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Purpose: To assess the performance of deep learning algorithms for different tasks in retinal

fundus images: (1) detection of retinal fundus images versus optical coherence tomography (OCT)

or other images, (2) evaluation of good quality retinal fundus images, (3) distinction between right

eye (OD) and left eye (OS) retinal fundus images,(4) detection of age-related macular degeneration

(AMD) and (5) detection of referable glaucomatous optic neuropathy (GON).

Patients and Methods: Five algorithms were designed. Retrospective study from a database

of 306,302 images, Optretina’s tagged dataset. Three different ophthalmologists, all retinal

specialists, classified all images. The dataset was split per patient in a training (80%) and testing

(20%) splits. Three different CNN architectures were employed, two of which were custom

designed to minimize the number of parameters with minimal impact on its accuracy. Main

outcome measure was area under the curve (AUC) with accuracy, sensitivity and specificity.

Results: Determination of retinal fundus image had AUC of 0.979 with an accuracy of 96%

(sensitivity 97.7%, specificity 92.4%). Determination of good quality retinal fundus image

had AUC of 0.947, accuracy 91.8% (sensitivity 96.9%, specificity 81.8%). Algorithm for

OD/OS had AUC 0.989, accuracy 97.4%. AMD had AUC of 0.936, accuracy 86.3%

(sensitivity 90.2% specificity 82.5%), GON had AUC of 0.863, accuracy 80.2% (sensitivity

76.8%, specificity 83.8%).

Conclusion: Deep learning algorithms can differentiate a retinal fundus image from other

images. Algorithms can evaluate the quality of an image, discriminate between right or left

eye and detect the presence of AMD and GON with a high level of accuracy, sensitivity and

specificity.
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Introduction
Retinal diseases are on the rise due to the increase of diabetic population and increased

longevity. A good example of the effect of age on retinal health is age-related macular

degeneration (AMD): in 2020, the number of people with this disease is projected to be

196million and is expected to grow to 288million by 2040.1 Glaucoma is a progressive

optic neuropathy, which is the leading cause of blindness in industrialized countries and

ocular hypertension is the main risk factor for glaucoma.2

General screening for retinal diseases and glaucoma in the population is ideal, as

many pathologies can be detected in the early stages, while other diseases—such as

retinal dystrophies, choroidal nevi or epiretinal membranes (ERMs)—can also be

diagnosed and are better managed with early detection. Screening for diabetic
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retinopathy (DR) and AMD is already cost-effective, but

there are no published studies to support the case for

general screening yet. Retinal fundus images using non-

mydriatic cameras (NMC) are currently considered the

gold standard for screening DR3,4 and are also cost-

effective for AMD.5,6 Similarly, screening for premature

retinopathy is supported by many papers, showing good

efficacy and cost-effectiveness.7 The detection of disease

through retinal fundus images has also been shown to

produce competitive results, particularly for neurological8

or cardiovascular9 diseases. However, general screenings

using retinal fundus images have, to the best of our knowl-

edge, never been implemented—even on particularly sen-

sitive segments of the population, such as those over fifty

years old, an age at which retinal pathologies increase

significantly.

Artificial intelligence (AI) and, more specifically, deep

learning, could be helpful in this area. Deep learning is

a set of machine learning techniques that have recently

undergone a renaissance, achieving breakthrough accuracy

in image recognition tasks in different fields from compu-

ter vision10 to the medical sciences, solving problems such

as: detecting melanoma,11 detecting cancer metastases

from pathology images,12 and diagnosing pneumonia

using x-rays.13 We argue that a computer-aided diagnosis

system (CADx), whether fully automated or used in con-

junction with medical specialists, could substantially

reduce the human and economic costs of image analysis.

Furthermore, in the last few years, NMC have become

significantly cheaper; in the near future, any cell phone

could be used as a retinal camera for early screening.

