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Background: Increasing evidence implies the participation of long non-coding RNAs

(lncRNAs) in chemoresistance to cancer treatment. Their role and molecular mechanisms

in breast cancer chemoresistance, nevertheless, are yet not considerably elucidated. In this

work, we research the function of small nucleolar RNA host gene 15 (SNHG15) in cisplatin

(DDP) resistance of breast cancer and uncover the underlying molecular mechanism.

Methods: SNHG15 and miR-381 expression levels were detected using Quantitative real-

time PCR (qRT-PCR) analysis. The functional roles of SNHG15 and miR-381 in breast

cancer were determined using MTT assay and flow cytometry analysis. The effect of

SNHG15 on miR-381 expression was determined using Luciferase reporter assay, RNA

immunoprecipitation (RIP) assay and qRT-PCR analysis.

Results: SNHG15was found to be up-regulated in cisplatin resistant breast cancer tissues and cell

lines. Breast cancer patients with high SNHG15 expression had a poor prognosis. SNHG15

silencing enhanced cisplatin sensitivity of MCF-7/DDP and MDA-MB-231/DDP cells.

Additionally, SNHG15 could function as a miR-381 sponge. miR-381 overexpression could over-

come cisplatin resistance. miR-381 knockdown countered SNHG15 knockdown-mediated

enhancement of cisplatin sensitivity in MCF-7/DDP and MDA-MB-231/DDP cells. Besides,

SNHG15 knockdown facilitated cisplatin sensitivity of cisplatin resistant breast cancer cells in vivo.

Conclusion: In summary, SNHG15 knockdown overcame cisplatin resistance of breast

cancer by sponging miR-381, providing a novel therapeutic target for breast cancer.
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Introduction
Breast cancer is a most common malignancy in women worldwide and a major serious

health threat to women.1 Even though impressive improvements have been achieved in

diagnosis and therapy of breast cancer in the past decade, prognosis for advanced breast

cancer remains relatively poor.2 Platinum-based chemotherapy is a significant therapeutic

strategy for breast cancer patients.3 Nevertheless, chemoresistance remains a key barrier

to the efficacy of chemotherapy drugs for cancers, including breast cancer.4,5 Hence, to

sequentially elucidate the underlying mechanism and discover new therapeutic targets

are essential for developing effective therapies for breast cancer patients.

Long non-coding RNAs (lncRNAs) are a group of endogenous non-protein-coding

RNAs with more than 200 nucleotides in length.6 Recently, lncRNAs were discovered to

play crucial regulatory roles in various biological processes, including tumorigenesis

process.7 Increasing evidence indicates that lncRNAs are usually deregulated in malig-

nant tumors’ progression.8–10 Moreover, dysregulated lncRNAs have been reported to be

implicated with cisplatin resistance in various cancers.11 LncRNA small nucleolar RNA
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host gene 15 (SNHG15), an intergenic lncRNA located on

chromosome 7p13, belongs to a family of non-coding RNAs

that hosting snoRNAs.12 Previous studies suggest that

SNHG15 could promote cancer cell proliferation and inva-

siveness and is able to play as a crucial determinant role in the

chemoresistance.13 However, the functional role of SNHG15

in cisplatin (DDP) resistance in breast cancer has not been

evaluated.

miRNAs are a class of small, non-coding RNAwith about

22 nucleotides in length, which contribute to their target genes’

inhibition, through mRNA degradation or translation

inhibition.14,15 MiRNAs is recently implicated by more and

more reports as critical determinants that are involved in various

cellular processes, including chemoresistance and

tumorigenesis.16 MiRNAs’ aberrant expression has been

regarded as a powerful regulator of CDDP resistance. For

instance, miR-34a has been discovered to be down-regulated

and contributed to DDP resistance in DDP-resistant prostate

cancer cells.17 miR-381 could overcome cisplatin resistance in

non-small cell lung cancer (NSCLC) cells through inactivating

nuclear factor-κB signaling.18 Moreover, miR-381 overexpres-

sion could improve DDP sensitivity of breast cancer cells

through targeting MDR1.19 However, how miR-381 was regu-

lated in breast cancer cisplatin resistance remains largely

unknown.

In this study, we aimed to investigate the expression pattern

and functional role and underlying molecular mechanism of

SNHG15 in breast cancer cisplatin resistance. Our study

revealed that SNHG15 expression was up-regulated in breast

cancer tissues and cell lines, especially in DDP-resistant breast

cancer tissues and cells. Functionally, SNHG15 knockdown re-

sensitized DDP-resistant breast cancer cells to DDP.

