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Background: Foodstuffs with animal origins, particularly meat, are likely reservoirs of

Helicobacter pylori.

Purpose: An existing survey was accompanied to assess phenotypic and genotypic profiles

of antibiotic resistance and genotyping of vacA, cagA, cagE, iceA, oipA, and babA2 alleles

amongst the H. pylori bacteria recovered from raw meat.

Methods: Six-hundred raw meat samples were collected and cultured. H. pylori isolates were

tested using disk diffusion and PCR identification of antibiotic resistance genes and genotyping.

Results: Fifty-two out of 600 (8.66%) raw meat samples were contaminated with H. pylori.

Raw ovine meat (13.07%) had the uppermost contamination. H. pylori bacteria displayed the

uppermost incidence of resistance toward tetracycline (82.69%), erythromycin (80.76%),

trimethoprim (65.38%), levofloxacin (63.46%), and amoxicillin (63.46%). All H. pylori

bacteria had at least resistance toward one antibiotic, even though incidence of resistance

toward more than eight antibiotics was 28.84%. Total distribution of rdxA, pbp1A, gyrA, and

cla antibiotic resistance genes were 59.61%, 51.92%, 69.23%, and 65.38%, respectively.

VacA s1a (84.61%), s2 (76.92%), m1a (50%), m2 (39.13%), iceA1 (38.46%), and cagA

(55.76%) were the most generally perceived alleles. S1am1a (63.46%), s2m1a (53.84%),

s1am2 (51.92%), and s2m2 (42.30%) were the most generally perceived genotyping patterns.

Frequency of cagA-, oipA-, and babA2- genotypes were 44.23%, 73.07%, and 80.76%,

respectively. A total of 196 combined genotyping patterns were also perceived.

Conclusion: The role of raw meat, particularly ovine meat, in transmission of virulent and

resistant H. pylori bacteria was determined. VacA and cagA genotypes had the higher incidence.

CagE-, babA2-, and oipA- H. pylori bacteria had the higher distribution. Supplementary surveys

are compulsory to originate momentous relations between distribution of genotypes, antibiotic

resistance, and antibiotic resistance genes.
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Introduction
Meat of animals, particularly camel, caprine, ovine, bovine, and buffalo species, afford

a bundle of nutrient components difficult to gain in diets with incomplete or no meat.1

Reversely, raw meat is not unavoidably safe, as evidenced by considerable rates of

foodborne diseases accompanying with its consumption.2 Similarly, several outbreaks

of foodborne diseases have been conveyed owing to the consumption of contaminated

meat samples.2
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Helicobacter pylori (H. pylori) is a microaerophilic and

Gram-negative flagellated bacterium responsible for the

occurrence of peptic ulcer disease, gastric adenocarci-

noma, duodenal ulcer, type B gastritis, mucosa-associated

lymphoid tissue (MALT) lymphoma, and gastric B-cell

lymphoma.3 The main reservoir of H. pylori bacteria is

the human stomach.3 In keeping with this, foods with

animal origins, particularly meat, may play an imperative

portion in transmission of H. pylori infections to

humans.4,5 Foods with animal origins provide appropriate

circumstances such as pH, moisture and activated water

(AW) contents, and temperature for growth and survival of

H. pylori.4,5 Additionally, the role of meat consumption as

a risk factor for occurrence of H. pylori infections has

been conveyed.6,7 Likewise, the bacterium has been recov-

ered from diverse kinds of foods with animal origins.6,7

H. pylori infections are associated with the presence

and activity of certain virulence markers such as

Vacuolating Cytotoxin A (vacA). Cytotoxin Associated

Gene A and E (cagA and cagE), Induced by Contact

with the Epithelium Antigen (iceA), Outer Inflammatory

Protein Antigen (oipA), and Blood Group Antigen-Binding

Adhesin gene (babA).8,9 The vacA gene is polymorphic,

containing mutable signals (type s1 or s2) and mid-regions

(type m1 or m2). The s1 type is further alienated into s1a,

s1b and s1c and the m1 into m1a and m1b alleles. The

cagA gene is an indicator for the genomic pathogenicity

island of c. 40 kb [cag pathogenicity island (cag-PAI)] and

its activity is believed to be cooperated with interleukin 8

secretion, local inflammation, and severe and/or compli-

cated occurrence of peptic ulcers and gastrointestinal

disorders.8,9 CagE gene was found to serve as an improved

biomarker of an intact cag-PAI in patients with severe

gastrointestinal disorders.8,9 BabA2 gene mediates adher-

ence of H. pylori to human Lewis b blood-group antigens

on gastric epithelial cells.8,9 OipA is a significant virulence

marker which is associated with clinically imperative pre-

sentation of peptic ulcers, such as enhanced interleukin-8

secretion and increased inflammation.8,9 The iceA gene

was detected in the H. pylori recovered from patients

with gastrointestinal disorders.8,9 There are at least two

alleles of iceA:, iceA1, and iceA2.8,9 The relationship

between H. pylori iceA1 and iceA2 and clinical outcomes

has been addressed by some researchers.8,9 The presence

of these alleles has been conveyed in different research

conducted on diverse kinds of foods with animal origins.10

Genotyping using these virulence markers is considered as

one of the best approaches to study the correlations

between H. pylori isolates from different samples.

Antibiotic therapy is one of the best aspects of treatments

of H. pylori infections. However, therapeutic choices have

become slightly limited owing to the occurrence of resistance

in some H. pylori strains.11,13 Recognized information

revealed thatH. pylori bacteria displayed the boost incidence

of resistance toward diverse kinds of antibiotics such as

tetracyclines, fluoroquinolone, aminoglycosides, penicillins,

sulfonamides, and macrolides.11,13 The presence of certain

antibiotic resistance genes, particularly rdxA, pbp1A, gyrA,

and cla which encode resistance toward metronidazole,

amoxicillin, fluoroquinolone, and clarithromycin antibiotic

agents, respectively, is one of the most important reasons for

occurrence of antibiotic resistance.14,15 Therefore, it is sig-

nificant to know the exact phenotypic and genotypic patterns

of antibiotic resistance of H. pylori bacteria recovered from

foods with animal origins.

Data on the epidemiology and transmission ofH. pylori is

extremely significant in order to prevent its distribution and

to identify high-risk populations. Considering the indistinct

epidemiological aspects of H. pylori in meat, as a highly

consumed foodstuff, an existing research was performed in

order to assess the incidence, genotyping patterns and phe-

notypic and genotypic profiles of antibiotic resistance of the

H. pylori bacteria recovered from raw meat samples of

camel, caprine, ovine, bovine, and buffalo species.

Materials and Methods
Samples
From April to October 2018, a total 600 raw meat samples

including bovine (n= 140), ovine (n=130), caprine (n= 130),

buffalo (n= 100), and camel (n= 100) were arbitrarily col-

lected from the butchers of diverse areas of Tehran province,

Iran. All meat samples were collected from the femur mus-

cle. Meat samples displayed natural physical (color, odor,

pH, and density) constancy. Samples (40 g, in sterile glass

bottles) were transported in ice-cooled flasks (at 4°C) to the

laboratory within 2 hours after collection.