Deep learning has already had success in ophthalmol-

ogy, demonstrating its ability to detect DR in retinal fun-

dus images.14–17 In fact, previous studies report accuracy

of over 90% with sensitivity and specificity levels over

90% as well, which coincides with roughly the same level

as a human ophthalmology expert. We can find similar

outcomes with the detection of referable AMD.18

However, using such algorithms in real-world situations

remains a challenge, as shown by the decreased accuracy

(around 80%) achieved in prospective studies.19 This

decrease could be due to inconsistent image quality and

other aspects, such as comorbidity. Dataset quality assess-

ment is normally taken for granted, with researchers using

trainings and certifications for photographers17,18 or manu-

ally “cleaning” the datasets;19 some authors have even

used quality filters on algorithms before training the

algorithms.20

Optretina is a telemedicine platform which performs

general screening for retinal diseases using nonmydriatic

cameras and human evaluation by a retinal specialist

ophthalmologist.21 Our research in artificial intelligence

deals with both data acquisition and the diagnostic steps

of our telemedicine platform, in a near future we expect AI

could assist our specialists in achieving levels of consis-

tency and accuracy beyond unassisted human abilities.

This study aims to evaluate the capacity of AI methods

for solving several tasks related to our CADx pipeline. We

automatically discard inputs that are not derived from

color fundus photography (CFP); next we filter out images

that do not pass our quality threshold; we then differentiate

the right eye from the left eye; and finally, we proceed to

the diagnosis, using the remaining images and our algo-

rithms for AMD and suspected glaucoma.

Methods
Datasets
Optretina has been carrying out a telemedicine screening

program since 2013 in optical centers and since 2017 in

workplace offices and private companies. This study is

based on the tagged dataset from Optretina, composed of

306,302 retinal images. Labelled with diagnosis, laterality

and quality. Ophthalmologists—all of whom are retinal

specialists—have evaluated all of these images. The data-

set is real-life (Not from clinical trials) and anonymized,

composed of approximately 80% cases of normal retinas

and 20% abnormal ones. Images are acquired using NMC

(color fundus and red free) and optical coherence tomo-

graphy (OCT). The dataset includes images from different

types and brands of cameras. Figure 1 shows the distribu-

tion of the different cameras used, by percentage. The

dataset includes color fundus photography (CFP), macu-

lar OCT’s, retinal nerve fiber layer OCT (RNFL), and

other added non-medical images trying to fool the AI

(such as round objects like pizzas or photos of the full

moon). Of the 306,302 images, over 250,000 correspond

to CFP. In 2017, Optretina published the results of three

years of screenings,17 detailing the percentages of dis-

eases found.

Classification of image type (CFP, OCT, others) and

eye of evaluation (right or left) was performed by one

ophthalmologist. Labeling for quality assessment, pre-

sence of AMD, or glaucomatous optic neuropathy (GON)

was performed by two independent retinal specialists,

a third ophthalmologist assessed cases where there was
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no agreement, in order to establish at least two consistent

gradings. Since Optretina performs screenings and patients

in whom pathology is detected are subsequently referred to

an ophthalmologist, repetition of images of the same

patient are very rare. It is estimated that 0.5% of the

dataset images may be of patients already assessed in

previous years. The dataset was divided by patient in two

splits: training (80%) and testing (20%). 10% of the train-

ing split was used for validation purposes during the

training process of the models. Table 1 displays the

number of images used for each deep learning model, the

number of classes per model, and the number of ophthal-

mologists who independently labeled the same dataset.

Convolutional Neuronal Networks (CNNs)
The first three CNN models (trained from scratch) were

used for different image classification tasks usually

applied in data-collection, data-selection, display, and

data classification. The first model is very useful for

cleaning unlabeled datasets, since it can separate the

Figure 1 Distribution of nonmydriatic cameras (NMCs) and optical coherence tomography (OCT) used for the dataset. Only central retinal images were included.

Table 1 Number of Images Used for Training the CNNs. Images Were Divided into Two Groups: One for Training the Model and

Another Naïve Group for Validating the Training Procedure. Color Fundus photography (CFP), Optical coherence tomography (OCT),

Retinal nerve fiber layer (RNFL), Right eye (OD), Left eye (OS), Age related macular degeneration (AMD), referable glaucomatous

optic neuropathy (GON).

