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Background: Depression is a highly prevalent mental illness that severely impacts the

quality of life of affected individuals. Our recent studies demonstrated that diterpene

ginkgolides (DG) have antidepressant effects in mice. However, the underlying molecular

mechanisms remained much unclear.

Methods: In this study, we assessed the antidepressant effects of chronic DG therapy in rats

by evaluating depression-related behaviors, we also examined potential side effects using

biochemical indicators. Furthermore, we performed an in-depth molecular network analysis

of gene–protein–metabolite interactions on the basis of metabolomics.

Results: Chronic DG treatment significantly ameliorated the depressive-like behavioral

phenotype. Furthermore, the neurotrophin signaling-related NT3-TrkA and Ras-MAPK path-

ways may play an important role in the antidepressant effect of DG in the hippocampus.

Conclusion: These findings provide novel insight into the mechanisms underlying the

antidepressant action of DG, and should help advance the development of new therapeutic

strategies for depression.

Keywords: diterpene ginkgolides, antidepressant, neurotrophin, hippocampus, NT3-TrkA

and Ras-MAPK pathways

Introduction
Depression is a chronic mental disease that is a serious threat to human health.1–3

Current research into depression is mainly focused on molecular perturbations in

the brain, including monoamine neurotransmitter deficiency, oxidative stress dis-

order and neurogenic disorder. However, available antidepressants benefit fewer

than 50% of patients.4–7 Our recent studies demonstrated that diterpene ginkgolides

(DG), the main components of ginkgo biloba extract, have antidepressant

effects.8–10

DG is natural platelet activating factor receptor antagonists that effectively inhibit

thrombosis and protect against cerebral ischemia and brain inflammation. Studies

show that DG has antioxidant, anti-inflammatory and anti-apoptotic effects, which

protects brain neurons and improves brain functions, including cognition.11–13 Our

previous studies demonstrated that DG significantly improved the depression-like

behavioral phenotypes associated with anhedonia, behavioral despair and social dis-

orders in mice.8–10 Furthermore, initial studies suggest that DG exerts antidepressant

effects by ameliorating brain neurotransmitter levels and metabolic disorders.

However, the underlying molecular mechanisms are still unclear, and long-term
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changes in liver and kidney function, blood sugar and blood

lipids have not been reported.

Nt3-TrkA is a signaling pathway associated with the

neurotrophin family, and plays an important role in axonal

growth.14,15 The Ras-MAPK signaling pathway plays a key

role in neuronal plasticity, oxidative stress, and also partici-

pates in regulating various physiological processes such as

cell growth, differentiation and apoptosis.16,17 NT3-TrkA-

dependent axonal growth is associated with activation of

the Ras-MAPK signaling pathway.18,19 Many studies have

shown that the NT3-TrkA and RAS-MAPK pathways are

closely related to the pathogenesis and treatment of

depression.20–23 However, whether DG exert antidepressant

effects through these two pathways has not been reported.

To clarify the molecular mechanisms by which DG

exerts its antidepressant effects, we combined molecular

biology and bioinformatics on the basis of metabolo-

mics. We performed an in-depth molecular network ana-

lysis of gene–protein–metabolite interactions for the

differential metabolites. Based on our previous study,10

we selected two brain regions of the hippocampus (HP)

and prefrontal cortex (PFC) to compare the antidepres-

sant effects of DG for the analyses. The hippocampus, an

important emotional center, is associated with various

emotional disorders, and is often used to examine the

effects of psychoactive drugs.24,25 The PFC, which is

associated with emotion, cognition and learning, plays

an important role in the pathogenesis of depression.26,27

Our previous studies revealed neurobiological changes

and metabolic dysfunction in the HP28,29 as well as the

PFC30,31 in the rat depression model.

We used depression-related behavioral tests to evaluate

the antidepressant-like effect of DG on rats. We also exam-

ined potential side effects using biochemical indicators in

serum. The non-targeted metabolomics approach, based on

gas chromatography–mass spectrometry (GC–MS), was

used to obtain total metabolic data for the HP and PFC.

Molecular interaction network and pathway analyses of the

differential metabolites were carried out on the Ingenuity

Pathways Analysis (IPA) platform. Quantitative real time

polymerase chain reaction (RT-qPCR) and Western blotting

were performed to verify the affected pathways.