Isolation of Helicobacter pylori
Isolation ofH. pylori bacteria was performed using the culture

technique.17,18 Twenty-five grams of meat sample were

applied for this resolve. Wilkins Chalgren anaerobe broth

(Oxoid Ltd., Basingstoke, UK) was applied for this goal.

Culture media were supplemented with 5% of horse serum

(Sigma, St. Louis, MO), nalidixic acid (30mg/L), vancomycin
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(10 mg/L), cycloheximide (100 mg/L), and trimethoprim

(30 mg/L) (Sigma). Microaerophilic circumstances (5% oxy-

gen, 85% nitrogen, and 10% CO2) was equipped using the

MART system (MART system, Lichtenvoorde, The

Netherlands). For comparison, a reference strain of H. pylori

(ATCC 43504) was employed. Suspected colonies were then

identified using colony morphology, Gram staining, and some

biochemical tests such as urease, oxidase, catalase, and nitrate

reduction.

DNA Extraction and 16S rRNA-Based

Polymerase Chain Reaction (PCR)

Confirmation
H. pylori isolates were additionally confirmed using the

16S rRNA-based PCR method. Colonies were sub-cultured

on Wilkins Chalgren anaerobe broth supplemented with

the same materials declared above.16,17 Genomic DNA

was then extracted using a DNA extraction kit (Thermo

Fisher Scientific, St. Leon-Rot, Germany). Technique was

performed rendering to the factory guidelines. Purity

(A260/A280) and concentration of extracted DNA were

then plaid (NanoDrop, Thermo Scientific, Waltham, MA)

and the DNA quality was scrutinized by electrophoresis.

PCR was accompanied using a PCR thermal cycler

(Eppendorf Co., Hamburg, Germany) rendering to the

described procedure.18 H. pylori 26695 was used as posi-

tive, while sterile PCR grade water (Thermo Fisher

Scientific) was used as negative controls.

Study the Antibiotic Resistance Pattern
Mueller–Hinton agar (Merck, Germany) was applied to

assess the pattern of antibiotic resistance using the simple

disk diffusion technique. Antibiotic resistance profile of

H. pylori bacteria was researched toward dissimilar anti-

biotic agents (Oxoid, UK) using the guidelines of the

Clinical and Laboratory Standards Institute (CLSI).19,20

Resistance patterns of bacteria were experienced toward

levofloxacin (5 µg), ampicillin (10 µg), clarithromycin

(2 µg), metronidazole (5 µg), streptomycin (10 µg), amox-

icillin (10 µg), cefsulodin (30 µg), tetracycline (30 µg),

erythromycin (5 µg), furazolidone (1 µg), trimethoprim

(25 µg), rifampin (30 µg), and spiramycin (100 µg)

(Oxoid). Positive controls (NCTC 13206 (CCUG 38770)

and NCTC 13207 (CCUG 38772)) were accompanied in

this experiment.

Study the Distribution of Antibiotic

Resistance Genes and Genotyping Pattern
Distribution of antibiotic resistance genes and vacA, cagA,

iceA, oipA, cagE, and babA2 genotypes of H. pylori bac-

teria were assessed rendering the preceding experiment.21,29

PCR circumstances were displayed in Table 1. Positive

(SS1 (for cagA and cagE genotypes), 26,695 (for babA2,

vacA, cagA, cagE, iceA genotypes and cla and rdxA anti-

biotic resistance genes), Tx30 (for vacA genotypes), J99

(for cagA and babA2), 88–23 (for cagA and vacA geno-

types), 84–183 (for vacA and cagA genotypes), 43,504 (for

vacA and iceA2 genotypes), 49,503 (for iceA1 genotypes),

D0008 (for oipA genotype), 69A (for rdxA and pbp 1A

antibiotic resistance gene), and RM92 (for gyrA antibiotic

resistance gene), and negative (PCR grade water (Thermo

Fisher Scientific)) controls were also accompanied in this

experiment. Electrophoresis was addressed rendering pre-

vious experiments.21

Numerical Examination
Data were subjected to Microsoft office Excel (version 15;

Microsoft Corp., Redmond, WA). Numerical examination

was performed by means of the SPSS 21.0 numerical

software (SPSS Inc., Chicago, IL). Chi-square test and

Fisher’s exact two-tailed test were applied to measure

any momentous relationship. P-value<0.05 was considered

as a numerical momentous level.

Results
Table 2 embodies the incidence of H. pylori bacteria

recovered from diverse kinds of raw meat samples. Fifty-

two out of 600 (8.66%) raw meat samples were contami-

nated with H. pylori. Raw ovine (13.07%) samples had the

uppermost contamination rate with H. pylori bacteria,

while raw camel (3%) had the lowest. Numerical momen-

tous variance was originated amid kinds of samples and

incidence of H. pylori bacteria (P<0.05).

Table 3 embodies the antibiotic resistance pattern of

H. pylori bacteria recovered from diverse kinds of raw

meat samples. H. pylori bacteria displayed the uppermost

incidence of resistance toward tetracycline (82.69%), ery-

thromycin (80.76%), trimethoprim (65.38%), levofloxacin

(63.46%), amoxicillin (63.46%), and clarithromycin

(61.53%) antibiotic agents. H. pylori bacteria displayed the

lowest incidence of resistance toward spiramycin (21.15%),

furazolidone (25%), cefsulodin (38.46%), and rifampin

(40.38%) antibiotic agents. H. pylori bacteria recovered
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Table 1 Set of Primers and PCR Circumstances Applied for Detection of Antibiotic Resistance Genes and Genotyping of vacA, cagA,
iceA, oipA, cagE, and babA2 Alleles

Genes Primer Sequence (5ʹ-3ʹ) Size of

Product (Bp)

Volume of PCR Reaction (50

µl)

PCR Programs

VacA s1a F: CTCTCGCTTTAGTAGGAGC

R: CTGCTTGAATGCGCCAAAC

213 5 µL PCR buffer 10X

1.5 mM MgCl2

200 µM dNTP (Thermo Fisher

Scientific)

0.5 µM of each primers F & R

1.25 U Taq DNA polymerase

(Thermo Fisher Scientific)

2.5 µL DNA template

1 cycle:

95°C; 1 min.

32 cycle:

95°C; 45 s
VacA s1b F: AGCGCCATACCGCAAGAG

CTGCTTGAATGCGCCAAAC

187

VacA s1c F: CTCTCGCTTTAGTGGGGYT

R: CTGCTTGAATGCGCCAAAC

213 64°C; 50 s

72°C; 70 s

1 cycle:

72°C; 5 min
VacA s2 F: GCTAACACGCCAAATGATCC

R: CTGCTTGAATGCGCCAAAC

199

VacA m1a F: GGTCAAAATGCGGTCATGG

R: CCATTGGTACCTGTAGAAAC

290

VacA m1b F: GGCCCCAATGCAGTCATGGA

R: GCTGTTAGTGCCTAAAGAAGCAT

291

VacA m2 F: GGAGCCCCAGGAAACATTG

R: CATAACTAGCGCCTTGCA

352

Cag A F: GATAACAGCCAAGCTTTTGAGG

R: CTGCAAAAGATTGTTTGGCAGA

300 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

94°C; 1 min.