Model Classification Task Images for

Training

Data Augmentation

from Keras

Number of

Classes

Number of Ophthalmologists for

Label the Images

1 Image type selection

CFP/OCT/RFNL/OTHER

56,396 Shear_range=0.2,

zoom_range=0.2

4 1

2 Data Collection Good

quality images

150,075 Shear_range=0.2,

zoom_range=0.2

2 3

3 Data Display

OD/OS

30,119 Shear_range=0.2,

zoom_range=0.2

2 1

4 AMD 8832 Zoom_range 0.1

rotation_range 10

horizontal_flip: True

2 3

5 GON 3776 Zoom_range 0.1

rotation_range 15

horizontal_flip: True

2 3
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CFP images from OCT or other type of images like red-

free image, autofluorescence, angiographic images or

other. The second model allows us to select only the

CFP with a minimum threshold of image quality. The

third model helps us to classify right-eye CFP versus

left-eye CFP, which we use in our platform to display the

best pair of retinas per patient. The fourth model classi-

fies the AMD CFP versus the normal CFP. Finally, the

fifth model allows for the classification of normal CFP

versus GON. Table 2 presents the three main CNN. We

have also published sample code for these architectures

on https://github.com/octavifs/optretina-cnns.

Model 1: Image Type Selection CFP/OCT/Other

Images

The CNN-1 performs a binary classification, separating CFP

from all other image types (OCT/RNFL/other images). The

training process was done from scratch, using RGB images

resized to 128x128 pixels with geometric data augmentation

over the training dataset. It should be noted that the CNN-1

has only three convolution layers, three max pooling layers,

and three dense layers; as a result, the CNN-1 has fewer

parameters than very deep models (such as Inception, VGG-

19, and RESNET50, among others). Its shallow architecture

makes it computationally inexpensive, which is beneficial

for increasing the processing throughput of our CADx pipe-

line. CNN-1, along with the rest of the models, have been

implemented using Keras,22 a software library that facilitates

the creation of neural networks with access to specialized

hardware resources, such as graphics processing units

(GPUs), in order to speed up the training and execution of

such algorithms.

Model 2: Good Quality Retinal Fundus Image

Classification

The second model also implements CNN-1 architec-

ture, but for a different task: to select good quality

CFP. The definition of “good quality” was defined by

considering the color retinal fundus image, centered on

macula with a correct focus; good visualization of the

parafoveal vessels; and if it was possible to visualize

over two disc diameters around the fovea, the optic

Table 2 CNN Architecture for Algorithms: 1. Color Fundus Photography (CFP) versus Macular Optical Coherence Tomography

(OCT), Retinal Nerve Fiber Layer in the OCT and Other images. 2. Good Quality Retinal Fundus image. 3. Right Eye versus Left Eye

(OD/OS). 4. AMD. 5. Glaucomatous Optic Neuropathy (GON) Classification. (Notations are Based on Keras22)

CNN-1 AMD-Net GON-Net

Input (128,128,3) Input (512,512,3) Input (224,224,3)

Conv_2D_1(ReLu,3,3,32) Conv_2D_1(ReLu,5,5,32) RESNET50

Max_Pooling_1(2,2) Max_Pooling_1(2,2) Flatten

Conv_2D_2(ReLu,3,3,32) Conv_2D_2(ReLu,3,3,32) Dropout_1(0.5)

Max_Pooling_2(2,2) Conv_2D_3(ReLu,3,3,32) Dense_1(ReLu,64)

Conv_2D_3(ReLu,3,3,64) Max_Pooling_2(2,2) Dropout_2(0.2)

Max_Pooling_3(2,2) Conv_2D_4(ReLu,3,3,32) Dense_2 (Softmax, 2)

Flatten Conv_2D_5(ReLu,3,3,32)

Dense_1 (ReLu,64) Max_Pooling_3(2,2)

Dropout_1 (0,5) Conv_2D_6(ReLu,3,3,32)

Dense_2 (Sigmoid, 5*/2) Conv_2D_7(ReLu,3,3,32)

Max_Pooling_4(2,2)

We trained only for 50 epochs, batch

size of 32 and learning rate of 0.001 for each model.