Materials and Methods
Animals and Ethics Statement
Healthy male Sprague-Dawley rats (age, 10 weeks;

weight, approximately 400 g) were purchased from the

experimental animal center of Chongqing Medical

University (China). During the research period, the rats

were kept in a stable environment, with lights on 07:00–-

19:00, temperature of 21–22 °C, and a relative humidity of

55 ± 5%. All animal experiments were approved by the

Ethics Committee of Chongqing Medical University (per-

mit number: 20120126), and were in accordance with the

Guide for the Care and Use of Laboratory Animals.

Reagents and Experimental Groupings
DG Meglumine Injection was a commercial drug of diter-

pene ginkgolides,9,10 which was provided by Jiangsu Kanion

Pharmaceutical Co., Ltd (Shanghai, China). It is a mixture of

different diterpene ginkgolides (mainly contains ginkgolide

A, B and K), which are responsible for the main pharmaco-

logical neuroprotective in ginkgo biloba extract.10

After 1 week of adaptation, the rats were randomly

divided into control (CON) and DG groups. The CON

group (n = 15) received intraperitoneal injection of 0.9%

NaCl solution daily, and the DG group (n = 15) received

DG Meglumine Injection (5.4 mg/kg, diluted in 0.9%

NaCl solution) daily. The choice of drug concentration

was based on our previous study.8,10 The drug treatment

lasted 4 weeks until brain tissue was collected.

Behavioral Tests
After 4 weeks of drug treatment, behavioral experiments

were conducted (Figure 1). All behavioral data were ana-

lyzed with an animal trajectory analysis software

(SMART, Panlab SL, Barcelona, Spain).

The open field test (OFT) was used to assess the

locomotor and anxiety-like behavior of rats.30 The open

field box was composed of an enclosed open square area,

100 cm × 100 cm, with 40-cm-high walls. During the

behavioral test, each rat was placed in the open field box

and allowed to move freely for 5.5 min. The total distance

(movement) was calculated to evaluate locomotor activity.

The number into the center zone and the distance in the

center zone were calculated to evaluate anxiety behavior.

The more number entries and distance in the center zone,

the less anxious behavior is represented in the rat.

The tail suspension test (TST)32,33 and forced swimming

test (FST)34 were both used to assess behavioral despair. The

immobility time can reflect the degree of despair. The longer

the immobility time, the greater the despair. The TST was

carried out as previously described.32,33 Briefly, rats were

suspended in a black box (30 cm × 30 cm; height, 53 cm)

by a small metal hook fixed with adhesive tape wrapped
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around the tail. Every test session lasted 6 min and the last 5

min were scored by SMART for the immobility of rats. Rats

were returned to their home cages after test. Animals were

considered to be immobile only when they were hung on the

hooks passively and completely motionless.

The FST was conducted in a clear Plexiglas cylinder

(diameter, 20 cm; height, 40 cm) filled with 30 cm height

of water (25 ± 1 °C). Video was recorded for 6 min, and the

final 5 min was used for analysis. Rats were considered to be

immobile only with occasional slight movements which

were required to keep the mouse’s head out of water.

The elevated plus maze (EPM) is used to evaluate

anxiety, and is based on the natural aversion of rodents

for open and elevated areas, as well as on their innate

exploratory behavior in novel environments. The maze

consisted of two open arms and two closed arms (length,

50 cm; width, 10 cm). Videos were collected for 5.5 min.

The last 5 min were used to calculate the percentage

distance traveled and the time spent in the open arms.

The Y-maze (YM) was used to study the spatial recog-

nition and memory ability. It consisted of three identical

arms (length, 45 cm; width, 10 cm; height, 29 cm). Rats

were placed at the end of an arm, and the order in which

they entered each arm within an 8-min period was

recorded. Alternation was defined as consecutive entry

into three different arms (such as 1, 2, 3 or 1, 3, 2). The

maximum alternation was the total number of arm entries

minus 2, and the percentage was defined as the actual

alternation/maximum alternation × 100%.35

Brain Tissue and Serum Preparation
After the behavioral tests were completed, the brain tissue

and serum were collected. The rats were anesthetized with

50 mg/kg pentobarbital sodium, and blood was collected

from the heart. The rats were then decapitated, and the brain

was removed from the skull. The HP and PFC were iso-

lated, quickly frozen in liquid nitrogen, and stored at −80 ºC

until analyses. The serum was separated from whole blood

after centrifugation for 10 min (3000 rpm, 4 ºC).

