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Abstract: Associations between an exposure and multiple competing events are typically

described by cause-specific hazard ratios (csHR) or subdistribution hazard ratios (sHR).

However, diagnostic tools to assess differences between them have not been described.

Under the proportionality assumption for both, it can be shown mathematically that the

sHR and csHR must be equal, so reporting different time-constant sHR and csHR implies

non-proportionality for at least one. We propose a simple, intuitive approach using the ratio

of sHR/csHR to nonparametrically compare these metrics. In general, for the non-null case,

there must be at least one event type for which the sHR and csHR differ, and the proposed

diagnostic will be useful to identify these cases. Furthermore, once standard methods are

used to estimate the csHR, multiplying it with our nonparametric estimate for the sHR/csHR

ratio will yield estimates of sHR which fulfill intrinsic linkages of the subhazards that

separate analysis may violate. In addition, for non-null cases, at least one must be time

dependent (i.e., non-proportional), and thus our tool serves as an indirect test of the

proportionality assumption. We applied this proposed diagnostic tool to data from a cohort

of children with congenital kidney disease to describe racial differences in the time to first

dialysis or first transplant and extend methods to include adjustment for socioeconomic

factors.

Keywords: survival analysis, nonparametric methods, competing risk analysis, cause-

specific hazard ratios, sub-distribution hazard ratios, chronic kidney disease

Introduction
Recent advances in epidemiologic and biostatistical methods have made available

multiple tools to describe differences in times to outcomes related to an exposure in

the context of competing risks.1–9 The two most common approaches are based on

semiparametric methods for the cause-specific hazard ratios (csHR) using a Cox

proportional hazard model, in which those who experience other events are treated

as censored for the event of interest;10 and subhazard ratios (often referred to as

sub-distribution hazard ratios; sHR) using the Fine and Gray model, in which those

who experience other events are treated as immune (i.e., “cured” and remaining in

the risk sets) to the event of interest.11 Although some authors have questioned the

usefulness of the subhazards claiming this metric conditions on having reached an

absorbing state,12 it is not problematic if occurrence of a given event is
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conceptualized as conferring “cure” (i.e., immunity) for

the other events. In doing so, these individuals with immu-

nity should be appropriately kept in the risk set (consistent

with the classical cure model), even though they will never

experience the event of interest, and thus provide the basis

for properly estimating the “cured” proportions. More

importantly, the accumulation of the subhazards directly

reproduces the cumulative incidences of each event type.

Semiparametric approaches are accessible in standard

statistical software packages, can be easily implemented,

have been extended in several directions7,13–15 and are fre-

quently presented in biostatistical and epidemiologic

literature.8 Some authors have recommended that csHR is

for “etiological” research and sHR for “prediction”;5,6,16–18

and others have recommended conducting analyses using

both approaches (i.e., both sHR and csHR) and presenting

results from each analysis side-by-side for comparison.19

Most recently, Poythress et al20 correctly posed the question,

“Under what conditions is the estimated sHR in the Fine and

Gray model substantially different than the estimated csHR

for the event of interest in the CSHmodel?” but their analysis

focused on the setting of proportional hazards and did not

distinguish between model misspecification and differences

between the two hazard ratios. We propose a nonparametric

diagnostic tool that is free of proportionality assumptions to

give insight into differences between the sHR and csHR, and

whether these discrepancies are reflected by the data.