32 cycle:

95°C; 60 s

56°C; 60 s

72°C; 60 s

1 cycle:

72°C; 10 min

IceA IceA1 F: GTGTTTTTAACCAAAGTATC

R: CTATAGCCASTYTCTTTGCA

247 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

94°C; 1 min.

32 cycle:

94°C; 60 s

56°C; 60 s

72°C; 60 s

1 cycle:

72°C; 10 min

IceA2 F: GTTGGGTATATCACAATTTAT

R: TTRCCCTATTTTCTAGTAGGT

229/334

OipA F: GTTTTTGATGCATGGGATTT

R: GTGCATCTCTTATGGCTTT

401 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

94°C; 1 min.

32 cycle:

94°C; 60 s

56°C; 60 s

72°C; 60 s

1 cycle:

72°C; 10 min

cagE F: TTGAAAACTTCAAGGATAGGATAGAGC

R: GCCTAGCGTAATATCACCATTACCC

500 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

95°C; 4 min.

31 cycle:

95°C; 44 s

51°C; 45 s

72°C; 62 s

1 cycle:

72°C; 5 min

(Continued)
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from raw ovine meat samples displayed the most diverse

incidence of resistance toward antibiotic agents. Numerical

momentous variance was originated amid kinds of samples

and incidence of antibiotic resistance of H. pylori bacteria

(P<0.05). Figure 1 embodies the distribution of multi-drug

resistant H. pylori bacteria recovered from diverse kinds of

raw meat samples. All H. pylori bacteria recovered from raw

meat samples had at least resistance toward one antibiotic

agent, while incidence of resistance toward more than eight

types of antibiotics was 28.84%.

Table 4 embodies the distribution of antibiotic resis-

tance genes amongst the H. pylori bacteria recovered from

diverse kinds of raw meat samples. Total distribution of

rdxA, pbp1A, gyrA, and cla antibiotic resistance genes

amongst the H. pylori bacteria recovered from diverse

kinds of raw meat samples were 59.61%, 51.92%,

Table 1 (Continued).

Genes Primer Sequence (5ʹ-3ʹ) Size of

Product (Bp)

Volume of PCR Reaction (50

µl)

PCR Programs

BabA2 F: CCAAACGAAACAAAAAGCGT

R: GCTTGTGTAAAAGCCGTCGT

105–124 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

94°C; 1 min.

35 cycle:

94°C; 60 s

57°C; 45 s

72°C; 30 s

1 cycle:

72°C; 10 min

rdXA Metronidazole F: AATTTGAGCATGGGGCAGA

R: GAAACGCTTGAAAACACCCCT

581 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

95°C; 5 min.

40 cycle:

94°C; 30 s

55°C; 30 s

72°C; 60 s

1 cycle:

72°C; 10 min

pbp1A Amoxicillin F: GCGACAATAAGAGTGGCA

R: TGCGAACACCCTTTTAAA T

2,300 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

95°C; 3 min.

35 cycle:

95°C; 60 s

54°C; 60 s

72°C; 5 min

1 cycle:

72°C; 10 min

gyrA Fluoroquinolone F: TTTRGCTTATTCMATGAGCGT

R: GCAGACGGCTTGGTARAATA

2,300 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

94°C; 5 min.

35 cycle:

94°C; 30 s

47°C; 30 s

72°C; 30 s

1 cycle:

72°C; 5 min

cla Clarithromycin F: AGTCGGGACCTAAGGCGAG

R: AGGTCCACCACGGGGTCTTG

700 5 µL PCR buffer 10X

2 mM MgCl2

150 µM dNTP (Thermo Fisher

Scientific)

0.75 µM of each primers F & R

1.5 U Taq DNA polymerase

(Thermo Fisher Scientific)

3 µL DNA template

1 cycle:

94°C; 5 min.

30 cycle:

94°C; 60 s

55°C; 60 s

72°C; 60 s

1 cycle:

72°C; 5 min
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69.23%, and 65.38%, respectively. H. pylori bacteria

recovered from raw ovine meat samples displayed the

most diverse distribution of antibiotic resistance genes.

Numerical momentous variance was originated amid

kinds of samples and distribution of antibiotic resistance

genes (P<0.05).

Table 5 embodies the distribution of alleles amongst the

H. pylori bacteria recovered from diverse kinds of raw meat

samples. vacA s1a (84.61%), s2 (76.92%), m1a (50%), m2

(39.13%), iceA1 (38.46%), and cagA (55.76%)were themost

generally perceived alleles amongst the H. pylori bacteria.

Distribution of vacA s1c (7.69%) and m1b (21.15%) and

iceA2 (7.69%) and babA2 (19.23%) alleles were lower than

other detected genotypes. H. pylori bacteria recovered from

raw ovine meat samples displayed the most diverse distribu-

tion of alleles. Numerical momentous variance was origi-

nated between type of samples and distribution of alleles of

H. pylori bacteria (P<0.05). Furthermore, numerical momen-

tous variance was originated amid distribution of cagA and

cagE (P<0.01) and iceA1 and iceA2 (P<0.01) alleles.

Table 6 embodies the genotyping pattern of H. pylori

bacteria recovered from diverse kinds of raw meat

samples. S1am1a (63.46%), s2m1a (53.84%), s1am2

(51.92%), and s2m2 (42.30%) were the most generally

perceived genotyping pattern of the vacA alleles of

H. pylori bacteria recovered from diverse kinds of raw

meat samples. Distribution of cagA-, oipA-, and babA2-

genotypes were 44.23%, 73.07%, and 80.76%, respec-

tively. We originated that 5.76% of H. pylori bacteria

displayed iceA1/iceA2 genotyping pattern. S1cm1b

(1.92%), s1cm2 (3.84%), s1cm1a (3.84%), and and

s1bm1b (7.62%) had the lowest incidence amongst differ-

ent genotyping patterns of H. pylori bacteria. H. pylori

bacteria recovered from raw ovine meat samples displayed

the most diverse distribution of genotypes.