Biochemical Indicator Analysis
Serum indicators of hepatic function (ALT, alanine amino-

transferase; AST, aspartate aminotransferase; TBA, total

bile acid; TBil, total bilirubin), renal function (Crea; Urea;

UA, uric acid), lipids (TC, total Cholesterol; TG, triglycer-

ide; HDL-C, high-density lipoprotein cholesterol; LDL-C,

low-density lipoprotein cholesterol), glucose and homocys-

teine (HCY) were measured using commercially available

enzymatic colorimetric assays and an automated analyzer

system (Cobas 8000 modular device Roche Diagnostics,

Switzerland).

GC-MS Analysis
The processing of GC-MS samples was according to

previous publications from our laboratory.36–38 The tissue

samples, containing an internal standard (2-chloro-

L-phenylalanine, 75 ng/mL), were thoroughly mixed with

a methanol-water solution (4/1, v/v) to 600 μL. The mixture

was sonicated for 10 min and then centrifuged for 10 min

(14,000 rpm, 4 ºC). The supernatant was collected, trans-

ferred to a glass derivatization vial, and concentrated

for rapid enrichment. After the liquid was fully volatilized,

80 μL methoxamine hydrochloride in pyridine (15 mg/mL)

was added to the vial. The sample was then vortexed for

2 min, and incubated for 90 min at 37 °C. Finally, 80 μL
BSTFA (including 1% TMCS) was added. After 2 min of

vortexing, themixture was incubated for 60min at 70 ºC, and

then at room temperature for 30 min. Non-targeted GC-MS

metabolomic analysis was carried out on these samples on

the Agilent 7890A/5975C GC/MSD system (splitless mode;

Agilent Technologies, Santa Clara, California, USA) using

an Agilent J&WHP-5ms capillary column (30 m × 0.25 mm

× 0.25 µm). The corresponding detection parameters were as

follows (helium as carrier gas, purity 99.999%, constant flow

One Week 
Adjustment

Week 0 Week 2Week 1 Week 4 Week 5

Treatment (i.p.) (DG or vehicle)

OFT TST FST
Collection of brain 

regions 

Week 3
EPM YM

Figure 1 Schematic schedule of experimental approach.
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rate of 6 mL/min): initial temperature of 70 °C for 2 min,

increased to 160 °C at a rate of 6 °C/min, increased to 240 °C

at a rate of 10 °C/min, increased to 300 °C at a rate of

20 °C/min, and then maintained at 300 °C for 6 min. The

full scanning mode was used to detect the mass spectrum,

and the range of mass spectrometry detection was 50–600

(m/z).

Metabolomics Data and Bioinformatics

Analysis
The original GC-MS data were converted into NetCDF

format using TagFinder software.39 Mass spectrum data

preprocessing was carried out using R software, including

peak recognition, peak alignment and retention time correc-

tion. The final data editing was carried out in MS EXCEL

2010 software to obtain the final 2D data matrix, including

sample information, retention time and mass spectrum

response intensity. The peak area normalization method

was used to normalize the mass spectrum response intensity,

and the normalized results were imported into SIMCA-P

14.0 software (MKS Umetrics AB) for multivariable statis-

tical analysis, including pair-wise orthogonal projections to

latent structures-discriminant analyses (OPLS-DA).

The OPLS-DA method was used to eliminate the varia-

bility of non-related metabolites and to identify the most

predictive metabolites between the different groups. RPT

was used to validate the results of the OPLS-DA analysis

with 200-iteration permutations. In the OPLS-DA model,

candidate metabolites were selected based on the threshold

of variable importance in the projection value (VIP > 1.0).

Furthermore, univariate statistical analysis of the identified

metabolites was performed using Student’s t-test.

