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Purpose: CD44 isoforms are highly expressed in cancer stem cells, initiating tumor growth

and sustaining tumor self-renewal. Among these isoforms, CD44 variant 9 (CD44v9) is

overexpressed in chronic inflammation-induced cancer. CD44 and the mesenchymal-to-

epithelial transition (MET) receptor tyrosine kinase are coactivated in some gastric cancers

(GCs). In this study, we characterized MET and CD44 expression and signaling in human

GC cell lines and analyzed differences in the susceptibility of these lines to foretinib.

Patients and Methods: We analyzed cell viability and the rate of apoptotic cells using

MTS assays and flow cytometry, respectively. Gene and protein expression were assessed by

quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunoblotting,

respectively.

Results: Foretinib treatment resulted in dose-dependent inhibition of growth in c-MET-

amplified MKN45 and SNU620 cells with concomitant induction of apoptosis, but not in

c-MET-reduced MKN28 and AGS cells. Foretinib treatment also significantly reduced

phosphor-c-MET, phosphor-AKT, beta-catenin, and COX-2 protein expression in MKN45

and SNU620 cells. Interestingly, foretinib significantly reduced CD44, CD44v9, COX-2,

OCT3/4, CCND1, c-MYC, VEGFA, and HIF-1a gene expression in CD44 and MET

coactivated MKN45 cells and increased CD44s gene expression; in contrast, these drugs

were only slightly active against SNU620 cells.

Conclusion: The results of this study indicate that foretinib could be a therapeutic agent for

the prevention or treatment of GCs positive for CD44v9 and c-MET.
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Introduction
The rate of gastric cancer (GC) incidence is high in East Asia, Eastern Europe, and

South America.1–3 Mortality rates have decreased markedly in recent years;4 how-

ever, GC remains the third most common cancer, causing 12% of all cancer-related

deaths every year.5,6 To develop and identify new drug candidates with the aim of

reducing GC mortality rates, it is important to determine its tumor characteristics

and treatment parameters. The MET proto-oncogene encode the receptor tyrosine

kinase (RTK) c-MET. In GC, such activation of MET has been attributed to gene

amplification.7 MET amplification occurred in 2–20% of GC patients, however,

only 7% of advanced GC patients overexpressed MET.8,9 In gastric cancer tissue,

MET overexpression has been observed in gastric epithelium harboring dysregu-

lated MET signaling, either as a result of high level focal amplification of the MET
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gene (>12 copies) or via HGF autocrine activation of

MET.10 Previous study MET amplification was not

detected in the cases with a gene copy number of <4.

These study identified MET amplification at a frequency

of 1.5% (4 out of 266 cases) in GC.11 Many MET tyrosine

kinase inhibitors (MET-TKIs) were discontinued in clin-

ical trials for multiple cancer types, including GC, because

they were unable to determine the amplification cutoff that

was MET for patient enrollment. The issue of how to

determine the cutoff value for MET amplification in such

cases has not yet been resolved.

