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Abstract: Breast cancer is the second most common cancer in women after skin cancer.

Breast cancer can occur in both men and women, but it is far more common in women. Real-

time monitoring of breast cancer indicators is becoming increasingly important. It can help

create advances in the diagnosis and treatment of breast cancer. In this paper, we provide

a nonparametric statistical method to predict and detect breast cancer occur. The exponen-

tially weighted moving average (EWMA) control scheme is based on rank methods so that it

is completely nonparametric. It is efficient in detecting the shifts for multivariate processes.

A real example data from the University Hospital Centre of Coimbra is given to illustrate this

method.
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Introduction
Breast cancer is a malignant tumor (a collection of cancer cells) arising from the

cells of the breast.1 Although breast cancer predominantly occurs in women, it can

also affect men. This article addresses breast cancer in women. Breast cancer and

its complications can affect nearly every part of the body. Breast cancer screening is

an important strategy for early detection and to ensure a greater probability of

having a good treatment outcome. Robust predictive models based on data that may

be collected in routine consultations and blood analysis are sought to provide an

important contribution by offering more screening tools, and are important for

detecting whether there is a change in the breast cancer index.2,3

Statistical process control (SPC) has been frequently used for fault detection.4–6

One major concern of SPC is whether there has been a change of distribution from

the target in the process, that is, the process has gone out of control. Many

researchers have discussed and proposed useful charts for detecting whether there

is a change in a process. The most commonly used control schemes include the

Shewhart chart,7 the CUSUM chart8 and the EWMA chart.9 These proposed control

schemes are efficient for fault diagnosis in practice. Statistical properties of

a control chart are usually evaluated in terms of the average run length (ARL),

that is, the average number of observations required to signal a change for

a particular size of the shift. When a process stays IC, control charts with larger

ARL (ARL0) are considered performing better. Otherwise, when the process is OC,

these charts with smaller ARL (ARL1) are considered better.
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Control chart schemes attach increasing importance to

biosurveillance studies. For example, Rogerson and

Yamada10 proposed a multivariate cumulative sum approach

to detect changes in spatial patterns and applied it to county-

level breast cancer data in the Northeastern United States.

The comparison results suggested that the multivariate chart

performed well. Abdollahian and Hayati Rezvan11 applied

a multivariate EWMA control chart to monitor patients’

progress after cardiac surgery, in which the multivariate

EWMA chart can detect an out-of-control signal that was

missed by the univariate EWMA charts. Yue et al12 pro-

posed a new combined risk-adjusted EWMA and Variable

life-adjusted display (VLAD) chart for detecting Surgical

Outcome Monitoring and Improvement Program (SOMIP)

data. In addition, Various kinds of control charts have been

used to monitor surgical outcomes.13–15 However, in most

surgical contexts, the risk of mortality estimated pre-

operatively would vary from patient to patient.

Considering this fact, Cook et al16 proposed a risk-

adjusted chart to track outcomes in intensive care.

Steiner17 proposed a new CUSUM chart to monitor surgical

performance in which the risk is adjusted to reflect the

surgical risk of each patient. Moreover, many researchers

have studied the application of risk-adjusted control charts

to assess surgical outcomes.18–20

Otherwise, most control charts require that the moni-

toring observations be univariate and usually assume that

the observations follows a normal distribution. With data

becoming complex and high dimensional, the monitoring

of multivariate data has become increasingly important in

quality control. The classical chart includes the T2 control

chart, which was proposed by Hotelling and assumes that

the dataset distributions are multivariate normal.21 That is,

both the mean vector and variance matrix are known. In

addition, a multivariate CUSUM chart based on T2 statis-

tics was proposed by Lowry et al.22 These methods per-

form well under the multivariate normal distribution

assumption. When the underlying distribution and the

magnitude of the shifts are both unknown, Yue and Liu23

used the Mahalanobis data depth method to propose

a chart for monitoring processes with multivariate quality

measurements. In addition, Liu et al24 proposed a new

multivariate EWMA chart based on ranks. Their method

performs well for detecting a range of changes.

In this paper, based on Liu et al24 we provide

a nonparametric statistical method to predict and detect

breast cancer occur. The remainder of this paper is orga-

nized as follows: in Section 2, we review the existing

proposed rank-based control chart. In Section 3, the

Breast Cancer Coimbra data are studied to illustrate the

performance of the proposed chart. Finally, several

remarks conclude the article in Section 4.