The presentation of both sHR and csHR provides the

opportunity to evaluate consistency between the two meth-

ods and is a useful way to describe risk by displaying both

metrics separately.21,22 Close linkages, or tethering, of sHR

and csHR ratios have been described.23,24 In particular,

regardless of the number of competing events, if the sHR

and csHR are constant (i.e., hazards are proportional) for

a given event type, the two will be equal (i.e., sHR/csHR

= 1). Conversely, if the sHR differs from the csHR, at least

one of them must be time dependent. Therefore, if one

identifies a case for which the sHR differs from the csHR,

it follows that assuming both to be proportional is inappropri-

ate. Although there are several approaches to assess viola-

tions of proportionality assumptions, a secondary property of

our proposed method is to provide an indirect test for pro-

portionality of hazards. In general, proportionality is unlikely

in the setting of competing risks: we have specifically shown

that in the case of two competing events, at most, two of the

four sHR and csHR estimates can be proportional.24

In longitudinal studies, epidemiologists frequently inves-

tigate competing events in both non-causal21,22,25,26 and

causal settings.27 Here, we present a general theory compar-

ing the sHR and csHR and how these estimators can be

different, which is consistent with, but not restricted to, dif-

ferent estimand choices for causal inference.We propose and

describe nonparametric estimates of the ratio of sHR to csHR,

corresponding 95% confidence intervals, and present an

applied non-causal example that updates a description of

racial differences in time to competing renal replacement

therapy events in a pediatric population with chronic kidney

disease (CKD).28 In the analysis presented here, we provide

a comprehensive characterization and comparison of sHRs

and csHRs for first dialysis and first transplant and demon-

strate that this can be accomplished nonparametrically, with

adjustment for multiple variables using inverse probability of

exposure weights. We further demonstrate how our method

leads to the calculation of an alternative estimate of the sHR,

the product of the semiparametric csHR estimates and the

nonparametric sHR/csHR ratio estimates, which does not

violate any tethering constraints nor assume proportionality.

Materials and Methods
Ratio of Subhazard Ratio and Cause-Specific

Hazard Ratio as a Diagnostic Tool
In the setting of any number K of competing events and a

binary exposure variable, let Ik tð Þ denote the cumulative

incidence of event k at time t among the unexposed and

I�k tð Þ the corresponding cumulative incidence for the exposed

group where k ¼ 1; 2; . . . ;K. For the unexposed group, the

subhazard λ for event k, whose accumulation (i.e., integral)

determines Ik tð Þ, is defined as λk tð Þ ¼ I
0
k tð Þ= 1� Ik tð Þ½ �

where I
0
k tð Þ is the derivative (i.e., rate of increase) of Ik tð Þ.

Likewise, the cause-specific hazard μ for event k is defined as

μk tð Þ ¼ I
0
k tð Þ= 1� I: tð Þ½ � where I: tð Þ is the sum of all the

cumulative incidences (i.e., ¼ ∑
K

j¼1
Ij tð Þ) and corresponds to

the cumulative incidence of the composite event. μk tð Þ repre-
sents the incidence of type k events among the event-free

individuals, though its accumulation is not directly linked to

the event-specific cumulative incidence as it depends on all

of the cumulative incidences; in contrast, the accumulation of

λk tð Þ reproduces Ik tð Þ directly. The subhazard and cause-

specific hazard functions for the exposed group are similarly

defined and denoted by λ�k tð Þ and μ�k tð Þ, respectively. For
a two-sample problem, the sHR for event k is defined as:

Ak tð Þ ¼ λ�k tð Þ
λk tð Þ ¼

I�
0

k tð Þ
I
0
k tð Þ �

1� Ik tð Þ
1� I�k tð Þ
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Likewise, the corresponding csHR for event k is defined as:

Bk tð Þ ¼ μ�k tð Þ
μk tð Þ ¼

I�
0

k tð Þ
I
0
k tð Þ �

1� I: tð Þ
1� I:� tð Þ

It follows that, as t goes to 0, Ak 0ð Þ ¼ Bk 0ð Þ ¼ I�
0

k 0ð Þ=I 0k 0ð Þ.
Hence, were Ak tð Þ and Bk tð Þ to be constant (i.e., proportional
hazards), they must be equal to each other at all time points

since they are equal at time zero.24 Thus, exploring differ-

ences between the sHR and csHR under classical proportion-

ality assumptions is futile, as they cannot be different.

An important feature for the comparison of Ak tð Þ to

Bk tð Þ is the fact that their dependencies on the derivatives

(i.e., rates of change) of the cumulative incidences are the

same (i.e., I�
0

k tð Þ=I 0k tð ÞÞ. Therefore, the ratio of the sHR to

the csHR for event k is

Rk tð Þ ¼ Ak tð Þ
Bk tð Þ ¼

1� I:� tð Þð Þ= 1� I�k tð Þ� �
ð1� I: tð ÞÞ= 1� Ik tð Þð Þ

¼ 1� ½I�Other tð Þ= 1� I�k tð Þ� ��
1� ½IOther tð Þ= 1� Ik tð Þð Þ� (1)

where Other is the composite of all events except k.