HGF/c-MET targeting inhibitors are TKIs (e.g. ATP-

competitive MET kinase inhibitors, non-ATP-competitive

MET kinase inhibitors and multi-targeted inhibitors of

MET and other kinases), anti-HGF neutralizing antibodies

and anti-MET neutralizing antibodies used for various

cancer which is known to overexpress MET.12,13

Foretinib, ATP-competitive MET kinase inhibitors, it inhi-

bits HGF-mediated MET phosphorylation, migration and

invasion of MET-amplified human gastric cancer cell

lines.14 Foretinib failed to meet its primary end point of

an objective response rate >25% in Phase II GC clinical

trial. In this study, only 3patients had MET amplification,

one of whom had disease stabilization.15 Other research

patients based on germline or acquired MET mutation,

germline MET mutations were a strong predictor of

response to foretinib compared to acquired MET

mutations.16 In GC cancer, gain-of-function mutation of

MET are rare, with MET activation having been attributed

mostly to gene amplification.7,17,18 Previous studies MET

gene amplification rather than protein overexpression as

a true oncogenic driver and a predictive marker for MET

TKIs in GC.11,19,20 Interestingly though, other study

revealed a strong association between p-MET expression

and MET amplification in GC.9 Moreover, c-MET ampli-

fication is a frequent molecular abnormality in GC.21,22

Crosstalk between HGF/c-MET signaling pathway,

PI3K/AKT signaling pathway and Wnt/β-catenin signaling

pathway has been implicated in numerous cancers.23,24 The

HGF/c-MET interact and cooperate with tyrosine kinases,

can stimulate various downstream PI3K/AKT and Wnt/β-
catenin signaling pathway in tumor cells. Prominent Wnt/β-
catenin target genes include the CD44 and proto-oncogene

c-MYC.25,26 Especially, cell adhesion molecule CD44 pro-

motes stimulates inflammation, M2 macrophages accumula-

tion and ECM deposition.27 M2 macrophages exert pro-

tumoral functions by enhancing invasion and angiogenesis,

immunosuppression and drug resistance through high

expression of cyclooxygenase-2 (COX-2), VEGF and

MMPs.28 The hypoxic tumor microenvironment induce phe-

notypic changes by hypoxic-inducible factor 1α (HIF-1α)
that promote EMT and the stem-like properties of gastric

cancer cells.29,30 HIF-1α increases CD44 expression levels

and the number of CD44-positive cells.31 HIF-1α regulates

CD44 may be associated with the Wnt/β-catenin signaling

pathway in gastric cancer.32 CD44-positive GC cells exhibit

the cancer stem cell (CSC) phenotype, which exhibits tumor

growth initiation and self-renewal.34 Other study has demon-

strated a positive correlation between NANOG levels and

CD44 positive phenotype.33 CD44 also modulates interac-

tion, movement, and metastatic potential.35 The standard

isoform CD44s is generally expressed in normal epithelial

cells; CD44v, the variant isoform, is expressed in epithelial-

type carcinomas.36 CD44v9 is particularly overexpressed in

GC caused by chronic inflammation.37,38 COX-2 stimulates

cancer stem cell development in the inflammatory tumor

microenvironment39 and promotes tumor growth by inducing

proliferation, invasion, apoptosis inhibition, and angiogen-

esis induction.40,41

In the present study, we evaluated the suppressive

effects of the c-MET inhibitor foretinib on GC prolifera-

tion, apoptosis and cancer stemness.

Materials and Methods
Cell Culture and Reagents
GC cell lines SNU620, MKN45, MKN28, and AGS were

obtained from the Korean Cell Line Bank (Seoul, Korea)

and maintained in RPMI1640 supplemented with 10%

fetal bovine serum. Cells were cultured at 100% humidity

and 5% CO2 at 37°C. The c-MET inhibitor foretinib

(GSK1363089) was purchased from Selleck Chemicals

(Houston, TX, USA). The Annexin V-APC/propidium

iodide (PI) Apoptosis Detection Kit (Thermo Fisher

Scientific, Rockford, IL, USA) was used to determine

apoptosis rates.

Growth Inhibition Assays
IC50 values for foretinib in SNU620 and MKN45 cells were

measured using the MTS assay for foretinib concentrations

of 10, 1, 0.1, 0.05, 0.0025, 0.00125, 0.001, 0.0001, 0.00001,

and 0.000001 µM for 48 h. On the day of the proliferation

assay, the medium was removed, and 200 µL fresh medium

was added to each well in 96-well plates, followed by 20 µL

of MTS solution. The plates were then incubated at 37°C for

1 h in a humidified environment with 5% CO2. Absorbance
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was read at 490 nm using a microplate reader (Synergy 2

Multi-Mode Microplate Reader; BioTek). IC50 values were

determined after fitting growth inhibition curves to dose–

response curves using the GraphPad Prism software

(GraphPad Software Inc., San Diego, CA, USA).