Mechanically, knockdown of SNHG15 facilitated the sensitiv-

ity of breast cancer cells towards cisplatin through increasing

miR-381 expression. Our work demonstrated a novel

SNHG15/miR-381 regulatory axis, overcoming cisplatin resis-

tance in breast cancer.

Materials And Methods
Tumor Tissue Samples And Cells
The paired tumor tissues (n=42) and adjacent normal tis-

sues (n=42) were obtained from breast cancer patients who

underwent surgery at the First Affiliated Hospital of

Zhengzhou University. Written informed consent was

obtained from all participants. This study had acquired

the approval of the ethics committee of the First

Affiliated Hospital of Zhengzhou University. Normalized

RNA-seq data of Breast adenocarcinoma (BRCA) were

downloaded from the TCGA data portal website (https://

cancergenome.nih.gov/).

Human breast cancer cell lines (MCF-7 and MDA-MB-

231) and human normal breast epithelial cell line MCF-10A

were obtained from ATCC (Manassas, VA, USA). DDP-resis-

tant cell lines (MCF-7/DDP and MDA-MB-231/DDP) were

selected from MCF-7 and MDA-MB-231 cells after contin-

uous exposure to stepwise increasing concentrations of DDP

for 12 months. All cells were grown in RPMI-1640 medium

(Gibco BRL, Grand Island, NY, USA) supplement with 10%

FBS at 37°C with 5% CO2.

Cell Transfection
Mimic control (miR-con), miR-381 mimic (miR-381) and

miR-381 inhibitor (anti-miR-381) were purchased from

Genepharma (Shanghai, China). SNHG15 overexpressing

vector pcDNA3.1-SNHG15 (SNHG15) or the empty vector

pcDNA3.1 (Vector) or and small interfering RNAs against

SNHG15 (si-SNHG15 #1, si-SNHG15 #2, and si-SNHG15

#3) and their negative control (si-con) were designed and

synthesized by Genepharma (China). Lipofectamine 2000

(Invitrogen) was used for cell transfections.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA extraction was carried out through using Trizol

reagent (TaKaRa, Tokyo, Japan). Then, the RNAwas reverse

transcripted to cDNA using PrimeScript RT Reagent Kit

(TaKaRa). The qRT-PCR was carried out using SYBR green

qRT-PCR assay. GAPDH and U6 were used for internal con-

trols for SNHG15 and miR-381, respectively. The data was

analyzed using the 2−ΔΔCt method.

DDP Sensitivity Assay
The sensitivity of breast cancer cells was evaluated by MTT

assay. DDP sensitivity was determined using the IC50 value

(half maximal inhibitory concentration). GraphPad Prism 7.0

Software was used to calculate the IC50 value.

Flow Cytometric Analysis
Cell apoptosis was identified using Annexin V-FITC/PI

apoptosis detection kit (MultiScience Biotech, Hangzhou,

China) as described previously.20

Subcellular Fraction Assays
Cytoplasmic & Nuclear RNA Purification Kit (Norgen,

Belmont, CA, USA) was used to separate the nuclear
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and cytoplasmic RNA of MCF-7/DDP and MDA-MB-

231/DDP cells.

Luciferase Reporter Assay
The wild or mutant SNHG15 sequence containing predicted

miR-381 binding site were subcloned respectively into the

luciferase reporter vectors to generate SNHG15-WT and

SNHG15-MUT vectors. Then, MCF-7/DDP and MDA-MB-

231/DDP cells were co-transfected with these constructs and

miR-381 or miR-con. Finally, luciferase activity in MCF-7/

DDP and MDA-MB-231/DDP cells was determined using

Luciferase Reporter assay system (Promega, Madison,

WI, USA).

RNA Immunoprecipitation (RIP) Assays
RIP experiments were performed using the Magna RIP RNA-

binding protein immunoprecipitation kit (Millipore, Billerica,

MA, USA) and antibodies against Ago2 and IgG (Cell

Signaling Technology, Danvers, MA, USA). The co-precipi-

tated RNAs were purified and subjected to qRT-PCR analysis.