Thus, the comparison of Ak tð Þ to Bk tð Þ for all k can be

accomplished by fully nonparametric methods as they

depend only on nonparametric estimates of the cumula-

tive incidence functions. It should be noted that

Equation (1) can be expressed in terms of Pepe and

Mori’s conditional probability of a competing event:

CPk tð Þ ¼ Ik tð Þ= 1� I: tð Þ � Ik tð Þð Þð Þ.29
Hence, Ak tð Þ=Bk tð Þ ¼ 1� CP�

Other tð Þ� �
= 1� CPOther tð Þð Þ.

In the general case of K competing events, the

ratios of the cause-specific hazard to the subhazard

(μk tð Þ=λk tð Þ ¼ 1� Ik tð Þð Þ= 1� I: tð Þð ÞÞ fully determine the

cumulative incidences as

Ik tð Þ ¼ 1� K � 1ð Þ μk tð Þ=λk tð Þð Þ= ∑K
j¼1 μj tð Þ=λj tð Þ

� �
� 1

h in o

In other words, this shows that the ratios μk tð Þ=λk tð Þ for k ¼
1; . . . ;K fully determine the competing risk process similar

to how either the λk or the μkfunctions by themselves do.

Furthermore, since equality of the sHR (= λ�k tð Þ=λk tð Þ) to
the csHR (= μ�k tð Þ=μk tð Þ) for all event types implies

μ�k tð Þ=λ�k tð Þ;μk tð Þ=λk tð Þ for all k, it follows from the

above equation that I�k tð Þ;Ik tð Þ for all k (i.e., the full null

hypothesis of no effect of exposure whatsoever). Hence,

from the converse, if an exposure has an effect on at least

one event type (i.e., not the full null hypothesis), there will

be at least one event type for which the csHR will be

different from the sHR. In most applications, the likely

scenario is that the csHR is different than the sHR for all

competing events. Our proposed diagnostic tool will be

useful to identify those instances.

For the particular case of K ¼ 2 (i.e., the most common

case of two competing events), if the sHR is equal to the

csHR for a particular event, and their common value is not

the null case of 1, then for the other event, the sHR must

be different from the csHR and at least one of the two has

to be time dependent (i.e., non-proportional).

We and others have shown that there are strong tethering

(links) between sHRs so that separate analyses can yield

inadmissible results.23 Since the csHRs are not subject to

such tethering, one can use standard methods to estimate

csHRs (bk tð ÞÞ which can then be multiplied by our pro-

posed nonparametric estimates of Rk tð Þ ¼ Ak tð Þ=Bk tð Þ to

yield estimates of the sHRs (Rk tð Þbk tð ÞÞ that will fulfill

the intrinsic tethering (links) of all hazard functions in the

setting of competing risks. To our knowledge, this approach

is the first one using semiparametric methods to accomplish

appropriate reporting of all types of hazard ratios as has

been recommended and claimed as good practice.19

Application
Study Population
The study population for our application comprised chil-

dren enrolled in the Chronic Kidney Disease in Children

(CKiD) study with a diagnosis of nonglomerular kidney

disease. CKiD is a longitudinal observational cohort

initiated in 2003 that enrolled children between the ages

of 1 and 16 with diagnosed kidney disease and glomerular

filtration rate (GFR) <90 mL/min|1.73m2. Data were col-

lected annually until the initiation of renal replacement

therapy (RRT), defined as dialysis or kidney transplanta-

tion, with information obtained from medical records and/

or patient report. Details of the study and diagnoses have

been previously described.30–32 All participants/families

provided informed consent/assent and the study protocols

were approved by the Institutional Review Boards of each

participating site (see Supplementary material).

Exposure and Outcome
The exposure was self or parental reported race categor-

ized as African American (AA; “AA race” or “mixed race

including AA”) and non-African American (non-AA). The

outcome was the time from the onset of nonglomerular

kidney disease to initiation of RRT. The two competing

events were dialysis and transplantation. Death was not
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treated as a competing event since there were no observed

deaths prior to dialysis or transplant in our study popula-

tion. Since children enrolled in CKiD at heterogeneous

durations of disease and using a timescale of years since

CKD onset was epidemiologically meaningful, we incor-

porated late entries to avoid survival biases and appropri-

ately account for event-free, but unobserved person-time.

As only a small number of children were recruited with

less than 2 years of duration, all analyses were anchored at

2 years from CKD onset.