Biological Functions and Pathways Analysis
MetaboAnalyst 4.0 (http://www.metaboanalyst.ca) was used

to generate heat maps of the differential metabolites.40 The

differential metabolites were subjected to metabolite set

enrichment analysis (MSEA) and pathway analysis using

MetaboAnalyst 3.0. IPA software was used for biological

functions pathway analysis of the differential metabolites in

the HP or PFC, and the network score was used to deter-

mine the relevance between the metabolites and networks.

The metabolites, including KEGG IDs, fold-changes and

P-values, were uploaded to the Ingenuity Pathways

Analysis server (IPA, Qiagen, Redwood City, CA,

USA).41 Highly correlated molecular and cellular functions

were determined using the Ingenuity Pathway Knowledge

Base, and Cytoscape 3.4.0 was used to build the network

diagram of the differential metabolites and molecular func-

tions in the HP or PFC.40 Correlation analyses of behavior,

genes and metabolites were performed using Pearson’s cor-

relation coefficient.

RT- qPCR Analysis and Western Blotting

Validation
RT-qPCR was used to assess mRNA expression of compo-

nents of the Ras-MAPK and NT3-TrkA pathways. The

synthesis of cDNA from the HP or PFC was carried out

using the PrimeScript RT reagent Kit (TAKARA), and DNA

amplification was performed with a SYBR green detection

system (Roche, Germany). The housekeeping gene β-actin
was used to normalize the data, and data analysis was

performed with the 2(−ΔΔCT) method. The primers are

shown in Table S1. The HP and PFC brain tissue from the

DG and CON groups (n = 6 per group) were fully lysed in

RIPA buffer containing phosphatase inhibitor (Roche,

Germany) at 4 °C. The proteins were separated on a 10

−12% SDS-PAGE gel and transferred to a PVDF membrane

(Millipore, Billerica, MA, USA) by semi-dry transfer. After

blocking with 5% skim milk, the membranes were incubated

with rabbit polyclonal anti-Raf (Ruiying Bio; 1:2000), rabbit

polyclonal anti-NT3 (Abcam; 1:1000), rabbit monoclonal

anti-Ras (Beyotime; 1:5000), rabbit monoclonal anti-TrkA

(Beyotime; 1:2000) or mouse monoclonal anti-GAPDH

(Bio-Rad; 1:12,000) overnight at 4 °C. After washing, the

blots were incubated with secondary antibodies at room

temperature for 2 hrs. Finally, the signals were visualized

using an ECL kit (Millipore).

Statistical Analysis
Statistical analyses were performed using Graphpad Prism

7.0 software (IBM). Two-tailed t-tests were used to com-

pare the CON and DG groups, and data were expressed as

mean ± standard error of the mean (SEM).

Results
Effects of DG on Behavior
After 4 weeks of DG treatment, there was a significant

difference in the number of entries and the distance traveled

in the central area in the OFT compared with the CON group

(Figure 2A and B). This indicates that DG treatment signifi-

cantly reduces anxiety-related behavior in rats. However, the

treatment of DG did not affect the total locomotor activity in

the open field test (Figure S1). In addition, the immobility
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time was substantially less in the DG group compared with

the CON group in the TST (Figure 2C), indicating that DGs

have an antidepressant-like effect. However, in the FST, only

a downward trend was observed (Figure 2D). Similarly, DG

treatment had a slight, but non-significant, effect in both the

EPM and the YM (Figure 2E and F), indicating that DGs

may not improve spatial memory in rats.

Effects of DG on Biochemical Indicators
To assess whether long-term DG treatment has side

effects, we tested for biochemical indicators of physiolo-

gical function. After 4 weeks of DG treatment, there was

no significant difference in biochemical indicators of hepa-

tic function, renal function, lipids, glucose or HCY com-

pared with the normal control group (Table 1). These

results show that chronic DG treatment effectively attenu-

ates despair and anxiety-like behavior in rats without

negatively affecting systemic functions.

GC-MS Metabolomics Analysis
OPLS-DA dimension reduction analysis was carried out,

and the results were discriminated and analyzed in combi-

nation with the regression model. This revealed a significant

difference between the CON and DG groups. The

OPLS-DA score plots for the HP (R2X = 0.377, R2Y =

0.963, Q2 = 0.795, Figure 3A) and the PFC (R2X = 0.269,

R2Y = 0.81, Q2 = 0.142, Figure 3B) showed that this model

was robust and reliable.