Animal Experiments
The animal experiments were conducted in strict accordance

with the guiding principles of the institutional animal ethics

committee and approvedby the institutional research committee

of the First Affiliated Hospital of Zhengzhou University. MCF-

7/DDP cells stably expressing sh-SNHG15 were transplanted

into BALB/c nude mice (six-week-old) from Slac Laboratory

(Shanghai, China), and then mice were injected intraperitone-

ally with 5mg/kg cisplatin or same volume of PBS every seven

days. Every seven days, tumor sizes weremonitored, and tumor

volumes were calculated based on the formula: volume = 0.5 ×

length×width2.Micewere euthanized at 35th day post injection

and tumors were excised and weighed.

Statistical Analysis
All data were evaluated as means±standard deviation

(SD). The statistic difference was calculated using

Student’s t-test and one-way ANOVA. P value <0.05 was

considered statistically significant.

Results
SNHG15 Was Up-Regulated In DDP-

Resistant Breast Cancer Tissues And Cell

Lines
To investigate the function of SNHG15 in breast cancer,

we firstly examined the expression of SNHG15 in breast

cancer tissues from TCGA databases. Compared with nor-

mal tissues, SNHG15 expression was dramatically

increased in breast cancer tumor tissues (Figure 1A). To

further prove the result from TCGA databases, SNHG15

expression in breast cancer tumor tissues (n=42) and adja-

cent normal tissues (n=42) was further determined by qRT-

PCR analysis. Consistently, SNHG15 was higher in breast

cancer tissues than that in adjacent normal tissues

(Figure 1B). Additionally, SNHG15 expression was extre-

mely increased in DDP-resistant breast cancer tissues

when compared with DDP-sensitive breast cancer tissues

(Figure 1C). Furthermore, the expression of SNHG15 was

significantly improved in MCF-7 and MDA-MB-231 cells

compared with normal MCF-10A cells (Figure 1D and E).

Notably, compared with their parental cells, MCF-7/DDP

and MDA-MB-231/DDP cells displayed high SNHG15

expression level (Figure 1D and E). Moreover, the breast

cancer patients with high SNHG15 level had a poor prog-

nosis (P = 0.0162) (Figure 1F). Collectively, these data

suggested that up-regulated SNHG15 may be implicated

with cisplatin resistance in breast cancer.

SNHG15 Knockdown Overcame

Cisplatin Resistance Of Breast Cancer

Cells
To evaluate the resistance of MCF-7/DDP andMDA-MB-231/

DDP cells to DDP, IC50 of DDP was measured by MTTassay

in DDP-resistant MCF-7/DDP and MDA-MB-231/DDP cells

and parental MCF-7 and MDA-MB-231 cells. Compared with

the parental cells, MCF-7/DDP and MDA-MB-231/DDP cells

displayed poor response to DDP (Figure 2A). To further con-

firm the role of SNHG15 in DDP-resistant breast cancer cells,

MCF-7/DDP and MDA-MB-231/DDP cells were transfected

with SNHG15 siRNAs (si-SNHG15 #1, si-SNHG15 #2 or si-

SNHG15 #3) or si-con. qRT-PCR analysis indicated that intro-

duction of SNHG15 siRNAs evidently declined SNHG15

expression in MCF-7/DDP and MDA-MB-231/DDP cells

(Figure 2B), especially in si-SNHG15 #2 treated group.

Therefore, si-SNHG15 #2 (si-SNHG15) was used for further

experiments. Remarkably, SNHG15 silencing suppressed the

cell viability and enhanced cisplatin sensitivity in MCF-7/DDP

and MDA-MB-231/DDP cells (Figure 2C and D). To further

determine the role of SNHG15 inDDP-induced apoptosis, flow

cytometry analysis was conducted in MCF-7/DDP and MDA-

MB-231/DDP cells with or without 10 μM DDP treatment.

SNHG15 knockdown could increase cell apoptosis in MCF-7/

DDP and MDA-MB-231/DDP cells (Figure 2E and F).
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Prominently, inhibition of SNHG15 in combination with DDP

exposure could exert their synergistic effect contributing to

significant enhancement in cell apoptosis in MCF-7/DDP and

MDA-MB-231/DDP cells (Figure 2G and H). Collectively,

SNHG15 knockdown facilitated cisplatin sensitivity in breast

cancer cells.