Table 2 Incidence of H. pylori in Diverse Kinds of Raw Meat

Samples

Raw Milk

Samples

No Samples

Collected

N (%) of H. pylori Positive

Samples*

Bovine 140 8 (5.71)

Ovine 130 17 (13.07)

Caprine 130 15 (11.53)

Buffalo 100 9 (9)

Camel 100 3 (3)

Total 600 52 (8.66)

Note: *H. pylori isolates were also confirmed by the 16S rRNA-based PCR

amplification.
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Table 7 embodies the combined genotyping pattern of

H. pylori bacteria recovered from diverse kinds of raw meat

samples. We originated that s1a/cagA-/iceA1/oipA-/cagE-/

babA- (32.69%), m1a/cagA-/iceA1/oipA-/cagE-/babA-

(32.69%), s2/cagA-/iceA1/oipA-/cagE-/babA- (26.92%), s1a/

cagA+/iceA1/oipA+/cagE-/babA- (23.07%), m1a/cagA

+/iceA1/oipA+/cagE+/babA- (23.07%), m1a/cagA+/iceA1/

oipA+/cagE-/babA- (23.07%), m2/cagA-/iceA1/oipA-/cagE-/

babA- (23.07%), s1a/cagA+/iceA1/oipA+/cagE+/babA-

(21.15%), s1a/cagA-/iceA1/oipA-/cagE+/babA- (21.15%),

s1a/cagA-/iceA1/oipA+/cagE-/babA- (21.15%), s1b/cagA-/

iceA1/oipA-/cagE-/babA- (21.15%), m1a/cagA-/iceA1/

oipA-/cagE+/babA- (21.15%), m1a/cagA-/iceA1/oipA+/ca

gE-/babA- (21.15%), m1b/cagA-/iceA1/oipA-/cagE-/babA-

(21.15%), s1a/cagA+/iceA1/oipA-/cagE+/babA- (19.23%),

s2/cagA+/iceA1/oipA+/cagE-/babA- (19.23%), s2/cagA-/

iceA1/oipA-/cagE+/babA- (19.23%), s2/cagA-/iceA1/oipA

+/cagE-/babA- (19.23%), m1a/cagA+/iceA1/oipA-/cagE-/

babA+ (19.23%), and m1a/cagA+/iceA1/oipA-/cagE+/babA-

(19.23%) were the most generally perceived combined geno-

typing pattern of H. pylori bacteria recovered from diverse

kinds of raw meat samples. Incidence of s1a/cagA+/iceA2/

oipA+/cagE+/babA+, s1a/cagA+/iceA2/oipA+/cagE-/babA+,

s1a/cagA-/iceA2/oipA+/cagE+/babA+, s1a/cagA+/iceA2/

oipA-/cagE+/babA-, s1a/cagA-/iceA2/oipA+/cagE+/babA-,

s1a/cagA-/iceA2/oipA+/cagE-/babA-, s1b/cagA+/iceA1/oipA

Figure 1 Incidence of multi-drug resistant H. pylori bacteria isolated from raw meat samples.

Table 4 Distribution of Antibiotic Resistant Genes Amongst the H. pylori Bacteria Isolated from Diverse Kinds of Raw Meat Samples

Type of Raw Meat Samples (N H. pylori Bacteria) N (%) Isolates Harbored Each Antibiotic Resistant Gene

Metronidazole Amoxicillin Fluoroquinolone Clarithromycin

rdxA pbp1A gyrA cla

Bovine (8) 4 (50) 5 (62.50) 4 (50) 5 (62.50)

Ovine (17) 11 (64.70) 13 (76.47) 13 (76.47) 12 (70.58)

Caprine (15) 10 (66.66) 12 (80) 12 (80) 11 (73.33)

Buffalo (9) 5 (55.55) 6 (66.66) 5 (55.55) 5 (55.55)

Camel (3) 1 (33.33) 1 (33.33) 2 (66.66) 1 (33.33)

Total (52) 31 (59.61) 27 (51.92) 36 (69.23) 34 (65.38)
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+/cagE+/babA+, s1b/cagA-/iceA1/oipA-/cagE+/babA+, s1c/

cagA+/iceA1/oipA+/cagE+/babA-, s1c/cagA+/iceA1/oipA

+/cagE-/babA-, s1c/cagA-/iceA1/oipA-/cagE+/babA-, s2/cag

A+/iceA2/oipA+/cagE+/babA-, s2/cagA+/iceA2/oipA+/cag

E-/babA-, s2/cagA-/iceA2/oipA-/cagE-/babA-, m1a/cagA

+/iceA2/oipA+/cagE+/babA+, m1a/cagA+/iceA2/oipA+/cag

E-/babA+, m1a/cagA+/iceA2/oipA-/cagE+/babA-, m1a/

cagA-/iceA2/oipA+/cagE+/babA-, m1b/cagA-/iceA1/oipA-/

cagE+/babA+, m1b/cagA+/iceA2/oipA+/cagE-/babA-, m1b/

cagA-/iceA2/oipA-/cagE-/babA-, m2/cagA+/iceA2/oipA+/ca

gE+/babA-, m2/cagA+/iceA2/oipA+/cagE-/babA-, and m2/

cagA-/iceA2/oipA-/cagE-/babA- (1.92%) were lower than

other detected combined genotyping patterns.

Discussion
H. pylori is a common bacterium with considerable clinical

rank. About 50% of the world’s population have been

infected withH. pylori bacteria. Despite the boost occurrence

of infection, the main reservoir of the bacterium and the

routes of infections are still unspecified.30 Furthermore, bac-

terial transmission between persons ensues through the oral–

oral and oral–fecal routes.30 However, oral–fecal transmis-

sion has additional implications, sinceH. pylorimay occur in

food and water supplies subsequent to fecal contamination.30

Additionally, isolation of H. pylori from raw vegetables,16,31

meat,32,33 salads,16,34 ready to eat foods,35,36 and milk37,38

proposes that foodstuffs may act as vehicles for transmission

of H. pylori to human community.

The current survey was carried out in order to assess

the incidence, phenotypic and genotypic pattern of anti-

biotic resistance and genotyping profile of vacA, cagA,

cagE, iceA, oipA, and babA alleles of the H. pylori bacteria

recovered from raw camel, caprine, ovine, bovine, and

buffalo meat samples. The contamination rate of

H. pylori in bovine, ovine, caprine, buffalo, and camel

meat samples was 5.71%, 13.07%, 11.53%, 9%, and 3%,

respectively. Despite the higher importance of meat as

a food which is served as so many kinds of undercooked

products and therefore its higher risk of contamination

with H. pylori, scarce data are available in this field.