Apoptosis Analysis
SNU620, MKN45, MKN28, and AGS cells seeded into

6-well plates at a density of 5 × 104 cells/mL were treated

with foretinib IC50 values. Cell death was determined

using the Annexin V-APC/PI Apoptosis Detection Kit

(Thermo Fisher Scientific) using a CytoFLEX flow cyt-

ometer (Beckman Coulter, Brea, CA, USA). Percentages

of intact and apoptotic cells were calculated using the

CytExpert software (Beckman Coulter).

qRT-PCR Analysis
To quantitate mRNA expression, total RNA from each

sample was reverse-transcribed into cDNA using the

High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA, USA). qRT-PCR was per-

formed using the Power SYBR Green PCR Master Mix

and a LightCycler 96 instrument (Roche Applied Science,

Indianapolis, IN, USA). Transcript levels of glyceralde-

hydes-3-phosphate dehydrogenase (GAPDH) were used

for sample normalization. The primer sequences were as

follows: c-MET (FW 5ʹ-AAG AGG GCA TTT TGG TTG

TG-3ʹ; RW 5ʹ-GAT GAT TCC CTC GGT CAG AA-3ʹ),

POU5F1 (OCT3/4, FW 5ʹ-TTC AGC CAA ACG ACC

ATC TG-3ʹ; RW 5ʹ-GAA CCA CAC TCG GAC CAC

ATC-3ʹ), NANOG (FW 5ʹ-CAC CAG TCC CAA AGG

CAA AC-3ʹ; RW 5ʹ-GCC TTC TGC GTC ACA CCA TT-

3ʹ), CCND1 (FW 5ʹ-GAT CAA GTG TGA CCC GGA CT-

3ʹ; RW 5ʹ-TCC TCC TCT TCC TCC TCC TC-3ʹ), VEGFA
(FW 5ʹ-AGG CCA GCA CAT AGG AGA GA-3ʹ; RW 5ʹ-

TTT CTT GCG CTT TCG TTT TT-3ʹ), CD44 (FW 5ʹ-

AGC ATC GGATTT GAG ACC TG-3ʹ; RW 5ʹ-GTT GTT

TGC TGC ACA GAT GG-3ʹ), CD44s (FW 5ʹ-AAA GGA

GCA GCA CTT CAG GA-3ʹ; RW 5ʹ-TGT GTC TTG

GTC TCT GGT AGC-3ʹ), CD44v9 (FW 5ʹ-ACC ATC

CAA CAA CTT CTA CTC TGA CA-3ʹ; RW 5ʹ-CCT

TCA GAATGATTT GGG TCT CTT-3ʹ), ECAD (FW 5ʹ-

TGG GCC AGG AAA TCA CAT CC-3ʹ; RW 5ʹ-GGC

ACC AGT GTC CGG ATT AA-3ʹ), COX-2 (FW 5ʹ-TGA

GCATCTACG GTT TGC TG-3ʹ; RW 5ʹ-AAC TGC TCA

TCA CCC CAT TC-3ʹ), HIF-1α (FW 5ʹ-CCA CCT ATG

ACC TGC TTG GT-3ʹ; RW 5ʹ-TAT CCA GGC TGT GTC

GAC TG-3ʹ), c-MYC (FW 5ʹ-TCA AGA GGC GAA CAC

ACA AC-3ʹ; RW 5ʹ-GGC CTT TTC ATT GTT TTC CA-

3ʹ), and GAPDH (FW 5ʹ-TTC ACC ACC ATG GAG AAG

GC-3ʹ; RW 5ʹ-GGC ATG GAC TGT GGT CAT GA-3ʹ).

Immunoblot Analysis
Immunoblot analysis was performed using standard proce-

dures. Commercially available primary antibodies were direc-

ted against anti-phospho-c-MET (Tyr1234/1235; 1:1000;

#3077; Cell Signaling Technology, Danvers, MA, USA),

anti-c-MET (1:1000; #4560; Cell Signaling Technology), anti-

phospho-AKT (1:1000; #4060; Cell Signaling Technology),

anti-AKT (1:1000; #1085-1; Epitomics), anti-β-catenin
(1:1000; #610153; BD Biosciences), anti-COX-2 (1:1000;

sc1745; Santa Cruz Biotechnology), anti-β-actin (1:1000;

sc47778; Santa Cruz Biotechnology), and anti-α-tubulin
(1:4000; # 05–829; Millipore).