SNHG15 Acted As A miR-381 Sponge In

Breast Cancer Cells
Starbase2.0 predicts that the sequence of SNHG15 harbors a

binding site of miR-381 (Figure 3A). Moreover, subcellular

fraction assay revealed that SNHG15 was mainly distributed

in the cytoplasmofMCF-7/DDPandMDA-MB-231/DDPcells

(Figure 3B and C). Hence, we further investigated whether

SNHG15 functioned as a miR-381 sponge in DDP-resistant

breast cancer cells. Luciferase reporter assay indicated that

miR-381 overexpression obviously reduced the relative lucifer-

ase activity of SNHG15-WT but not SNHG15-MUT, which

suggests SNHG15 could interact with miR-381 (Figure 3D and

E). RNARIP assay confirmed that SNHG15 andmiR-381were

greatly enriched in the Ago2 antibody-treated group compared

with the IgG antibody-treated group (Figure 3F and G). To

further explore the regulatory role of SNHG15 in miR-381

expression, MCF-7/DDP and MDA-MB-231/DDP cells were

transfected with si-SNHG15 or si-con, Vector, SNHG15 or

SNHG15-MUT. In both MCF-7/DDP and MDA-MB-231/

DDP cells, knockdown of SNHG15 markedly elevated miR-

381 expression. Oppositely, the expression level of miR-381

was remarkably decreased by SNHG15 up-regulation.

However, transfection with SNHG15-MUT has no effect on

miR-381 expression (Figure 3H and I). Especially, miR-381

expression was dramatically reduced in breast cancer tissues

(Figure 3J). miR-381 expression was lower in DDP-resistant

breast cancer tissues than that in DDP-sensitive ones

(Figure 3K). Moreover, SNHG15 is negatively correlated with

miR-381 expression in breast cancer tissues (Figure 3L). All

these data evidenced that SNHG15 sponges miR-381 in breast

cancer cells.

miR-381 Overexpression Enhanced

Cisplatin Sensitivity Of Breast Cancer

Cells
To further study the effect of miR-381 on DDP-resistant

breast cancer cells, MCF-7/DDP and MDA-MB-231/DDP

Figure 1 SNHG15 was up-regulated in cisplatin resistant breast cancer tissues and cell lines. qRT-PCR analysis indicated the SNHG15 expression levels in breast cancer tumor or

normal tissues from TCGA dataset (A), paired breast cancer tumor (n=42) or adjacent normal (n=42) tissues (B), cisplatin sensitive or cisplatin resistant breast cancer tissues (C), and

cisplatin resistant breast cancer cell lines (MCF-7/DDP and MDA-MB-231/DDP) and their parental cells (MCF-7 and MDA-MB-231) or human normal breast epithelial cell line MCF-

10A (D and E). (F) The overall survival was evaluated by Kaplan-Meier curve between low and high SNHG15 expression groups. *P < 0.05; **P < 0.01; ***P < 0.001.
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cells were transfected with miR-381 mimics or miR-con.

qRT-PCR analysis revealed that miR-381 expression was

strangely increased in miR-381 transfecting MCF-7/DDP

and MDA-MB-231/DDP cells (Figure 4A and B).

Moreover, overexpression of miR-381 enhanced DDP sen-

sitivity in MCF-7/DDP and MDA-MB-231/DDP cells

(Figure 4C and D). Additionally, flow cytometry analysis

showed that miR-381 overexpression strangely enhanced

DDP-induced apoptosis in MCF-7/DDP and MDA-MB-

231/DDP cells (Figure 4E and F). Together, miR-381

overexpression facilitated cisplatin sensitivity in breast

cancer cells.

Figure 2 Knockdown of SNHG15 overcame cisplatin resistance of breast cancer cells. (A) The cell viability was determined by MTT assay in MCF-7/DDP and MDA-MB-

231/DDP cells and their parental cells exposed to different concentrations of cisplatin (0.1, 1, 5, 10, 25, 50, 100 μM) for 48 h. (B) qRT-PCR analysis was performed in MCF-7/

DDP and MDA-MB-231/DDP cells transfected with SNHG15 siRNAs (si-SNHG15 #1, si-SNHG15 #2 or si-SNHG15 #3) or si-con. (C) The cell viability was determined by