Conv_2D_8(ReLu,3,3,32)

Conv_2D_9(ReLu,3,3,32)

Max_Pooling_5(2,2)

Conv_2D_10(ReLu,3,3,64)

Conv_2D_11(ReLu,3,3,64)

Max_Pooling_6(2,2)

Flatten

Dense_1(ReLu64)

Dropout_1(0.5)

Dense_2(ReLu,64)

Dropout_2(0.2)

Dense_2 (Softmax, 2)
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disc (at least three-quarters), and the vascular arcades.

Figure 2 shows an example of good and bad quality

retinal fundus images. We also trained the same CNN-1

from scratch for a different objective with geometric

data augmentation.

Model 3: Right-Eye versus Left-Eye (OD/OS)

Classification

The third model is very useful for automatically displaying

both CFP images of the same patient in order for the

ophthalmologist to label the images. We trained the

model from scratch with data augmentation and using

CNN-1 architecture in order to classify the left eye versus

the right eye. It is important to note that the same simple

architecture was useful for classifying images in different

tasks. However, while the architecture is the same, each

training process teaches the model the features necessary

to learn a specific task.

Model 4: Age-Related Macular Degeneration (AMD)

AMD image classification poses special challenges due to

the fact that images are almost identical and only small

features determine their class.

AMD was classified according to the international

classification published in 2013:23

● Early AMD: the presence of medium drusen within

two disc diameters (DD) of the fovea.
● Intermediate AMD: the presence of large drusen or

medium drusen with pigmented abnormalities within

two DDs from the center.
● Advanced AMD: the presence of geographic atrophy

(> 125 microns) or signs of choroidal neovascular-

ization or fibrosis within two DDs from the fovea.

Although the images were classified into the three stages

of AMD for further investigations, this first algorithm was

binary, and detected AMD retinas (at any stage) from

normal ones.

We propose a novel architecture for AMD binary classi-

fication which will be referred to hereinafter as AMDNET.

The architecture of AMDNET allows us to extract small

details and features while also making predictions with

relatively few trainable parameters (around 241,000) in

comparison with other well-known architectures such as

RESNET5024 or InceptionV325 which have approximately

Figure 2 (A) Examples of good quality images. Retinal fundus images are centered on the macula with correct focus, good visualization of the parafoveal vessels and over

two disc diameters around the fovea, and correct observation of the optic disc (at least three-quarters) and the vascular arcades. (B) Examples of poor quality images.
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25 million trainable parameters. The AMDNET architecture

is presented in Table 2. We trained AMDNET from scratch

with the data specifications presented in Table 1.

Algorithm 5: Referable Glaucomatous Optic

Neuropathy (GON)

Referable glaucomatous optic neuropathy (GON) was

defined by a cup-to-disc ratio of 0.7 or more in the vertical

axis and/or other typical changes caused by glaucoma,

such as localized notches or RNFL defects. We modified

RESNET50 (23) and training from scratch in order to

make a binary GON image classification.

Study of Misclassifications
To study the possible cause of misclassification an experi-

enced retinal specialist and the Optretina medical director

(Miguel A. Zapata) reviewed all false positives and nega-

tives in the AMD and the GON algorithm.

Ethics and Data Protection
Given that requesting informed consent for the Optretina

evaluation is mandatory, patients are informed of the pros

and cons of screening, including the spectrum of diseases

that can and cannot be detected by a retinal fundus image.

As part of giving consent, patients also agreed to their

images being used anonymously for science and research

purposes. The dataset was completely anonymized. No

Optretina or BSC employee has access to patient data

except for the Optretina technical director (Didac Royo),

solely for emergency purposes. The keys for reversing the

anonymization are physically stored in a bank. The study

was approved by the ethics committee of the Hospital Vall

d’Hebron in Barcelona, the research followed the tenets of

the Declaration of Helsinki.

Statistical Analyses
A confusion matrix was created from the validation set in

all five CNNs. Images were divided based on the human

and algorithm classification. Receiver operating

characteristics (ROC) curves, area under the curve

(AUC), accuracy, and all other calculations were made

using SPSS 15. The number of images used for each

algorithm depended on the number of good images with

the disease in the Optretina database.