Screening of Differential Metabolites
The differential metabolites were screened according to the

set criteria (VIP > 1 and FDR < 0.05) based on multi-

variable statistics and univariate statistics. A total of 29

differential metabolites were selected for the HP

(Table S2; Figure 3C), including 7 downregulated metabo-

lites and 22 upregulated metabolites, and a total of 16

differential metabolites were selected for the PFC

(Table S3; Figure 3C), including 5 downregulated metabo-

lites and 11 upregulated metabolites. Among the differential

metabolites, 2 (phosphate and mono(2-ethylhexyl)phthalate)

were altered both in the HP and the PFC (Figure 3C). The

heat maps for the HP and PFC are shown in Figure 4.

Enrichment Analysis and Pathway Analysis
MetaboAnalyst, employing the KEGG metabolite library,

was used for functional cluster and pathway analysis of the

differential metabolites. According to the screening criteria

(false discovery rate (FDR) < 0.05 and impact value > 0),

functional enrichment analysis of the HP differential meta-

bolites was performed (Figure 5A). Pathway analysis

revealed that the metabolites were mainly related to beta-

alanine metabolism and arginine and proline metabolism
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(Figure 5B). In contrast, functional enrichment of the PFC

showed that the differential metabolites were primarily

related to aspartate metabolism, phenylalanine and tyro-

sine metabolism and urea cycle (Figure 5C). Pathway

analysis showed that they were mainly related to aminoa-

cyl-tRNA biosynthesis, galactose metabolism and pheny-

lalanine, tyrosine and tryptophan biosynthesis (Figure 5D).

Metabolic Network Interaction and

Functional Prediction
The differential metabolites for the HP and PFC were

uploaded to the IPA analysis platform for metabolic network

interaction and molecular and cellular functional analysis.

The top five functions of the HP metabolites were cellular

function and maintenance, molecular transport, small mole-

cule biochemistry, amino acidmetabolism, and cell death and

survival. The top five functions of the PFC metabolites were

cellular growth and proliferation, cell death and survival,

amino acid metabolism, lipid metabolism, and molecular

transport (Table S4, Figure 6A and B). Network functions

of “carbohydrate metabolism, molecular transport, small

molecule biochemistry” were associated with the key differ-

ential metabolites in the HP with a score of 20 and 8 differ-

ential metabolites involved (Figure 7A). Moreover, the

network of “cell death and survival, cellular growth and

proliferation, organismal development” was associated with

the key differential metabolites in the PFC, with a score of 28

and 10 differential metabolites involved (Figure 7B). The

MAPK pathway was associated with the metabolic network

interaction of the HP and PFC. By searching the KEGG

pathway database, two closely relatedMAPK signaling path-

ways were found: NT3-TrkA and Ras-MAPK pathways.

Relative mRNA Expression Level
The expression levels of NGF, NT3, TrkA, Crk, C3G,

Rap1, B-Raf, MEK1, MEK2, Erk1 and Erk2 in the NT3-

TrkA pathway and of TrkB, Ras, Raf, MEK1, MEK2, Erk1

and Erk2 in the Ras-MAPK pathway are shown in Figure 8.

In the NT3-TrkA pathway, the expression levels of NT3 and

TrkA in the HP and PFC were significantly upregulated,

and other related genes showed an upward trend (Figure 8A

and B). However, in the Ras-MAPK pathway, there was no

significant difference in gene expression compared with the

control group in the HP or PFC (Figure 8C and D).

Interestingly, the two trends were not consistent. In the

HP, Ras-MAPK signaling pathway-related genes were sub-

stantially upregulated, while in the PFC, there was no sig-

nificant change in expression levels. This indicates that DG

may exert an anti-depressive effect by activating the NT3-

TrkA and Ras-MAPK pathways in the HP, or by activating

NT3-TrkA or other signaling pathways in the PFC.