MTT assay in MCF-7/DDP and MDA-MB-231/DDP cells transfected with si-SNHG15 or si-con. (D) MCF-7/DDP and MDA-MB-231/DDP cells transfected with si-SNHG15

or si-con were treated with various concentrations of cisplatin (0.1, 1, 5, 10, 25, 50, 100 μM) for 48 h and cell viability was evaluated by MTTassay. (E and F) Cell apoptosis
was determined by flow cytometry analysis in si-SNHG15 or si-con transfected MCF-7/DDP and MDA-MB-231/DDP cells. (G and H) Cell apoptosis was determined by flow

cytometry analysis in si-SNHG15 or si-con transfected MCF-7/DDP and MDA-MB-231/DDP cells after treatment with 10 μM of cisplatin. *P < 0.05.
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SNHG15 Knockdown Improved Cisplatin

Sensitivity Of Breast Cancer Cells

Through Sponging miR-381
To further investigate whether SNHG15 contributed to cispla-

tin resistance in breast cancer through sponging miR-381

expression, MCF-7/DDP and MDA-MB-231/DDP cells

were transfected with si-con, si-SNHG15, si-SNHG15+anti-

miR-con or si-SNHG15+anti-miR-381. Transfection of si-

SNHG15 elevated miR-381 expression, which was extremely

reversed bymiR-381 inhibition (Figure 5A andB).MTTassay

revealed that down-regulation of SNHG15 facilitated cisplatin

sensitivity of MCF-7/DDP and MDA-MB-231/DDP cells,

however, SNHG15 inhibition-mediated enhancement of cis-

platin sensitivity in MCF-7/DDP and MDA-MB-231/DDP

cells was patently abolished by miR-381 down-regulation

(Figure 5C and D). Furthermore, introduction of anti-miR-

381 extremely demolished the inductive effect of silenced

SNHG15 on apoptosis in MCF-7/DDP and MDA-MB-231/

Figure 3 SNHG15 directly inhibited miR-381 expression in breast cancer cells. (A) Schema representing the functional interaction between miR-381 and SNHG15 as predicted by

starbase2.0. (B and C) SNHG15 nucleus and cytoplasm distribution in MCF-7/DDP and MDA-MB-231/DDP cells was determined by subcellular fraction assay. (D and E) Luciferase
reporter constructs (SNHG15-WTand SNHG15-MUT)were introduced intoMCF-7/DDP andMDA-MB-231/DDP cells together with miR-381 ormiR-con, and the relative luciferase

activity was determined 48 h post transfection. (F andG) The relative expression levels of SNHG15 and miR-381 were determined by qRT-PCR after RIP assay in MCF-7/DDP and

MDA-MB-231/DDP cells. (H and I) We introduced si-SNHG15, SNHG15 and SNHG15-MUT into MCF-7/DDP and MDA-MB-231/DDP cells, and the expression of miR-381 was

detected 48 h post transfection. (J) qRT-PCR analysis of miR-381 expression showed reduced expression of miR-381 in breast cancer tissues as compared with their paired normal

tissues. (K) qRT-PCR showing a marked reduction in miR-381 expression in breast cancer tissue of DDP-resistant patients relative to DDP-sensitive patients. (L) Correlation analysis of
SNHG15 and miR-381 expression in breast cancer tissues. *P < 0.05; **P < 0.01; ***P < 0.001.
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DDP cells (Figure 5E and F). Taken together, these results

demonstrated that SNHG15 led to cisplatin resistance of breast

cancer cells through sponging miR-381.

SNHG15 Knockdown Enhanced Cisplatin

Sensitivity In Tumors In Vivo
To validate whether SNHG15 contributed to cisplatin resis-

tance in vivo, a mouse breast cancer xenograft model was

created. We made an sh-SNHG15 stably expressing MCF-7/

DDP cell line and inoculated them subcutaneously into nude

mice. Thenceforth, mice were injected intraperitoneally with

PBS or CDDP, and tumor size was evaluated every 7 days.

SNHG15 silencing evidently suppressed tumor growth. cis-

platin treatment also inhibited the growth of tumors.

Moreover, SNHG15 silencing in combination with cisplatin

administration displayed slower tumor growth (Figure 6A). At

the 35th day post treatment, mice were euthanized, and xeno-

graft tumors were excised andweighed. The tumorweight was

reduced after SNHG15 knockdown or cisplatin exposure,

especially when SNHG15 knockdown and cisplatin treatment

simultaneously (Figure 6B). In addition, SNHG15 silencing or

cisplatin treatment inhibited the expression of SNHG15 while

up-regulated the expression of miR-381, and this effect could

be strengthened by combination of SNHG15 silencing and

cisplatin exposure (Figure 6C). All these data demonstrated

that knockdown of SNHG15 improved cisplatin sensitivity in

breast cancer cells in vivo.