Results
Table 3 summarizes the outcomes from the different con-

volutional neuronal networks (CNNs) in the study. Table 4

reflects the confusion matrix in the validation sets, indicat-

ing positives and negatives, comparing human and artifi-

cial evaluation. ROC curves are seen in Figure 3.

The first CNN differentiating color fundus images from

other medical or non-medical images has an AUC of

0.979, with an accuracy of 96%. This algorithm has

a sensitivity over 97% and a specificity of 92%. Artificial

intelligence for determining if a retinal fundus image was

assessable or not had an accuracy of 92%, compared to

human determination and an AUC of 0.947. This CNN

also had high sensitivity (97%) and specificity (82%).

The algorithm for the right eye/left eye (OD/OS) had

an AUC of 0.989 with an accuracy of 97.4%. CNNs for

evaluating diseases had an AUC of 0.936 in the case of

age-related macular degeneration (AMD) with an accuracy

of 86.3%, and an AUC of 0.863 with an 80% accuracy in

the case of glaucomatous optic neuropathy. The algorithm

for detecting AMD had a sensitivity of 90.2% and

a specificity of 82.5%. In the case of glaucomatous optic

neuropathy (GON), sensitivity was 76.8% and specificity

was 83.8%.

The first cause of misclassification of images in the

AMD and the GON algorithm was the presence of border-

line cases. In the case of AMD, false negatives were early

AMD that was not seen by the CNN as disease; false

positives were cases of small drusen in the macular area

that were not tagged as AMD by the retinal specialist. False

negatives and positives in suspected glaucoma were border-

line cases with approximately 7/10 vertical excavation.

Table 3 Outcomes Calculated Using the Confusion Matrix in Different Algorithms

Model AUC Accuracy Sensitivity Specificity

Image type 0.979 (0.978–0.981) 0.960 (0.957–0.962) 0.977 (0.976–0.979) 0.924 (0.920–0.929)

Eye 0.989 (0.988–0.991) 0.974 (0.973–0.977) 0.983 (0.981–0.985) 0.966 (0.963–0.970)

Image quality 0.947 (0.945–0.948) 0.918 (0.916–0.919) 0.969 (0.968–0.970) 0.818 (0.814–0.821)

AMD classification 0.936 (0.922–0.946) 0.863 (0.845–0.877) 0.902 (0.880–0.916) 0.825 (0.799–0.849)

GON classification 0.863 (0.827–0.894) 0.803 (0.760–0.836) 0.768 (0.710–0.824) 0.838 (0.784–0.888)
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Discussion
For the last three years, artificial intelligence has been consid-

ered useful for detecting certain pathologies in retinal fundus

images. Studies show spectacular results for the detection of

diabetic retinopathy,14–17 macular degeneration,18,26 and cases

of suspected glaucoma.15,27,28

Optretina performs general screening for the main dis-

eases that affect the central retina. The screening is based

on retinal fundus images that use mainly table-top non-

mydriatic cameras (NMCs), although portable cameras

and optical coherence tomography (OCT) are also used.

The readings are conducted by specialist retina ophthal-

mologists who subsequently issue a report on the state of

the patient’s two central retinas. We think, in a near future

artificial intelligence could improve the times and quality

of reading, resulting in our readers having better outcomes

than human-only readings. In order for this to occur, we

must first guarantee the quality of the images. Since the

screening is based on retinal fundus images, we consider

the first three algorithms to be useful when the photogra-

pher (optometrist, general practitioner, or technician)

uploads the images on the telemedicine platform; in this

way, the system can detect that there is at least one retinal

fundus image for each eye and that the image is of a good

enough quality to be evaluated.

Unlike other publications that aim to replace the human

reading, we will like to explore future models based on the

idea that a hybrid reading—or the use of artificial intelli-

gence (AI) as a diagnostic aid tool can, at this time, be

a better solution for both guaranteeing the quality of the

readings and decreasing costs and time invested, while also

causing fewer ethical or legal problems. However, when

working with images from different types of cameras, and

even non-retinal fundus image images, studying the image

quality is even more important.