Covariates
Since lower socioeconomic status (SES) is associated with

AA race, adjustment for SES factors was critical and

demonstrated the inclusion of weighting methods for

adjusted nonparametric descriptions of the cumulative

incidences, as well as for our diagnostic tool. As pre-

viously described,28 inverse probability of exposure

weights (IPWs; scaled to the marginal proportion within

each group) were constructed based on annual household

income (categorized as <$30,000, $30,000 to $75,000, and

>$75,000), abnormal birth history (defined as low birth

weight, small for gestational age, or premature birth), food

assistance in the past year, household having any public

insurance, maternal education less than college, participant

visiting a private doctor in the past year and male sex.

Statistical Methods
Our first analysis used nonparametric estimates of the

cumulative incidences to determine Rk tð Þ using Equation

(1). The cumulative incidence for a competing event of

interest is easily obtained by first calculating the standard

Kaplan–Meier of the composite event and then accumulat-

ing the jumps of the Kaplan–Meier at the times when the

event of interest occurs. These may be obtained in stan-

dard statistical software programs, such as the etmCIF

package in R or the stcompet command in Stata. In addi-

tion, IPWs may be employed to adjust for multiple covari-

ates and enable graphical nonparametric presentations of

adjusted Kaplan–Meier functions, and adjusted Rk tð Þ in

which the contribution of each individual is not equal,

but corresponds to their inverse probability weight.

Classical Cox regression models estimated the csHRs

and the Fine and Gray11 method estimated sHRs of dialysis

and transplant (comparing AA to non-AA) using the

stcox and stcrreg commands in Stata, both of which incor-

porate late entry information. For these models, the loga-

rithms of the hazard ratios were modeled to vary (linearly)

over time by the exposure, thus allowing for non-

proportionality. Specifically, the subhazard ratios ak tð Þ
were modeled as exp αk0 þ αk1tð Þ and the cause-specific

hazard ratios bk tð Þ were modeled as exp βk0 þ βk1tð Þ sepa-

rately for each event k. The ratio of these semiparametric

hazard ratios for each event (i.e., ak tð Þ=bk tð Þ to estimate

Rk tð Þ, defined above) was used to compare and contrast to

the proposed fully nonparametric method. Bootstrap meth-

ods were used to calculate percentile-based 95% confidence

intervals for the nonparametric estimator.

As an alternative to separately modeling the subhazard

ratios as exp αk0 þ αk1tð Þ which may not fulfill the tether-

ing (links) between all hazard types, one may instead use

our proposed nonparametric estimate for Rk tð Þ and derive

the estimate of Ak tð Þ as Rk tð Þexp βk0 þ βk1tð Þ which will

fulfill all links between the types of hazard ratios.

Consistent with statistical modeling principles, these esti-

mates of Ak tð Þ depend on correct specification of

exp βk0 þ βk1tð Þ as a model for Bk tð Þ. Bootstrap methods

can equally be applied to obtain 95% confidence intervals

for the refined estimator of Ak tð Þ: Furthermore, congruence

between exp αk0 þ αk1tð Þ and Rk tð Þexp βk0 þ βk1tð Þ will

provide support for the adequacy of the simpler

exp αk0 þ αk1tð Þ as an appropriate estimate of Ak tð Þ:
Lastly, to account for potential confounding by SES,

we have previously described28 the application of IPWs

for adjusted nonparametric calculations of a) the compet-

ing events cumulative incidences and b) the diagnostic

comparison of the ratio of sHR to csHR (denoted as

aRk tð Þ). Bootstrap methods were employed to obtain

valid 95% confidence intervals for nonparametric esti-

mates that were adjusted for covariates. Resampling with

replacement was stratified by race with new IPWs gener-

ated for each bootstrap sample.

All analyses were conducted in Stata 14 and R 3.5.0

software, with a customized R package (hrcomprisk)

developed for unadjusted and adjusted nonparametric esti-

mation of Rk tð Þ and aRk tð Þ, respectively.

Results
Table 1 presents descriptive statistics of 626 children with

nonglomerular kidney disease. Of these children, 80%

(504) were non-AA. Consistent with congenital and early

age disease, both racial groups comprised more than 90%

participants with disease onset within 1 year of age, and all

were enrolled with mild to moderate CKD (median eGFR=

49 and 57 mL/min|1.73 m2, respectively). The median

follow-up time was about 5 years for both groups. Since
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RRT was an exclusion criterion at enrollment, late entries

accounting for heterogeneous duration of CKD at enroll-

ment were incorporated to estimate times to RRT and the

timescale was anchored at 2 years from CKD onset.