Western Blotting
Four key proteins in the NT3-TrkA and Ras-MAPK path-

ways were subjected to Western blotting verification

(Figure 9). In the HP, the protein levels of NT3, TrkA,

Ras and Raf were significantly increased compared with

Table 1 Key Biochemical Indicators in the Comparison of Diterpene Ginkgolides (DG) and Control (CON) Groups in Rat Serum

Category Biochemical Indicators CON (Mean±SEM) DG (Mean±SEM) T-test (p)

Hepatic function ALT(U/L) 46.36±3.12 45.13±2.42 0.759

AST(U/L) 91.79±7.28 106.33±6.72 0.153

TBA(μmol/L) 11.09±1.63 8.15±1.08 0.139

TBil(μmol/L) 0.66±0.08 0.56±0.06 0.334

Renal function Crea(μmol/L) 36.07±2.01 40.4±2.14 0.153

Urea(mmol/L) 7.66±0.3 7.09±0.2 0.124

UA(μmol/L) 48.07±5.03 45.53±2.48 0.656

Lipids TC(mmol/L) 1.36±0.05 1.29±0.05 0.339

TG(mmol/L) 1.01±0.11 1.05±0.09 0.752

HDL-C(mmol/L) 0.96±0.06 0.96±0.04 0.922

LDL-C(mmol/L) 0.27±0.02 0.23±0.02 0.243

Others Glu(mmol/L) 14.86±0.76 17.11±0.99 0.085

HCY(μmol/L) 10.4±0.7 11.45±0.39 0.187

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBA, total bile acid; TBil, total bilirubin; UA, uric acid; TC, total Cholesterol; TG,

triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Glu, glucose; HCY, homocysteine.
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the control group (Figure 9A), while only TrkA showed

a significant difference in the PFC (Figure 9B).

Discussion
Our previous studies showed that DG ameliorated brain

neurotransmitter perturbation and metabolic dysfunction in

mice.8–10 However, the underlying molecular mechanisms,

including gene–protein–metabolite interactions, remained

unclear. Here, we used metabolomics combined with

molecular biology methods to explore the antidepressant

mechanisms of DG in the HP and PFC. This revealed that

the antidepressant effect of DG involved activation of the

neurotrophic NT3-TrkA pathway and the neural plasticity-

related Ras-MAPK pathway in the HP.

The OFT is commonly used to evaluate anxiety-

related behavior in rats.42 The number of entries and

distance traveled in the central area of the open field

were significantly higher compared with the CON

group, which indicated that chronic DG therapy effec-

tively attenuated anxiety behaviors in the rats. The TST

and FST are widely used to assess behavior despair in

rodent animals.43,44 In this study, the immobility time of

TST was significantly shorter in the DG group than in the

control group, indicated that DG effectively attenuated

despair behaviors in the rats. While in the FST, it only

exhibited a downward trend. The discrepancy may be

related to differences in experimental conditions. The

EPM is used to evaluate the anxiety-like behavior of

animals, and the Y-maze is used to evaluate learning and

Figure 3 Multivariate statistical analysis. OPLS-DA score plot derived from GC-MS analysis between CON and DG groups in the hippocampus (HP) (A) and prefrontal

cortex (PFC) (B). Network analysis of metabolites altered in the HP or PFC of rats treated with DG for 4 weeks (C). Red-colored boxes and red-colored lines indicate

upregulation, while green-colored boxes and green-colored lines indicate downregulation. The line widths represent the VIP scores of differential metabolites.
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memory.45 Compared with the control group, there was

no significant difference in these behavioral experiments.

This indicates that DG have no effect on learning and

memory functions in the rat. Therefore, chronic DG ther-

apy effectively attenuated anxiety and depression-related

behaviors in the rats.

Then, this study examined whether the therapy of DG

had side effects. We accordingly tested for biochemical

indicators of hepatic function, renal function, lipids, glu-

cose and HCY. These indicators are the main indices of

systemic physiological function. We found no significant

change in liver or kidney function in the DG group com-

pared with the control group. There were also no signifi-

cant changes in blood glucose or lipids in the DG group.

There is evidence from laboratory and clinical studies that

HCY has direct toxic effects on both the vascular and

nervous systems.46 We observed no change in HCY after

DG treatment. Together, these findings suggest that DG

has no neurotoxic or systemic side effects.