In the near future, screening for retinal diseases will

most probably be affected by the increasing ease with

which images will be able to be produced due to the

decreasing cost of NMCs and the use of smartphones and

portable digital devices. As other authors have described,

these procedures should be autonomous with little require-

ment for trained personnel.29 It has been well described that

the first step necessary for a screening algorithm is the

recognition and the exclusion of insufficient image

quality.29 This is what our first CNNs dealt with. In our

case, algorithms for identification and quality assurance

have levels of accuracy that are better than human-only.

Retinal landmarks have traditionally been used for recog-

nizing a retinal image and evaluating its quality,30,31 but we

used two CNNs without any intervention or segmentation,

thereby obtaining high levels of AUC for the algorithms.

To guarantee the quality of the images, some authors

perform a manual evaluation of their databases;16,29 while

this system is suitable for retrospective studies, using it in

prospective studies is not ideal. Other authors point out the

need for training and certifying photographers,19 which

certainly substantially improves the image quality. We

believe, however, that the use of quality algorithms may

be a more appropriate measure: it has a short feedback

circle, even during the image taking process, thus offering

a greater guarantee of quality and more cost-effectiveness.

Other authors have also used quality algorithms, as was

the case with Varadarajan et al,20 who had to exclude 12%

of the images of one of their datasets due to poor quality.

In the case of multiple acquisition devices and different

types of images—red free, color fundus photography

(CFP), autofluorescence, OCT, non-medical images—AI

could be used as a cascade of filters. First, we could

evaluate what kind of image we have, then the eye (in

Table 4 Validation ConfusionMatrix from the Five CNNs: 1. Color

Fundus Photography (CFP) versus Other Images. 2. Good Quality

Retinal Fundus Images. 3. Right Eye versus Left Eye (OD/OS). 4. Age

Related Macular Degeneration (AMD). 5. Glaucomatous Optic

Neuropathy (GON)

Filetype

Prediction False True

False 31% 2%

True 3% 64%

Laterality

Prediction False True

False 48% 1%

True 2% 49%

Quality assessment

Prediction False True

False 28% 2%

True 6% 64%

AMD

Prediction False True

False 42% 5%

True 9% 44%

GON

Prediction False True

False 42% 11%

True 8% 39%
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our model it is important to differentiated laterality, we

receive images from different cameras, automatically

upload in the platform, not all devices have differentiated

file from right or left eye) and if they are of sufficient

quality to be assessed; then we could apply CNNs for

different pathologies—in our case AMD and GON.

The use of AI could decrease the costs of screening

tools in the near future, allowing mass screening for retinal

disease in the general population and not just in known

diabetics. The incidence of AMD and glaucoma is currently

increasing around the world. These two diseases are

the second and third most frequent causes for visual impair-

ment in Europe,32 which is why we based our research on

them. Other publications on automated detection of refer-

able AMD with accuracies of 90% can be found in the

literature.18,26 With our CNNs, we have achieve 86% accu-

racy, because we have included all types of AMD, including

the early stages; at this point, one of the most important

reasons for misclassification is difficulty in differentiating

between early stages of AMD and normal retinas. We

believe that it is worthwhile for future research to study

the classification of AMD stages using AI in CFP, as other

authors demonstrate using OCT.33 For the purposes of our

current research, we prefer to identify any stage of AMD in

order to create future algorithms for classification. We

believe that although early AMD will not threaten visual

acuity in the short term, it should still be studied and

monitored by the ophthalmologist. In a recent review,

Schmidt-Erfurth et al indicate the limited role of CFP for

advanced stages of AMD compared to OCT screening,29

but for a general screening platform it may make sense to

start with color fundus photography due to cost considera-

tions. Also AI has detected patterns that are invisible to the

human eye in CFP such as gender, age, and smoking status.

Detection of advanced AMD in retinal fundus images

should therefore be studied.