Discussion
Therapeutic outcome has been restricted by chemoresis-

tance severely for breast cancer patients. Consequently, to

reveal the underlying mechanism and uncover novel ther-

apeutic strategies for chemoresistance is not dispensable.

In this study, we found that SNHG15 expression was

significantly increased in DDP-resistant breast cancer tis-

sues and cells. Moreover, knockdown of SNHG15 re-sen-

sitized DDP-resistant breast cancer cells to DDP.

Prominently, SNHG15 silencing improved the response

of breast cancer cells to cisplatin through elevating miR-

381 expression. Therefore, SNHG15 is a positive regulator

in breast cancer cisplatin resistance and targeting SNHG15

may be an effective scheme for cisplatin chemoresistance

in breast cancer.

Elucidating the molecular mechanism underlying DDP

resistance was helpful to discover reasonable and effective

targeted therapeutic strategies to overwhelmed DDP resis-

tance. Our study found that SNHG15 expression was

increased in DDP-resistant breast cancer tissues and

cells, and SNHG15 silencing overcame DDP resistance

in DDP-resistant breast cancer cells. In line with our find-

ings, increasing evidence demonstrated that dysregulated

Figure 4 Overexpression of miR-381 improved cisplatin resistance of breast cancer cells. MCF-7/DDP and MDA-MB-231/DDP cells were transfected with miR-con or miR-

381, followed by determination of miR-381 expression by qRT-PCR analysis (A and B), IC50 of cisplatin by MTT assay (C and D), and cell apoptotic rate by flow cytometry

analysis (E and F). *P < 0.05.
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SNHG15 was implicated with chemoresistance in various

malignancies. For instance, knockdown of SNHG15 could

suppress cell proliferation and invasion, and sensitize

colorectal cancer cells to 5-FU.13 Moreover, SNHG15

was overexpressed in epithelial ovarian cancer, and con-

tributed to the proliferation, migration, invasion, and

Figure 5 miR-381 knockdown reversed the enhancive effect of down-regulated SNHG15 on cisplatin sensitivity of breast cancer cells. MCF-7/DDP and MDA-MB-231/DDP

cells were transfected with si-con, si-SNHG15, si-SNHG15+anti-miR-con or si-SNHG15+anti-miR-381, followed by determination of miR-381 expression by qRT-PCR

analysis (A and B), IC50 of cisplatin by MTT assay (C and D ), and cell apoptotic rate by flow cytometry analysis (E and F). *P < 0.05.
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chemoresistance of epithelial ovarian cancer cells towards

cisplatin.21 All these findings demonstrated that targeted

inhibiting SNHG15 maybe a hopeful therapeutic strategy

for CDDP chemoresistance.

How elevated SNHG15 contributes to cisplatin resis-

tance in breast cancer remains elusive. Hence, the opera-

tive mechanism of SNHG15 was further explored in this

work. Emerging evidence suggested that SNHG15 inhib-

ited the expression of miRNAs through functioning as

miRNA sponges.22–24 However, whether SNHG15 could

regulate cisplatin resistance in breast cancer through con-

trolling miRNA expression was still indescribable. In our

study, Starbase2.0 database prediction and luciferase

reporter assays confirmed that SNHG15 could bind with

miR-381 in MCF-7/DDP and MDA-MB-231/DDP cells.

Mounting evidence have indicated that miR-381 played a

tumor suppressor role in tumorigenesis.25–28 Moreover,

down-regulated miR-381 was implicated with chemoresis-

tance in many cancers.29–32 Prominently, miR-381 could

enhance cisplatin sensitivity of breast cancer cells through

targeting MDR1.19 Correspondingly, our found indicated

that overexpression of miR-381 overcame cisplatin resis-

tance in MCF-7/DDP and MDA-MB-231/DDP cells.

Additionally, miR-381 inhibition reversed SNHG15 silen-

cing-mediated enhancement of DDP sensitivity in MCF-7/

DDP and MDA-MB-231/DDP cells. All these data demon-

strated that SNHG15 inhibition overcame DDP resistance

in breast cancer cells through sponging miR-381.

In conclusion, our study demonstrated that SNHG15

knockdown improved cisplatin sensitivity of breast cancer

cells through sponging miR-381, providing a promising

therapeutic target for breast cancer DDP resistance.
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