Figure 1A presents the unadjusted cumulative inci-

dence of the RRT composite event by race. AA children

received RRT earlier than non-AA children: the 10th, 25th

and median times to RRT for AA children were 6.6, 12.6

and 16.2 years, respectively. In contrast, these times for

non-AA children were 8.7, 13.1 and 19.0 years,

respectively.

Figure 1B describes the unadjusted cumulative inci-

dences of the competing events of dialysis (bottom to top

with scale in the left vertical axis) and transplant (top to

bottom with scale in the right vertical axis) and demon-

strate earlier dialysis times for AA children compared to

non-AA children. In contrast, transplant occurred at ear-

lier times for non-AA children, particularly 10 years after

kidney disease onset. These nonparametric incidence

functions presented can be used to estimate Rk tð Þ (using
Equation (1)) to diagnose differences between sHR and

csHR and contrast them with semiparametric estimates of

sHR/csHR.

Figure 2 presents the results from classical separate

semiparametric subhazard and cause-specific hazard

models with linear time-varying (i.e., non-proportional)

effects, to compare the risk of dialysis (Panel A) and of

transplant (Panel B) by race. For dialysis, the sHR (a1 tð Þ)
and csHR (b1 tð Þ) were very similar: AAs had an approxi-

mately 4 times higher hazard than non-AAs at 2 years, and

this decreased over time to 3/2 by 20 years. For transplant,

the sHR (a2 tð Þ) was less than 1 indicating that AAs were

less likely to receive transplant and the sHR decreased

(away from the null) over time. In contrast to the time-

varying sHR, the csHR (b2 tð Þ) did not vary substantially

by time (csHR: ~3/4).

Figure 3 presents the estimates of the sHR to csHR

ratios for dialysis (Panel A, grey; R1 tð Þ) and transplant

(Panel B, black; R2 tð Þ). The nonparametric estimate was

derived from the nonparametric incidence functions alone

(in Figure 1B) using Equation (1) and is depicted as a bold

solid step function, with corresponding 95% bootstrapped

confidence intervals. The semiparametric estimator is

depicted as a line with long dashes and was derived from

the results from Figure 2. For dialysis, the sHR and csHR

were very similar with only minor deviations from 1, and

the nonparametric 95% confidence interval contained 1. In

contrast, for transplant, the sHR was lower than the csHR

over time with significant departures at about 14 years

based on the nonparametric estimator. The semiparametric

estimator was contained within the 95% nonparametric

bootstrapped confidence intervals, but overestimated the

ratio of sHR to csHR after 14 years. Another limitation of

the classical semiparametric approach is that by conduct-

ing two analyses separately (i.e., estimating csHR and sHR

separately), the two estimators did not agree at time 0

(corresponding to 2 years for the timescale of the analysis)

which is a violation of the theoretical property described in

the Methods section.

To avoid violating theoretical properties and to fulfill

intrinsic tethering of the subhazard ratios, the step func-

tions in the bottom panels of Figure 3 depict estimates of

the subhazard ratios resulting by multiplying the cause-

specific hazard ratios in Figure 2 and the nonparametric

estimates of Rk tð Þ provided in the top two panels of Figure

3. Although for the case of transplant, the refined estimate

of the sHR is below the one provided in Figure 2, the

primary inference is preserved, providing justification for

the Fine and Gray linear model to be reasonably

appropriate.

Figure 4A presents the adjusted nonparametric esti-

mates for the cumulative incidences of dialysis and trans-

plant, by race, controlling for SES variables. With

Table 1 Descriptive Statistics of Baseline Demographic and Clinical

Characteristics and Longitudinal Data Contributed by Children

Enrolled in CKiD with a Nonglomerular CKD Diagnosis,

Stratified by Race. Median [Interquartile Range] and % (n)

Variable Non-African

American,

n=504

African

American,

n=122

Demographic Characteristics

Age at study entry, years 10.1 [6.4, 13.6] 9.3 [4.9, 13.1]

Male 64% (324) 75% (92)

Hispanic ethnicity 15% (73) 9% (11)

Kidney Disease Characteristics

Age at CKD onset < 1 year 94% (474) 91% (111)

Urine protein:creatinine ratio, mg/mgCr

Normal (< 0.2 mg/mgCr) 44% (220) 40% (49)