Figure 3 Receiver operating characteristic (ROC) curves from the different CNNs. (A) Image type. (B) Quality assessment. (C) Laterality. (D) AMD. (E) GON.
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Screening for glaucoma is much more complicated

than doing so for other ophthalmological diseases.

Authors have had the best outcomes with a combination

of the slit lamp, OCT retinal nerve fiber layer (RNFL), and

visual field tests, but this combination is not the modality

of choice when we want to consider devices that are low

cost, widely available, and easy to use.29 In the latter case,

we are limited to detecting suspected glaucoma by visua-

lizing only the optic disc, similar to Ting et al, who

obtained a 94% accuracy for possible glaucoma in

a dataset of 125,000 diabetic patients.15 In our case, with

only 4720 images in the suspected glaucoma algorithm,

we achieved levels of accuracy of over 80%. Further

research with a better-defined glaucoma database would

be desirable in order to reach the maximum potential for

AI in screening for this disease.

We believe the kind of technology discussed in this

paper could be used not only for prospective purposes, but

also in retrospective studies, for classification in non-tagged

big datasets such as hospitals or ophthalmological clinics.

We use AI for classification, but one of the most exciting

types of future implementation of CNNs could be the pre-

diction of disease progression or clinical data.29 In the near

future, application of big data will require a well-tagged

database, and AI could be very helpful in this arena—for

massive retrospective classifications of image datasets

The accuracy of CNNs appears to be related primarily

to two factors. The first factor is the similarity of classes,

and the second is the number of well-classified images.

Regarding the first factor, it is necessary to explore the use

of deep learning for fine-grained image classification tech-

niques, given that it is easy for CNNs to differentiate

a horse from a car but the complexity increases when

considering the classification of similar images.

Concerning the second factor, it is easier to obtain high

levels of accuracy if we have large and well-classified

datasets. Although we used data augmentation techniques

in order to improve validation accuracy, having a large

dataset could be very important for obtaining a robust and

more general prediction model. We believe false positives

could be avoided with larger and better-tagged datasets. In

our case, the main cause of false positives and negatives

were borderline cases—images with which even retinal

specialists have low interobserver agreement.

From an engineering point of view, we have shown that

it is possible to propose an effective CNN architecture

with high validation accuracy and fewer trainable para-

meters. We would like to explore the combination of

different types of architecture in a future study in order

to try to predict other retinopathies.

One of the limitations of this study is the inclusion of

multiples images, from multiple devices and photogra-

phers, some of which only include 40°, 45°, and 50º of

the central retina. However, this same limitation could also

be a strength for the resulting algorithms, which could be

more reliable for use in the real world without having to

worry about camera brands or types. The only significant

barrier would be the assessable AI filter.

From an ethical and legal point of view, AI is far from

being reliable for general screening for retinal diseases. AI

can detect DR, AMD, or suspected glaucoma perfectly, but

we have to see what would happen— and who is respon-

sible in the event the algorithm fails—when the system

evaluates an image with uncommon findings, such as

dystrophies, tumors, or minor infections. In our opinion,

this problem could be solved with bigger datasets that

include rare diseases. In the end, the more we teach the

AI system, the more it learns. Meanwhile, AI could be

used to ameliorate the cost-effectiveness of using hybrid

systems supervised by a medical expert, raising doctor’s

performance beyond unaided human-only abilities, also

would be desirable for furthers investigations evaluate AI-

assisted interpretation in other non-retinal specialist per-

sonnel such as general ophthalmologists or primary care

physicians.

Deep learning opens an exciting chapter for the future.

AI algorithms seem to be reliable for determining whether

or not an image is CFP. Those algorithms are useful for

evaluating the quality of the retinal fundus image and also

for determining DR, AMD, and suspected glaucoma. As

discussed earlier, the next steps will be to continue “feed-

ing the beast,” providing more and more classified images

to improve accuracy and creating new CNNs for other

diseases. One of the most exciting challenges ahead is

designing new networks for making the normal/abnormal

algorithm over 90% of accuracy. Apart from technical and

ethical limitations, medical doctors must also establish

how to incorporate the algorithm properly into our clinics

and offices in order to control it and ensure a good use of

AI technology in medicine.
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