Statistical Analysis
Data were analyzed using the Prism 5 (GraphPad Software

Inc.). Values are means ± standard deviation (S.D.). Statistical

significance was determined using one-way analysis of var-

iance (ANOVA); significance was determined at a level of

P < 0.05.

Results
Determining the Effective Dose of Foretinib

in c-MET-Positive Cells
We tested the dose-dependent inhibitory effects of foretinib

in SNU620 and MKN45 cells (Figure 1). Cells were treated

with different concentrations of foretinib for 48 h, and the

optimal dose was determined by evaluating cell viability

using MTS assays. Treatment with foretinib decreased cell

viability in a dose-dependent manner in c-MET-amplified

Figure 1 Effect of foretinib on gastric cancer (GC) cells positive for c-MET

amplification. (A) SNU620 and MKN45 cells were treated with various concentra-

tions of foretinib for 48 h. (B) Immunodetection of endogenous c-MET and phos-

phor c-MET (pY1234/1235) in GC cell lines.
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SNU620 and MKN45 cells (n = 3) (Figure 1). Non-linear

regression analysis revealed foretinib IC50 values of 13.4 nM

for MKN45 cells and 21.9 nM for SNU620 cells.

Effects of Foretinib on Cell Apoptosis
To evaluate the effects of foretinib on cell death in SNU620,

MKN45, MKN28, and AGS cells, apoptosis was examined

by staining with Annexin V-APC/PI, followed by flow

cytometry (Figure 2). Cells were stained with Annexin

V-APC and PI, which assess early apoptotic and late apop-

totic, and necrotic cell populations, respectively. Foretinib

showed the best cell death rates in SNU620 and MKN45

cells, whereas apoptosis was seldom observed in MKN28

and AGS cells (Figure 2A and B), with apoptotic cell

Figure 2 Apoptotic activity of foretinib in (A) c-MET-positive SNU620 and MKN45 cells and (B) c-MET-negative MKN28 and AGS cells. Flow cytometric assay of GC cells

treated with 30 nM foretinib for 48 h. Data are means ± S.D.
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Figure 3 Effect of foretinib on carcinogenesis-related genes in GC cells. (A) c-MET and CD44 gene expression in gastric cancer cells and (B) mRNA levels of c-MET, HIF-1a,

VEGFA, CD44, CD44s, CD44v9, CCND1, COX-2, and ECAD in MKN45, SNU620, MKN28, and AGS cells were determined by quantitative reverse-transcription polymerase

chain reaction (qRT-PCR) analysis after treatment with 30 nM foretinib for 48 h. Data are means ± S.D. *P < 0.05; **P < 0.01; ***P < 0.001 (one-way analysis of variance [ANOVA]).
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percentages of 23.02 and 12.7%, respectively, after expo-

sure to foretinib for 48 h (Figure 2A). SNU620 and MKN45

were high-c-MET expressors, whereas others such as

MKN28 and AGS belonged to the low-c-MET expressor

subtype. Notably, MKN45 cells were a high-CD44 expres-

sor subtype (Figure 3A).

Foretinib Inhibits c-MET Activation and

Cancer Stemness in GC Cells
To examine the inhibitory effects of foretinib on GC cells

(high-c-MET/high-CD44 [MKN45], high-c-MET/low-

CD44 [SNU620], and low-c-MET/low-CD44 [MKN28]),

oncogenic pathways were examined by analyzing gene and

protein expression. Following treatment with foretinib, levels

of c-MET, HIF-1α, VEGFA, CD44, CD44v9, CCND1,

c-MYC, COX-2, and OCT3/4 mRNA decreased in MKN45

cells, whereas CD44s expression increased. In contrast, these

drugs were only slightly active against SNU620 cells

(Figure 3B). However, phosphor-c-MET, phosphor-AKT, β-
catenin, and COX-2 protein expression decreased inMKN45

and SNU620 cells (Figure 4).