Saeidi and Sheikhshahrokh39 stated that the incidence of

H. pylori bacteria amongst the raw cow, sheep, goat,

buffalo, and camel meat samples were 25%, 37%, 22%,

28%, and 14%, respectively. Gilani et al40 stated that the

incidence of H. pylori bacteria amongst the hamburger and

minced meat samples were 1.42% and 12.50%, respec-

tively. Additionally, H. pylori DNA was detected in 44%

and 36% of ready-to-eat raw tuna meat and raw chickenT
ab
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Table 7 Combined Genotyping Pattern of H. pylori Bacteria
Isolated from Diverse Kinds of Raw Meat Samples

Combined Genotyping Patterns Distribution* (%)

S1a/cagA+/iceA1/oipA+/cagE+/babA+ 6 (11.53)

S1a/cagA+/iceA1/oipA+/cagE+/babA- 11 (21.15)

S1a/cagA+/iceA1/oipA+/cagE-/babA+ 8 (15.38)

S1a/cagA+/iceA1/oipA-/cagE+/babA+ 7 (13.46)

S1a/cagA-/iceA1/oipA+/cagE+/babA+ 8 (15.38)

S1a/cagA+/iceA1/oipA+/cagE-/babA- 12 (23.07)

S1a/cagA+/iceA1/oipA-/cagE-/babA+ 9 (17.30)

S1a/cagA+/iceA1/oipA-/cagE+/babA- 10 (19.23)

S1a/cagA-/iceA1/oipA-/cagE+/babA- 11 (21.15)

S1a/cagA-/iceA1/oipA-/cagE+/babA+ 7 (13.46)

S1a/cagA-/iceA1/oipA+/cagE-/babA+ 6 (11.53)

S1a/cagA-/iceA1/oipA+/cagE+/babA- 9 (17.30)

S1a/cagA-/iceA1/oipA+/cagE-/babA- 11 (21.15)

S1a/cagA-/iceA1/oipA-/cagE-/babA- 17 (32.69)

S1a/cagA+/iceA2/oipA+/cagE+/babA+ 1 (1.92)

S1a/cagA+/iceA2/oipA+/cagE+/babA- 2 (3.84)

S1a/cagA+/iceA2/oipA+/cagE-/babA+ 1 (1.92)

S1a/cagA+/iceA2/oipA-/cagE+/babA+ –

S1a/cagA-/iceA2/oipA+/cagE+/babA+ 1 (1.92)

S1a/cagA+/iceA2/oipA+/cagE-/babA- 2 (3.84)

S1a/cagA+/iceA2/oipA-/cagE-/babA+ –

S1a/cagA+/iceA2/oipA-/cagE+/babA- 1 (1.92)

S1a/cagA-/iceA2/oipA+/cagE+/babA+ –

S1a/cagA-/iceA2/oipA-/cagE+/babA+ –

S1a/cagA-/iceA2/oipA+/cagE-/babA+ –

S1a/cagA-/iceA2/oipA+/cagE+/babA- 1 (1.92)

S1a/cagA-/iceA2/oipA+/cagE-/babA- 1 (1.92)

S1a/cagA-/iceA2/oipA-/cagE-/babA- 3 (5.76)

S1b/cagA+/iceA1/oipA+/cagE+/babA+ 1 (1.92)

S1b/cagA+/iceA1/oipA+/cagE+/babA- 5 (9.61)

S1b/cagA+/iceA1/oipA+/cagE-/babA+ 2 (3.84)

S1b/cagA+/iceA1/oipA-/cagE+/babA+ 2 (3.84)

S1b/cagA-/iceA1/oipA+/cagE+/babA+ 2 (3.84)

S1b/cagA+/iceA1/oipA+/cagE-/babA- 6 (11.53)

S1b/cagA+/iceA1/oipA-/cagE-/babA+ 3 (5.76)

S1b/cagA+/iceA1/oipA-/cagE+/babA- 4 (7.69)

S1b/cagA-/iceA1/oipA-/cagE+/babA- 5 (9.61)

S1b/cagA-/iceA1/oipA-/cagE+/babA+ 1 (1.92)

S1b/cagA-/iceA1/oipA+/cagE-/babA+ -

S1b/cagA-/iceA1/oipA+/cagE+/babA- 3 (5.76)

S1b/cagA-/iceA1/oipA+/cagE-/babA- 5 (9.61)

S1b/cagA-/iceA1/oipA-/cagE-/babA- 11 (21.15)

S1b/cagA+/iceA2/oipA+/cagE+/babA+ –

S1b/cagA+/iceA2/oipA+/cagE+/babA- –

S1b/cagA+/iceA2/oipA+/cagE-/babA+ –

S1b/cagA+/iceA2/oipA-/cagE+/babA+ –

S1b/cagA-/iceA2/oipA+/cagE+/babA+ –

S1b/cagA+/iceA2/oipA+/cagE-/babA- –

S1b/cagA+/iceA2/oipA-/cagE-/babA+ –

S1b/cagA+/iceA2/oipA-/cagE+/babA- –

(Continued)

Table 7 (Continued).

Combined Genotyping Patterns Distribution* (%)

S1b/cagA-/iceA2/oipA+/cagE+/babA+ –

S1b/cagA-/iceA2/oipA-/cagE+/babA+ –

S1b/cagA-/iceA2/oipA+/cagE-/babA+ –

S1b/cagA-/iceA2/oipA+/cagE+/babA- –

S1b/cagA-/iceA2/oipA+/cagE-/babA- –

S1b/cagA-/iceA2/oipA-/cagE-/babA- –

S1c/cagA+/iceA1/oipA+/cagE+/babA+ –

S1c/cagA+/iceA1/oipA+/cagE+/babA- 1 (1.92)

S1c/cagA+/iceA1/oipA+/cagE-/babA+ –

S1c/cagA+/iceA1/oipA-/cagE+/babA+ –

S1c/cagA-/iceA1/oipA+/cagE+/babA+ –

S1c/cagA+/iceA1/oipA+/cagE-/babA- 1 (1.92)

S1c/cagA+/iceA1/oipA-/cagE-/babA+ –

S1c/cagA+/iceA1/oipA-/cagE+/babA- –

S1c/cagA-/iceA1/oipA-/cagE+/babA- 1 (1.92)

S1c/cagA-/iceA1/oipA-/cagE+/babA+ –

S1c/cagA-/iceA1/oipA+/cagE-/babA+ –

S1c/cagA-/iceA1/oipA+/cagE+/babA- –

S1c/cagA-/iceA1/oipA+/cagE-/babA- –

S1c/cagA-/iceA1/oipA-/cagE-/babA- 2 (3.84)

S1c/cagA+/iceA2/oipA+/cagE+/babA+ –

S1c/cagA+/iceA2/oipA+/cagE+/babA- –

S1c/cagA+/iceA2/oipA+/cagE-/babA+ –

S1c/cagA+/iceA2/oipA-/cagE+/babA+ –

S1c/cagA-/iceA2/oipA+/cagE+/babA+ –

S1c/cagA+/iceA2/oipA+/cagE-/babA- –

S1c/cagA+/iceA2/oipA-/cagE-/babA+ –

S1c/cagA+/iceA2/oipA-/cagE+/babA- –

S1c/cagA-/iceA2/oipA+/cagE+/babA+ –

S1c/cagA-/iceA2/oipA-/cagE+/babA+ –

S1c/cagA-/iceA2/oipA+/cagE-/babA+ –

S1c/cagA-/iceA2/oipA+/cagE+/babA- –

S1c/cagA-/iceA2/oipA+/cagE-/babA- –

S2/cagA+/iceA1/oipA+/cagE+/babA+ 5 (9.61)

S2/cagA+/iceA1/oipA+/cagE+/babA- 9 (17.30)

S2/cagA+/iceA1/oipA+/cagE-/babA+ 7 (13.46)

S2/cagA+/iceA1/oipA-/cagE+/babA+ 6 (11.53)