GC-MS-based metabolomics identified 29 differential

metabolites in the HP and 16 differential metabolites in the

PFC. Most of these were upregulated, but only two (phos-

phate and mono(2-ethylhexyl)phthalate) were simulta-

neously upregulated in both the HP and PFC. This

suggests that the antidepressant-like effect of DGs is not

associated with identical metabolic changes in the HP

and PFC.

Phosphate is the substrate for the phosphorylation of ADP

to ATP in oxidative phosphorylation.47 In the regulation of

oxidative phosphorylation, phosphate is a putative cytosolic

signaling molecule.48 Using energy from glucose metabolism,

phosphate and ADP produce ATP through mitochondrial oxi-

dative phosphorylation.49 This suggests that, to some extent,

phosphate and glucose metabolism are positively correlated.

A study showed that glucose metabolism in the dorsal struc-

ture decreased, while it increased in the ventral structure,

following antidepressant treatment.50 This is similar to the

location of the HP and PFC in rats. Consistent with this

study, we found here that phosphate was downregulated in

the HP and upregulated in the PFC, suggesting that DG exert

an anti-depressive effect by affecting both the HP and the PFC.

The converse changes in phosphate may be related to differ-

ences in the executive functions of the HP and PFC.51,52

Mono(2-ethylhexyl)phthalate is an environmental endo-

crine disruptor with a structure similar to tryptophan

metabolites.53 Studies have shown that this metabolite rever-

sibly inhibits α-amino-β-carboxymuconate-ε-semialdehyde

decarboxylase (ACMSD) during tryptophan metabolism,

thereby affecting the formation of α-aminomuconate-ε-
semialdehyde (AMS).54 Activation of ACMSD plays

Figure 4 Heat map of the differential metabolites between DG and CON groups in the HP (A). Heat map of the differential metabolites between DG and CON groups in

the PFC (B).
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a critical role in the tryptophan-NAD pathway. Tryptophan is

also involved in the production of serotonin by tryptophan

hydroxylase and 5-hydroxytryptophan decarboxylase.55

Mono(2-ethylhexyl)phthalate may increase the production

of serotonin through the 5-hydroxytryptophan decarboxylase

pathway by inhibiting the tryptophan-NAD pathway.

Serotonin is a neurotransmitter that is involved in hedonic

emotions. Antidepressants such as fluoxetine work by

increasing levels of serotonin in the brain.56 People with

low serotonin levels are more likely to experience depres-

sion, impulsive behavior, alcoholism, suicide, aggression and

violence.57 Previous studies on venlafaxine also found

increased levels of mono(2-ethylhexyl)phthalate in the

HP.58 Therefore, DG may exert an antidepressant action by

upregulating mono(2-ethylhexyl)phthalate to increase sero-

tonin levels in the HP and PFC.

Figure 5 Significant biological functions (A) and pathways (B) of the differential metabolites in the HP associated with DG treatment. Significant biological functions (C) and

pathways (D) of the differential metabolites in the PFC associated with DG treatment. *False discovery rate (FDR) < 0.05; →FDR < 0.05 and impact value > 0.
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Through the IPA metabolite–protein network interaction

prediction and KEGG pathway analysis, the NT3-TrkA and

Ras-MAPK pathways were found to be closely related to the

HP and PFC. Nt3-TrkA is a signaling pathway associated

with the neurotrophin family, and plays an important role in

axonal growth towards their target.14,15,59 NT3 is trafficked

mainly through the constitutive secretory pathway in neurons

and neuroendocrine cells.60 Studies have shown that NT3 is

associated with neurodegenerative diseases (eg,

Alzheimer’s)61,62 and psychiatric diseases (eg, depression

and suicide).20 The Trk receptors are high-affinity tyrosine

kinase receptors that preferentially bind particular

neurotrophins.63 TrkA is one of the receptors for NT3,

which is highly expressed in cholinergic neurons in the

central nervous system.64 NT3-TrkA-dependent axonal

growth is associated with activation of the Ras-MAPK sig-

naling pathway.18MAPKs are highly conserved serine/threo-

nine protein kinases that play a role in many cellular

processes, such as proliferation, differentiation, stress

response, apoptosis and survival.65 Ras and Raf are impor-

tant core proteins in the Ras-MAPK pathway. The Ras-

MAPK signaling pathway plays a key role in neuronal

Figure 6 (A) Overview of molecular and cellular functions of the differential metabolites in the hippocampus following 4 weeks of DG treatment, according to the IPA

database. (B) Overview of molecular and cellular functions of the differential metabolites in the PFC following 4 weeks of DG treatment, according to the IPA database.

