgNO3) (Table 1, Figure 6). The

mPEGTH2-AgNPs (1:1) did not show any activity against E.

faecalis, but did show bioactivity against othermicroorganisms,

as shown in Table 1. While ligand (mPEGTH2) has no bioac-

tivity comparedwithmPEGTH2-AgNPs (1:1) andmPEGTH2-

AgNPs (2:1). The results obtained in this study agree with the

reported results by Abul et al, who reported that MK-AgNPs as

an effective antibacterial agent against Gram-positive and

Gram-negative bacteria.49

By the typical duplicate two-fold using dilution method,

MICs and MBCs were determined for mPEGTH2-AgNPs

(2:1) and mPEGTH2-AgNPs (1:1) against E. coli, S. epi-

dermidis, and C. albicans. The results represented in

Table 2 showed stronger bioactivity of mPEGTH2-AgNPs

(2:1) compared to the bioactivity of mPEGTH2-AgNPs

(1:1) against the tested pathogenic microbes. The results

also revealed that mPEGTH2Ag (2:1) was a strong anti-

fungal agent against C. albicans and a strong antibacterial

agent against S. epidermidis. The obtained results agree

well with the previously reported results for polyethylene

glycol coated nanoparticles that were effective in killing all

bacterial strains, including E. coli DH5α, Bacillus subtilis,
Micrococcus luteus, and S. aureus.50,51 The results also

agreed with the reported results by Popa et al; who reported

that polyethylene glycol coated silver nanoparticles most

stable and effective.52

Conclusion
This work represents simple and efficient methods for the

synthesis of AgNPs using modified methoxypolyethylene

glycol with bishydrazino-s-triazine mPEGTH2. The

AgNPs were prepared using two methods; a solution

method, using methanol-water medium at room tempera-

ture, and a solvent-free (solid phase) method, employing

Figure 4 (A) TEM of AgNPs (solution phase) using mPEGTH2; (B) TEM of AgNPs (solid phase) using mPEGTH2 (1:1, AgNO3:mPEGTH2); (C) TEM of AgNPs (solid phase)

using mPEGTH2 (1:2, AgNO3:mPEGTH2).

Figure 5 Particles size for silver nanoparticles.

Table 1 Determination of Microbial Growth Inhibition Diameters (Mm) by mPEGTH2Ag 2:1 and mPEGTH2Ag (1:1)*

Tested Compd S. aureus S. epidermidis E. faecalis E. coli S. typhi P. aeruginosa C. albicans

mPEGTH2Ag (1:1) 10 15 0 11 0 10 11

mPEGTH2Ag (2:1) 11 18 18 20 14 17 13

Gentamicin** 25 23 17 22 20 19 —

Notes: *DMSO was used as a negative control; **30 µg per disc.
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microwave irradiation or direct heating. In aqueous solu-

tion, the ratio was 10:1 mPEGTH2:AgNO3, while in the

solid phase, ratios of 1:1 or 2:1, respectively (wt./wt.) were

used. Most of the experimental methods resulted in AgNPs

ranging in size from 7 to 10 nm. The formation of AgNPs

was dependent on the weight ratio of mPEGTH2 to

AgNO3, which allows for control of the size and shape

of the AgNPs, especially when using the solvent-free

method. The antimicrobial activity of the AgNPs was

also dependent on the ratio of mPEGTH2 to AgNO3,

with a large effect observed when using the solvent-free

method. The mPEGTH2-AgNPs (2:1) demonstrated higher

antimicrobial activity compared to mPEG-TH2Ag 1:1

against S. aureus, S. epidermidis, E. faecalis, E. coli, P.

aeruginosa, S. typhimurium, and C. albicans. In all cases,

the MICs and MBCs of mPEGTH2-AgNPs (1:1) were

lower than those of mPEGTH2-AgNPs (2:1).

In summary, mPEGTH2-AgNPs (2:1) is a promising

candidate to kill pathogenic microbes; in particular, the

AgNPs synthesized using methoxypolyethylene glycol

polymer modified by coating with bishydrazino-s-tria-

zine have the most potential and would be the most

cost-effective to produce. This method reported here

for the synthesis of silver nanoparticles may be suitable

for preparation AgNPs on large scale and could be

applicable for other metal nanoparticles, which would

allow them for numerous applications in medicine and

industry.
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