Elevated (0.2 to 2 mg/mgCr) 49% (246) 49% (60)

Nephrotic (> 2 mg/mgCr) 8% (38) 11% (13)

eGFR, mL/min|1.73m2 49 [36, 60] 57 [42, 68]

Longitudinal data

Observed person time, years 5.2 [3.4, 8.3] 5.0 [3.0, 7.8]

Total observed person-time, years 643.5 284.8

Renal replacement therapy 29% (145) 34% (41)

Dialysis 13% (65) 24% (29)

Transplant 16% (80) 10% (12)
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adjustment, earlier times to dialysis and later times to

transplant for AA participants compared to non-AA parti-

cipants were observed, but the differences were substan-

tially reduced compared to Figure 1B. Figure 4B

and C display the weighted nonparametric estimates and

95% bootstrap confidence intervals of the adjusted sHR/

csHR (i.e., aRk). For both dialysis and transplant, the

confidence intervals for this adjusted metric contain 1 at

practically all time points, indicating that race was consis-

tent with a null exposure after adjustment for SES. This

inference was confirmed by the weighted semiparametric

models, each of which showed no association with race

after accounting for SES. This was consistent with the

theoretical principles described in the Methods in which

equality of hazard ratios for all events can only occur in

the presence of a null exposure.
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Discussion
Previous studies recommended presenting both sHR and

csHR to comprehensively describe risks in the context of

competing risk events,19,22 and others have described the

intrinsic tethering of the two measures of association.23,24

Here, we propose a diagnostic tool that not only charac-

terizes how the two metrics differ using the nonparametric

incidence functions alone, but also plainly identifies dif-

ferences between the sHR and csHR. We have shown that

in the non-null setting (i.e., an exposure associated with at

least one event type), there must be at least one instance

where the sHR will differ from the csHR; the proposed

diagnostic tool can help with the identification of this

necessary difference. That the sHR and csHR differ should

not be surprising, as subhazard functions and cause-

specific hazards have distinct behaviors; at least one cause-

specific hazard must have an area under the curve equal to

infinity, whereas all subhazard functions must have finite

areas under the curves.

A strength of our proposed estimator for the ratios of

the two hazard ratio types is that it is nonparametric, but it

is also subject to large standard errors for later follow-up

periods when the risk sets diminish as depicted in

Figures 3 and 4. Parametric methods can offer an alter-

native to improve precision but are subject to more restric-

tive assumptions.25,28

Our application integrated weighting methods to account

for potential confounding for these nonparametric

approaches. In the unadjusted analysis, our proposed ratios

were different which was consistent with non-null associa-

tions. In adjusted analysis, these ratios were close to 1, and

this was consistent with a null association with race. This

Years from kidney disease onset

(
R

Hsc/
R

Hs
R

1)

A

2 5 8 11 14 17 20

1/2

2/3

4/5

1

5/4

3/2 Dialysis

Nonparametric estimator

Nonparametric bootstrap 95% CI

Semi-parametric estimator

Years from kidney disease onset

sH
R

/c
sH

R
 ( R

2)

B

2 5 8 11 14 17 20

1/2

2/3

4/5

1

5/4

3/2 Transplant

Years from kidney disease onset

)
A

A-non
ot

A
A(

oitar
draza

H

C

2 5 8 11 14 17 20

1/2

2/3

1

3/2

2

3

4
Subhazard ratio via

nonparametric (R1b1)

Cause-specific
hazard ratio (b1)

Years from kidney disease onset

H
az

ar
d 

ra
tio

 (A
A

 to
 n

on
-A

A
)

D

2 5 8 11 14 17 20

1/2

2/3

1

3/2

2

3

4

Subhazard ratio via
nonparametric (R2b2)

Cause-specific hazard ratio (b2)

Figure 3 (A and B) Ratios of subhazard ratio to cause-specific hazard ratio for dialysis and transplant, respectively. (C and D) Subhazard ratios via nonparametric and

classical semiparametric cause-specific hazard ratios for dialysis and transplant, respectively. For (A and B), solid lines depict the nonparametric estimator with bootstrapped

95% confidence intervals and dashed lines depict the semiparametric estimator based on the models presented in Figure 2.