Figure 7 Predicted biological functions (z-score > 2 or z-score <−2) associated with DG treatment identified by ingenuity pathways analysis. (A) Networks associated with

DG treatment in the HP. (B) Networks associated with DG treatment in the PFC.
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plasticity, and it is closely related to the pathogenesis and

treatment of depression.22,23,66 In our study, the mRNA

expression levels of NT3 and TrkA were significantly upre-

gulated in the HP and PFC. However, there was no signifi-

cant changes in the Ras-MAPK pathway. Western blotting

showed that Raf, NT3, Ras and Trk A were significantly

upregulated in the HP, while only TrkA was significantly

upregulated in the PFC. This suggests that DGs may exert

their antidepressant-like effect by activating the NT3-TrkA

and Ras-MAPK pathways in the HP (Figure 10).

Pearson correlation analysis between depression-

related behaviors and genes and differential metabolites

in the HP and PFC (Figure 11) revealed no significant

differences between the HP and the PFC, with significant

brain region specificity. In the OFT, the number of entries

in the central region was negatively correlated with the

downregulated metabolites (GABA and phosphate) in the

HP, and the distance traveled in the central region was

negatively correlated with the upregulated metabolites

(adenine in the HP and urea in the PFC). In the EPM,

the number of entries in the open arm was positively

correlated with the downregulated metabolites (glycine)

in the HP and with upregulated metabolites (myoinositol)

in the PFC. Ras was positively correlated with upregulated

metabolites (spermine) in the HP. In the PFC, Ras was

negatively correlated with the upregulated metabolites

(L-phenylalanine), and NT3 was positively correlated

with the downregulated metabolites (sucrose) and nega-

tively correlated with the upregulated metabolites

(L-serine). Raf was positively correlated with the down-

regulated metabolites (adenosine) in the PFC. Except for

the upregulation of L-phenylalanine in the PFC and upre-

gulation of beta-alanine in the HP, which were negatively

correlated, the upregulated metabolites in the PFC were
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Figure 8 The expression levels of genes related to the NT3-TrkA pathway in the HP (A) and the PFC (B). The expression levels of genes related to the Ras-MAPK pathway

in the HP (C) and the PFC (D). Compared with the CON group, the expression levels of NT3 and TrkA in the DG group were significantly increased in the HP (A) and the

PFC (B). *p < 0.05, ***p < 0.001.
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positively correlated with the downregulated metabolites

in the HP, while the downregulated metabolites in the PFC

were negatively correlated with the downregulated

metabolites in the HP. Thus, the Pearson analysis revealed

substantial brain region specificity in behavioral, gene

expression and metabolic changes.
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Figure 9 The candidate proteins selected for Western blot analysis. In the DG group, compared with the CON group, the expression levels of Raf, NT3, Ras and TrkA were

significantly increased in the HP (A), and the expression levels of TrkA were significantly increased in the PFC (B).*p < 0.05, **p < 0.01.

Figure 10 The Ras-MAPK and NT3-TrkA pathways play important roles in the antidepressant effect of DG in the HP and PFC.
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Conclusion
Our findings show that chronic DG treatment effectively

alleviates despair and anxiety-like behaviors in rats with-

out side effects. The antidepressant effect of DGs was

associated with brain region-specific changes in the levels

of metabolites and proteins in the hippocampus and pre-

frontal cortex. The correlation analysis suggested that the

antidepressant effect of DG is related to the levels of

GABA, phosphate and spermine in the hippocampus and

myoinositol in the prefrontal cortex. In addition, DG

appears to exert its antidepressant effect mainly by

activating the neurotrophin-related NT3-TrkA pathway

and the neural plasticity-related Ras-MAPK pathway in

the hippocampus. Our findings provide novel insight into

the antidepressant mechanism of action of DG and provide

new molecular targets for the development of effective

therapeutic strategies for depression.
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