Discussion
Carcinogenesis is complex process whereby malignant trans-

formation occurs through genome instability and

inflammation.42 Several studies have reported that COX-2

activation may be involved in inflammation-mediated CSC

proliferation and differentiation.43,44 Many solid tumors pos-

sess CSCs, which share several characteristics with stem

cells.45–47 Presently, CD44 is considered the most useful

marker of gastric CSCs and a number of other solid

tumors.34,48–51 CD44 is well known as a downstream target

of Wnt/ß-catenin signaling.25 CD44 affect ß-catenin phos-

phorylation and nuclear accumulation in myeloid leukemia

cells.52 Other study reveals that CD44 regulates Wnt signal-

ing at the level of membrane receptors.53 In addition, CD44

controls signaling through interactions with TRKs, including

c-Met andVEGFR2.54 Therefore, we examined CD44 down-

regulated drugs in MKN45 cells, which have a high expres-

sion of CD44 among c-MET-amplified cell lines. In

a previous study, CD44 inhibitor drugs were screened using

qRT-PCR analysis of MKN45 cells with CSCs to determine

their suitability as therapeutic agents in GC treatment.

Among the six c-MET inhibitor drugs tested, only foretinib

downregulated the CD44 gene; therefore, foretinib was

selected for further study.

Protein kinase mutations, overexpression, and dysregula-

tion play an important role in the pathogenesis of many

diseases including cancer.55–57 Therefore, this enzyme

family (e.g. ALK, EGFR, ERBBs, VEGFR2, FGFR,

PDGFR, c-MET, etc.) has become one of the important

drug targets during the past 20 years.58 Foretinib is multi-

kinase inhibitor targeting to c-MET and VEGFR2.14 In the

present study, foretinib showed higher inhibition rates but

lower apoptosis rates in MKN45 cells than in SNU620 cells.

CD44-positive GC cells showed increased resistance for

chemotherapy-induced cell death.34 Alternative splicing

results in several CD44 isoforms with diverse functions.

Figure 4 Effect of foretinib on p-AKT, AKT, b-catenin, and COX-2 protein expression in GC cells. Protein levels of p-AKT, AKT, b-catenin, and COX-2 in MKN45 and

SNU620 cells were determined by Western blot analysis after treatment with 30 nM foretinib for 48 h. Data are means ± S.D. ***P < 0.001 (one-way ANOVA).
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Notably, CD44v9 expression was higher in cancer cells from

cancer patients than in normal tissues.37,38,44 CD44v9 is

contained in the v6-10, v7-10, and v8-10 CD44

combinations.59 Among these, CD44v8-10 acts as a cancer

stem cell in cancer development.60 Stem cell markers include

OCT3/4, Nanog, and CD44v9, which are involved in the

inflammatory microenvironment during cancer

development.61 When MKN45 cells were treated with fore-

tinib, levels of CD44, CD44v9, OCT3/4, NANOG, and

COX-2 genes/proteins decreased. In contrast, those of

CD44s increased. Previous study, attenuated ECAD expres-

sion, upregulation of β-catenin and enhanced ovarian cancer

cell migration.62 Other study has reported that suppressed

EMT through attenuation of AKT phosphorylation and β-

catenin.63 Our results also indicated that foretinib may sup-

press β-catenin and AKT phosphorylation through increased

ECAD expression. Indeed, foretinib inhibited angiogenesis,

Wnt/β-catenin signaling, and the PI3K/Akt pathway in this

study by inhibiting VEGFA, HIF-1α, c-MET, and AKT

phosphorylation, as well as CCND1, c-MYC, and β-catenin

in c-MET-positive GC. Our in vitro study strongly supports

the clinical evaluation of foretinib, which prevents cancer

stemness and c-MET-associated GC.

Conclusion
The results of this study indicate that c-MET and CD44v9

are differentially expressed in GCs and that foretinib exhi-

bits significant inhibitory activity in c-MET- and CD44v9-

expressed GC. Our in vitro study strongly supports the

clinical evaluation of foretinib, which prevents cancer

stemness and c-MET-associated GC.
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