Dovepress Ng et al

Clinical Epidemiology 2020:12 submit your manuscript | www.dovepress.com

DovePress
89

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


finding was entirely consistent with previous results showing

that risk differences due to race were explained by SES

factors.28 Here we demonstrate that racial differences related

to dialysis or kidney transplantation in children with CKD

were explained by socio-economic factors and this was

accomplished by nonparametric approaches which did not

require classical assumptions of proportionality of hazards or

other modeling fitting assumptions. A clinical implication of

this application is that in this North American setting, trans-

plant planning efforts should be mobilized for those with

lower SES, many of whom will likely be African American.

Two limitations of our application may be noted. First,

to handle the substantial heterogeneity of duration of dis-

ease at study enrollment and minimize immune time

biases, we used methods to incorporate late entries and

anchoring at age 2; however, there may still be residual

immune time biases. Second, even though the adjustment

for SES attenuated the association between race and trans-

plant and confidence intervals suggested consistency with

the null hypothesis, the differences shown in Figure 4 may

be due to residual confounding.

Given the intrinsic links of the subhazard ratios in

contrast to the cause-specific hazard ratios being free of

dependencies, a preferred approach to estimate the subha-

zard ratios is to use standard methods to separately esti-

mate the cause-specific hazard ratios along with our

proposed general procedure to estimate the ratios of sub-

hazard to cause-specific hazard ratios to obtain semipara-

metric estimates of the subhazard ratios as presented in the

bottom panels of Figure 3. One may opt to report them or

in turn, use them to assess the model appropriateness of

simpler separate analyses of subhazard ratios (using clas-

sical Fine and Gray procedures) as was the case in

Figure 2.
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We have previously shown24 that assuming proportion-

ality for both the cause-specific hazards and the subha-

zards of a given event renders them necessarily equal and

thus the reporting of both under such an assumption is

futile. Several papers have reported differing time-constant

sHR and csHR despite these being inadmissible under the

proportionality assumption.21,33–36

Under non-proportionality, the sHR and csHR can still be

equal for a non-null exposure; this was the case for dialysis in

our application. As shown in the Methods section, for the

case of two competing events, equality between the sHR and

csHR for one event (e.g., dialysis) requires that the sHR and

csHR must be different for the other event (e.g., transplant).

Although simultaneous proportionality implies sHR/

csHR=1, it is not the case that if sHR/csHR=1, simultaneous

proportionality holds (i.e., Figure 2A; and results reported by

Hsu et al.22). On the other hand, when the opposite is

observed (i.e., sHR/csHR ≠ 1) at least one of the hazard

types is non-proportional as illustrated by Figures 2B and 3B.

These results also show that due to the sHR and csHR

being equal at the start of the study, sufficient occurrence

of events and duration of follow-up are necessary to deter-

mine differences between the two metrics. For limited

studies with few events and/or short follow-up, reporting

both sHR and csHR may be redundant as these metrics

will not be different. Correspondingly, the diagnostic tool

will not be useful in the context of such limited studies. In

this case, we recommend reporting the csHRs with pro-

portionality because they are untethered. In contrast, the

tethering of constant sHRs means that the sHRs for the

two competing events must be on opposite sides of one.24

However, for data with sufficient follow-up and events,

reporting the sHR has the attraction of being directly

linked to the cumulative incidence functions.

Although our application only had two competing

events, the methods are applicable to any number of com-

peting events using Equation (1). In such a case, for

diagnostic purposes, the number of events will dictate the

number of graphs (such as Figure 3). Additionally, this

tool can accommodate categorical exposures with one

exposure level serving as the reference. However, this

tool does not extend to continuous exposures, due to the

same limitations as classical Kaplan–Meier nonparametric

incidence estimates that are only calculated for categorical

exposures.

Our proposed nonparametric estimator can be calculated

without the need for complex statistical tools or computing

power to compare and contrast the sHRs and csHRs. More

importantly, combining estimates of csHR Bk tð Þ from stan-

dard Cox regression methods and our proposed nonpara-

metric method to estimate Rk tð Þ ¼ Ak tð Þ=Bk tð Þ, one can

provide proper estimates of Ak tð Þ as Rk tð ÞBk tð Þ which will

be congruent with expected theoretical properties of the

metrics, avoid reporting inadmissible results and could be

used to assess the appropriateness of estimates from classical

Fine and Gray-based approaches. In addition, our approach

provides indirect tests of exposure effects and proportional-

ity, and it can incorporate covariate adjustment through

weighting.
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