Review
Rank-Based Methods
Liu et al25 introduced the rank-based method and assumed

that observations Xi, which are independent, follow the

model below:

Xi ,
FðX ; μ0Þ; i ¼ 1; 2; � � � ; τ;

FðX ; μ1Þ; i ¼ τ þ 1; τ þ 2; � � � ;
�

where μ0 and μ1are the IC location parameter and the OC

location parameter, respectively. τ represents the unknown

change point. F is an unknown continuous distribution

function. Let Ri denote the ith sequential rank; the formula

for the rank of Xi among X1;X2; � � � ;Xi; � � � ;Xn is as

follows25

Ri ¼ ∑
i

j¼1
I Xi � Xj

� �
:

The standardized sequential rank is given by

R�
i ¼

Ri � ERiffiffiffiffiffiffiffiffiffiffiffiffi
VarRi

p ði � 2Þ;

where

ERi ¼ iþ 1

2
;

VarRi ¼ ðiþ 1Þði� 1Þ
12

:

Ri,U ½1 : i�:

Therefore,

i� iþ 1

2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiþ 1Þði� 1Þ

12

r
¼ i� 1

2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiþ 1Þði� 1Þ

12

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ði� 1Þ=ðiþ 1Þ:

p

Therefore, the distribution of R�
i is defined in the

interval

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ði� 1Þ=ðiþ 1Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ði� 1Þ=ðiþ 1Þ

pj k
:

The asymptotic distribution of R�
i is U � ffiffiffi

3
p

;
ffiffiffi
3

p� 	
as i ! 125.
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EWMA Chart for a Multivariate Process
An EWMA control scheme begins with a time series

graph. It is based on the statistic

Zi ¼ λYi þ ð1� λÞZi�1; 0 < λ � 1;

together with UCL’s and LCL’s. λ is a smoothing para-

meter. The sequentially recorded observations, Yi, can be

individually observed values from the process. The pro-

cess is considered OC and action should be taken when-

ever Zi falls outside the range of the control limits. The

EWMA chart performs well for small shifts with an appro-

priate smoothing parameter.26

We cite this method proposed by Liu et al27 in the

context of a multivariate process, and they supposed that

there are m independent observations from an unknown

multivariate continuous distribution with dimensionality p.

That is, Yi ¼ ðY1;i; Y2;i � � � ;Yp;iÞ
0
; where i ¼ 1; 2; � � � ;m:

There are p characteristics of interest to be examined.

For a set of variables, Yj;1; Yj;2 � � � ; Yj;m; j ¼ 1; 2; � � � ; p;
which represents the jth characteristic with m observations,

Figure 1 The corresponding normal Q-Q plots.

Dovepress Yue et al

Cancer Management and Research 2020:12 submit your manuscript | www.dovepress.com

DovePress
1889

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


the rank-based method can be used to construct statistics.

When the observations are p-dimensional, the ith observa-

tion is Yi ¼ Y1;i; Y2;i � � � ; Yp;i
� 	0

: For the jth component,

Yj;i; R�
j;i; denotes the ith standardized sequential rank

with the arrival of the jth component Yj;i: Therefore, the

vectors Qi ¼ R�
1;i;R

�
2;i; � � � ;R�

p;i


 �0

; can be obtained. In

addition, each component R�
j;i; follows the same uniform

distribution as R�
i : Then, the EWMA statistics can be

constructed, which are based on T2 statistics. We cite the

the method proposed by Liu et al0,27 and the EWMA

statistics are given by

Zi ¼ RQi þ I � Rð ÞZi�1;

where R ¼ diag λ1; λ2; � � � ; λk; � � � ; λp
� 	

; 0< λk � 1; repre-

sents the smoothing parameter. I represents the p-

dimensional identity matrix. If there is no a priori information

given, different smoothing parameters are needed for different

components; then, λ1 ¼ λ2 ¼ � � � ¼ λk ¼ � � � ¼ λp are used,

and the starting value is Z0 ¼ 0; 0; � � � ; 0ð Þ0 : The process is

considered to be out of control, and action should be taken

whenever ZT
i �

�1
Zi Zi >L; where L is the control limit. We cite

the method proposed by Liu et al27 the covariance matrix of Zi
is as follows:

�Zi ¼ ∑
i

j¼1
RðI � RÞi�j �ðI � RÞi�jR:

In particular, �Zi ¼ 1� 1� λð Þ2i

 �

λ= 2� λð Þ� when λ1 ¼
λ2 ¼ � � � ¼ λk ¼ � � � ¼ λp ¼ λ: λ is a fixed value. Usually,

we take the limit form, �Zi ¼ λ= 2� λð Þ�: �, the covar-

iance matrix of Qi, is estimated from samples in practice.