S2/cagA-/iceA1/oipA+/cagE+/babA+ 6 (11.53)

S2/cagA+/iceA1/oipA+/cagE-/babA- 10 (19.23)

S2/cagA+/iceA1/oipA-/cagE-/babA+ 8 (15.38)

S2/cagA+/iceA1/oipA-/cagE+/babA- 9 (17.30)

S2/cagA-/iceA1/oipA-/cagE+/babA- 10 (19.23)

S2/cagA-/iceA1/oipA-/cagE+/babA+ 5 (9.61)

S2/cagA-/iceA1/oipA+/cagE-/babA+ 4 (7.69)

S2/cagA-/iceA1/oipA+/cagE+/babA- 7 (13.46)

S2/cagA-/iceA1/oipA+/cagE-/babA- 10 (19.23)

S2/cagA-/iceA1/oipA-/cagE-/babA- 14 (26.92)

S2/cagA+/iceA2/oipA+/cagE+/babA+ –

S2/cagA+/iceA2/oipA+/cagE+/babA- 1 (1.92)

S2/cagA+/iceA2/oipA+/cagE-/babA+ –

(Continued)
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samples, respectively.36 Moreover, Hemmatinezhad et al10

conveyed that the incidence of H. pylori bacteria amongst

the 550 ready-to-eat food samples was 13.45% in which

olive salad (36%), restaurant salad (30%), fruit salad

Table 7 (Continued).

Combined Genotyping Patterns Distribution* (%)

S2/cagA+/iceA2/oipA-/cagE+/babA+ –

S2/cagA-/iceA2/oipA+/cagE+/babA+ –

S2/cagA+/iceA2/oipA+/cagE-/babA- 1 (1.92)

S2/cagA+/iceA2/oipA-/cagE-/babA+ –

S2/cagA+/iceA2/oipA-/cagE+/babA- –

S2/cagA-/iceA2/oipA+/cagE+/babA+ –

S2/cagA-/iceA2/oipA-/cagE+/babA+ –

S2/cagA-/iceA2/oipA+/cagE-/babA+ –

S2/cagA-/iceA2/oipA+/cagE+/babA- –

S2/cagA-/iceA2/oipA+/cagE-/babA- –

S2/cagA-/iceA2/oipA-/cagE-/babA- 1 (1.92)

M1a/cagA+/iceA1/oipA+/cagE+/babA+ 6 (11.53)

M1a/cagA+/iceA1/oipA+/cagE+/babA- 12 (23.07)

M1a/cagA+/iceA1/oipA+/cagE-/babA+ 8 (15.38)

M1a/cagA+/iceA1/oipA-/cagE+/babA+ 7 (13.46)

M1a/cagA-/iceA1/oipA+/cagE+/babA+ 8 (15.38)

M1a/cagA+/iceA1/oipA+/cagE-/babA- 12 (23.07)

M1a/cagA+/iceA1/oipA-/cagE-/babA+ 10 (19.23)

M1a/cagA+/iceA1/oipA-/cagE+/babA- 10 (19.23)

M1a/cagA-/iceA1/oipA-/cagE+/babA- 11 (21.15)

M1a/cagA-/iceA1/oipA-/cagE+/babA+ 7 (13.46)

M1a/cagA-/iceA1/oipA+/cagE-/babA+ 6 (11.53)

M1a/cagA-/iceA1/oipA+/cagE+/babA- 9 (17.30)

M1a/cagA-/iceA1/oipA+/cagE-/babA- 11 (21.15)

M1a/cagA-/iceA1/oipA-/cagE-/babA- 17 (32.69)

M1a/cagA+/iceA2/oipA+/cagE+/babA+ 1 (1.92)

M1a/cagA+/iceA2/oipA+/cagE+/babA- 2 (3.84)

M1a/cagA+/iceA2/oipA+/cagE-/babA+ 1 (1.92)

M1a/cagA+/iceA2/oipA-/cagE+/babA+ –

M1a/cagA-/iceA2/oipA+/cagE+/babA+ 2 (3.84)

M1a/cagA+/iceA2/oipA+/cagE-/babA- 2 (3.84)

M1a/cagA+/iceA2/oipA-/cagE-/babA+ –

M1a/cagA+/iceA2/oipA-/cagE+/babA- 1 (1.92)

M1a/cagA-/iceA2/oipA+/cagE+/babA+ –

M1a/cagA-/iceA2/oipA-/cagE+/babA+ –

M1a/cagA-/iceA2/oipA+/cagE-/babA+ -

M1a/cagA-/iceA2/oipA+/cagE+/babA- 1 (1.92)

M1a/cagA-/iceA2/oipA+/cagE-/babA- 2 (3.84)

M1a/cagA-/iceA2/oipA-/cagE-/babA- 3 (5.76)

M1b/cagA+/iceA1/oipA+/cagE+/babA+ 2 (3.84)

M1b/cagA+/iceA1/oipA+/cagE+/babA- 5 (9.61)

M1b/cagA+/iceA1/oipA+/cagE-/babA+ 2 (3.84)

M1b/cagA+/iceA1/oipA-/cagE+/babA+ 2 (3.84)

M1b/cagA-/iceA1/oipA+/cagE+/babA+ 2 (3.84)

M1b/cagA+/iceA1/oipA+/cagE-/babA- 6 (11.53)

M1b/cagA+/iceA1/oipA-/cagE-/babA+ 3 (5.76)

M1b/cagA+/iceA1/oipA-/cagE+/babA- 4 (7.69)

M1b/cagA-/iceA1/oipA-/cagE+/babA- 5 (9.61)

M1b/cagA-/iceA1/oipA-/cagE+/babA+ 1 (1.92)

M1b/cagA-/iceA1/oipA+/cagE-/babA+ –

(Continued)

Table 7 (Continued).

Combined Genotyping Patterns Distribution* (%)

M1b/cagA-/iceA1/oipA+/cagE+/babA- 4 (7.69)

M1b/cagA-/iceA1/oipA+/cagE-/babA- 5 (9.61)

M1b/cagA-/iceA1/oipA-/cagE-/babA- 11 (21.15)

M1b/cagA+/iceA2/oipA+/cagE+/babA+ –

M1b/cagA+/iceA2/oipA+/cagE+/babA- –

M1b/cagA+/iceA2/oipA+/cagE-/babA+ –

M1b/cagA+/iceA2/oipA-/cagE+/babA+ –

M1b/cagA-/iceA2/oipA+/cagE+/babA+ -

M1b/cagA+/iceA2/oipA+/cagE-/babA- 1 (1.92)

M1b/cagA+/iceA2/oipA-/cagE-/babA+ –

M1b/cagA+/iceA2/oipA-/cagE+/babA- –

M1b/cagA-/iceA2/oipA+/cagE+/babA+ –

M1b/cagA-/iceA2/oipA-/cagE+/babA+ –

M1b/cagA-/iceA2/oipA+/cagE-/babA+ –

M1b/cagA-/iceA2/oipA+/cagE+/babA- –

M1b/cagA-/iceA2/oipA+/cagE-/babA- –

M1b/cagA-/iceA2/oipA-/cagE-/babA- 1 (1.92)

M2/cagA+/iceA1/oipA+/cagE+/babA+ 4 (7.69)

M2/cagA+/iceA1/oipA+/cagE+/babA- 9 (17.30)

M2/cagA+/iceA1/oipA+/cagE-/babA+ 7 (13.46)

M2/cagA+/iceA1/oipA-/cagE+/babA+ 6 (11.53)

M2/cagA-/iceA1/oipA+/cagE+/babA+ 5 (9.61)

M2/cagA+/iceA1/oipA+/cagE-/babA- 9 (17.30)

M2/cagA+/iceA1/oipA-/cagE-/babA+ 8 (15.38)

M2/cagA+/iceA1/oipA-/cagE+/babA- 9 (17.30)

M2/cagA-/iceA1/oipA-/cagE+/babA- 9 (17.30)

M2/cagA-/iceA1/oipA-/cagE+/babA+ 4 (7.69)

M2/cagA-/iceA1/oipA+/cagE-/babA+ 4 (7.69)

M2/cagA-/iceA1/oipA+/cagE+/babA- 7 (13.46)

M2/cagA-/iceA1/oipA+/cagE-/babA- 9 (17.30)

M2/cagA-/iceA1/oipA-/cagE-/babA- 12 (23.07)

M2/cagA+/iceA2/oipA+/cagE+/babA+ –

M2/cagA+/iceA2/oipA+/cagE+/babA- 1 (1.92)

M2/cagA+/iceA2/oipA+/cagE-/babA+ –

M2/cagA+/iceA2/oipA-/cagE+/babA+ –

M2/cagA-/iceA2/oipA+/cagE+/babA+ –

M2/cagA+/iceA2/oipA+/cagE-/babA- 1 (1.92)

M2/cagA+/iceA2/oipA-/cagE-/babA+ –

M2/cagA+/iceA2/oipA-/cagE+/babA- –

M2/cagA-/iceA2/oipA+/cagE+/babA+ –

M2/cagA-/iceA2/oipA-/cagE+/babA+ –

M2/cagA-/iceA2/oipA+/cagE-/babA+ –

M2/cagA-/iceA2/oipA+/cagE+/babA- –

M2/cagA-/iceA2/oipA+/cagE-/babA- –

M2/cagA-/iceA2/oipA-/cagE-/babA- 1 (1.92)

Note: *Distribution was achieved based on the total numbers of 52 H. pylori isolates.
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(28%), and soup (22%) were the most generally contami-

nated samples. Similarly, Ghorbani et al31 stated that the

incidence of H. pylori bacteria amongst the 300 foodstuffs

were 20%, in which the incidence of contamination of

ready to eat fish, ham, chicken sandwich, vegetable sand-

wich, meat sandwich and minced meat samples were 15%,

8.33%, 5%, 45%, 20%, and 32%, respectively. Finally,

Talimkhani and Mashak41 represented that the incidence

of H. pylori bacteria in raw bovine, ovine, and caprine

meat samples were 4%, 10%, and 8%, respectively. We

originated that ovine meat was the most routinely contami-

nated samples. Similarly, Saeidi and Sheikhshahrokh

(2016),40 Talimkhani and Mashak,41 Momtaz et al,42 and

Elhariri et al43 stated the higher incidence of H. pylori in

ovine sources. Likewise, Rahimi and Kheirabadi 44 stated

that the incidence of H. pylori bacteria in raw bovine,

ovine, caprine, buffalo, and camel milk samples were

1.41%, 12.20%, 8.70%, 23.40%, and 3.60%, respectively.

Higher incidence of H. pylori in raw ovine meat samples

may be owing to the more appropriate circumstances

existing in ovine meat, such as higher fat and protein

contents and water activity and also optimum pH.

Additionally, ovine meat may have a higher qualification

for growth and survival of H. pylori bacteria. Furthermore,

variances in the feed of ovine with other animal species

may affect the incidence rate of H. pylori existing in their

meat. Using thorns and thistles in deserts and living away

from humans and the polluted environments are the most

likely reasons for the lower incidence of H. pylori in camel

meat. Lower incidence of H. pylori in raw camel meat was

also conveyed.17,37,44

Resistance toward human and animal-based antibiotic

agents was studied in the current research. H. pylori bacteria

displayed the high incidence of resistance toward tetracy-

cline, erythromycin, trimethoprim, levofloxacin, amoxicillin,

and clarithromycin antibiotic agents. Resistance toward

metronidazole, amoxicillin, levofloxacin, and clarithromycin

were accompanied by the presence of rdxA, pbp1A, gyrA, and

cla antibiotic resistance genes. Considerable incidence of

resistance toward human-based antibiotics including erythro-

mycin, metronidazole, levofloxacin, clarithromycin, amoxi-

cillin, cefsulodin, furazolidone, rifampin, and spiramycin in

H. pylori bacteria characterized their anthropogenic origin.

Thus, this finding can indirectly prove that the H. pylori

bacteria were transmitted from infected humans to meat

samples through cross-contamination and meat manipulation

in slaughterhouses. Extreme, unlawful, and forbidden pre-

scription of antibiotic agents in medicine and also veterinary

caused a significant occurrence of antibiotic resistance.