We use this method for detection in the Breast Cancer

Coimbra dataset.

Beast Cancer Coimbra Data
Data Source
For each of the 116 participants several clinical features were

observed or measured. Clinical features were observed or

measured for 64 patients with breast cancer and 52 healthy

controls. Quantitative attributes including age (years), BMI

(kg/m2), glucose (mg/dL), insulin (μU/mL), HOMA, leptin

(ng/mL), adiponectin (μg/mL), resistin (ng/mL), and MCP-1

(pg/dL).28 The characteristics are anthropometric data and

parameters which can be gathered in routine blood analysis.

The characteristics can potentially be used as a biomarker

of breast cancer. The data are publicly available in the

“ Breast Cancer Coimbra Data Set” from the UCI Machine

Learning Repository and can be downloaded from the

web site http://archive.ics.uci.edu/mL/datasets/Breast

+Cancer+Coimbra. In this work, we aim to monitor the

Beast Cancer Coimbra data and identify whether there are

changes.

A quantile-quantile (Q-Q) plot of each region, which

includes 116 historical observations, is presented in

Figure 1. Figure 1 suggests that the normality assumption

for the data are invalid, which leads us to reject the null

hypothesis that the data are normally distributed.

Therefore, a nonparametric control chart might be more

suitable for this dataset. The correlation of nine attributes

is shown in Figure 2 for a total of C2
9 ¼ 36 lines. Figure 2

shows that the cross-correlation is not stable. Therefore,

we update the covariance matrix with the arrival of new

observations. It should be noted that the covariance matrix

�Zi is updated, as presented in Section 3.2.

Data Analysis
The proposed multivariate EWMA control chart is used to

monitor the Breast Cancer Coimbra data, which may have

a certain correlation. We cite the spectral analysis,29,30

which is used to identify interepidemic periods. Based on

the spectral analysis, the trend in the incidence data are

determined. Inspired by Liu et al27 the procedure com-

prises the following 3 steps. First, the Breast Cancer

Coimbra data are preprocessed. In step II, the temporal

behavior of the period is investigated. Second, nonlinear

least squares fitting is used for the fitting analysis. This

trend is then removed by subtracting the nonlinear least

Figure 2 Correlations of the nine attributes.
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squares fitted curve from the data, thereby yielding the

residual time-series data. Third, the obtained residual time-

series datasets are monitored. The vertical coordinates of

Figure 3 represent the power spectral density (PSD).

Figure 3 indicates the numbers of the maximum entropy

method (MEM) spectral periods.

The Breast Cancer Coimbra data indicate changes after

observation 52. Therefore, we use the 1~50 IC data to find

the control limits. These control charts have the same IC

zero-state ARL. Then, we use the control limits to monitor

the remainder of the process. The EWMA control chart of

the residual data are presented in Figure 4. Figure 4 shows

that the EWMA statistics fall outside the range of the

control limits at observation 53, suggesting that the pro-

posed method can provide relatively early detection in

a process.
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Figure 3 Spectral analysis of the breast cancer coimbra data series.
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Conclusions
In this paper, the Breast Cancer Coimbra data are pro-

vided for analysis. We use a nonparametric statistical

process control chart to monitor them. Spectral analysis

is also reviewed and conducted to investigate the peri-

odicities of shorter time series, and then nonlinear least

squares fitting is used for the fitting analysis. Finally, the

residual data series are obtained and monitored. The

Breast Cancer Coimbra data show that the statistics

fall outside the control limit at observation 53. It

means there is a significant sign at this point to show

one has high risk to get the Breast Cancer. Future

diagnosis should be done by relevant medicine

specialist.
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