Diverse research on India, Iran, Taiwan, China, Nigeria,

Thailand, Senegal, Saudi Arabia, Egypt, Brazil, Colombia,

and Argentina showed that H. pylori bacteria displayed

a high incidence of resistance toward tetracyclines, amino-

glycosides, penicillins, metronidazole, fluoroquinolones, and

macrolides,45 which is similar to our findings. Recent sur-

veys revealed that the incidence of resistance of H. pylori

bacteria recovered from foodstuffs toward metronidazole,

erythromycin, clarithromycin, amoxicillin, tetracycline,

levofloxacin trimethoprim, furazolidone, and spiramycin

antibiotic agents had ranges between 27.27–89.18%,

53.73–80.64%, 72.72–94.59%, 63.63–90.32%, 36.48–

58.06%, 34.32–63.63%, 9.09–29.03%, and 9.09–16.12%,

respectively.10,17,40,46,47 Despite the boost in importance of

detection of antibiotic resistance genes, there were no pre-

viously published data on the detection of rdxA, pbp1A, gyrA,

and cla antibiotic resistance genes in H. pylori bacteria

recovered from foodstuffs. However, their detection

has been done in H. pylori bacteria recovered from human

clinical specimens.14,48,51

The final part of our survey focused on the genotyping of

vacA, cagA, cagE, iceA, oipA, and babA alleles of the

H. pylori bacteria. We also originated that vacA s1a, s2,

m1a, and m2, and iceA1 and cagA, s1am1a, s2m1a, s1am2,

s2m2, and s1a/cagA-/iceA1/oipA-/cagE-/babA-, m1a/cagA-/

iceA1/oipA-/cagE-/babA-, s2/cagA-/iceA1/oipA-/cagE-/

babA-, s1a/cagA+/iceA1/oipA+/cagE-/babA-, m1a/cagA

+/iceA1/oipA+/cagE+/babA-, m1a/cagA+/iceA1/oipA

+/cagE-/babA-, m2/cagA-/iceA1/oipA-/cagE-/babA-, s1a/

cagA+/iceA1/oipA+/cagE+/babA-, s1a/cagA-/iceA1/oipA-/

cagE+/babA-, s1a/cagA-/iceA1/oipA+/cagE-/babA-, s1b/

cagA-/iceA1/oipA-/cagE-/babA-, m1a/cagA-/iceA1/oipA-/

cagE+/babA-, m1a/cagA-/iceA1/oipA+/cagE-/babA-, m1b/

cagA-/iceA1/oipA-/cagE-/babA-, s1a/cagA+/iceA1/oipA-/

cagE+/babA-, s2/cagA+/iceA1/oipA+/cagE-/babA-, s2/

cagA-/iceA1/oipA-/cagE+/babA-, s2/cagA-/iceA1/oipA+/ca

gE-/babA-, m1a/cagA+/iceA1/oipA-/cagE-/babA+, and

m1a/cagA+/iceA1/oipA-/cagE+/babA- were the most gener-

ally perceived genotypes amongst theH. pylori bacteria. The

boost incidence of vacA, cagA, iceA1, oipA, cagE and babA2

genotypes was also conveyed in the H. pylori bacteria

recovered from clinical samples of human and animal

species.42,52,54 Khaji et al55 conveyed that vacA s1a

(91.66%), m1a (61.61%), s2 (36.66%), and m2 (31.66%)

were the most generally perceived genotypes amongst the

H. pylori bacteria recovered from rawmilk of animal species.

They also showed that s1am1a (41.66%), s2m1a (25%),
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s1am2 (16.66%), and s2m2 (13.33%) were the most gener-

ally perceived genotyping patterns amongst the H. pylori

isolates. Ranjbar et al (2018)47 conveyed that vacA s1a

(83.58%), m1a (80.59%), s2 (77.61%) and m2 (68.65%),

cagA (73.13%) and babA2 (44.77%) were the most generally

perceived genotypes amongst the H. pylori bacteria recov-

ered from diverse kinds of raw milk samples. They showed

that the distribution of s1am1a, s2m1a, s1am2 and s2m2

genotyping patterns and cagA-, oipA-, and babA2- genotypes

were 56.71%, 56.71%, 43.28%, and 43.28% and 26.86%,

62.68%, and 55.22%, respectively. Additionally, amongst all

of the detected combined genotypes, s1a/cagA+/iceA1/

oipA−/babA2- (28.35%), m1a/cagA+/iceA1/oipA−/babA2-

(28.35%), s2/cagA+/iceA1/oipA−/babA2- (26.86%), s1a/

cagA+/iceA1/oipA−/babA2+ (25.37%), m1a/cagA+/iceA1/

oipA−/babA2+ (25.37%), s2/cagA+/iceA1/oipA−/babA2+

(23.88%), s1a/cagA+/iceA1/oipA+/babA2- (22.38%), and

m2/cagA +/iceA1/oipA−/babA2+ (22.38%) had the upper-

most distribution. Hemmatinezhad et al56 stated that vacA

s1a (78.37%), vacA m2(75.67%), vacA m1a (51.35%), and

cagA (41.89%) alleles, s1am2 (70.27%), s1am1a (39.18%),

and m1am2 (31.08%) genotypes, and s1a/cagA+/iceA1/

oipA− (12.16%), s1a/cagA+/iceA1/oipA+ (10.81%), s1a/

cagA−/iceA1/oipA+ (10.81%), s1b/cagA+/iceA1/oipA−

(9.45%), m2/cagA+/iceA1/oipA+ (9.45%), m2/cagA

+/iceA1/oipA− (9.45%), m2/cagA−/iceA1/oipA+ (9.45%),

and m2/cagA−/iceA1/oipA− (9.45%) combined genotypic

patterns were the most generally perceived in the H. pylori

bacteria recovered from ready to eat food. According to

Talimkhani and Mashak,41 vacA s1a (87.50%), vacA m1a

(87.50%), vacA s2 (82.50%), cagA (80%), and vacA m2

(62.50%) alleles and s1am1a (62.50%), s2m1a (55%),

s1am2 (50%), s2m2 (45%), and m1am2(42.50%) genotypes

were the most generally perceived in H. pylori bacteria

recovered frommeat, milk, and vegetable samples. In studies

conducted by Gilani et al40,56 s1am1a, s1am1b, and s2m1a

were the most generally perceived genotypes amongst the

H. pylori bacteria recovered from raw meat and meat pro-

ducts. There were no previousdata on detection of cagE

genotypes amongst the H. pylori bacteria recovered from

food samples. The presence of vacA, iceA, oipA, cagA,

cagE and babA2 genotypes in the H. pylori isolates may

cause certain facilities for bacterial adhesion to gastric

epithelial cells, interleukin-8 and −10 and cytotoxin secretion

and occurrence of inflammation, vacuolization, apoptosis of

gastric epithelial cells, and even peptic ulceration in indivi-

duals who consume studied contaminated meat samples.

Absolutely, impact of food-borne microbes, particu-

larly bacteria, in occurrence of food-borne diseases has

been measured in Iran and diverse surveys have been

conducted in this field.57–74

Conclusions
In conclusion, we documented extensive delivery of viru-

lent and resistant H. pylori bacteria in raw camel, caprine,

ovine, bovine, and buffalo meat samples. Boost incidence

of H. pylori bacteria in raw meat magnifies that raw meat,

particularly raw ovine meat, may be the natural reservoirs

of H. pylori. We also originated that vacA, cagA, iceA, and

babA2 alleles were predominant amongst the H. pylori

isolates. In keeping with this, cagE-, babA2-, and oipA-

H. pylori bacteria had the higher distribution. Similarities

in the genotyping pattern of H. pylori bacteria between

numerous meat sources signify their same route of con-

tamination. H. pylori isolates displayed a high incidence of

resistance toward tetracycline, erythromycin, trimetho-

prim, levofloxacin, amoxicillin, and clarithromycin

(61.53%) antibiotic agents. The phenotypic pattern of anti-

biotic resistance was also confirmed by the genotypic

pattern, with considerable distribution of rdxA, pbp1A,

gyrA, and cla antibiotic resistance genes. Furthermore,

the high incidence of multi-drug resistant H. pylori bac-

teria displays that raw meat of animal species may be

a reservoir of antibiotic resistant H. pylori. Further

research should be performed to determine the probable

relationships between the presence of genotypes, antibiotic

resistance, and antibiotic resistance genes. Additionally,

conduction of comprehensive research is essential to deter-

mine molecular genetic homology of H. pylori bacteria

recovered from raw meat of animal species and those of

human clinical specimens.
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