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Abstract: Genotoxic stress is induced by a broad range of DNA-damaging agents and could 

lead to a variety of human diseases including cancer. DNA damage is also therapeutically 

induced for cancer treatment with the aim to eliminate tumor cells. However, the effectiveness 

of radio- and chemotherapy is strongly hampered by tumor cell resistance. A major reason 

for radio- and chemotherapeutic resistances is the simultaneous activation of cell survival 

pathways resulting in the activation of the transcription factor nuclear factor-kappa B (NF-κB). 

Here, we present a Boolean network model of the NF-κB signal transduction induced by 

genotoxic stress in epithelial cells. For the representation and analysis of the model, we 

used the formalism of logical interaction hypergraphs. Model reconstruction was based 

on a careful meta-analysis of published data. By calculating minimal intervention sets, we 

identified p53-induced protein with a death domain (PIDD), receptor-interacting protein 

1 (RIP1), and protein inhibitor of activated STAT y (PIASy) as putative therapeutic targets to 

abrogate NF-κB activation resulting in apoptosis. Targeting these structures therapeutically 

may potentiate the effectiveness of radio- and chemotherapy. Thus, the presented model allows 

a better understanding of the signal transduction in tumor cells and provides candidates as 

new therapeutic target structures.
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Background
A highly relevant topic in biomedicine concerns the conditions of genotoxic stress 

that damages the genetic integrity of human cells. Genotoxic stress is induced by 

environmental agents such as ionizing radiation, ultraviolet (UV) light,1 or chemical 

pollutants (eg, cigarette smoke).2 Genotoxic stress triggers the activation of a 

complex network of signal transduction pathways collectively referred to as the DNA 

damage response.3 The pathways are driven by ‘sensor’ proteins that sense the DNA 

damage, and transmit the signals via ‘transducer’ proteins to a multitude of ‘effector’ 

proteins, which induce a cellular response including mechanisms to slow down or 

block cell proliferation at so-called cell-cycle checkpoints,4 followed by DNA repair, 

senescence,5 or elimination of damaged, hazardous cells by engaging apoptosis to 

avoid transformation into tumor cells.6

DNA double-strand breaks (DSBs) are among the most lethal types of DNA 

damage, and can be induced by ionizing radiation or topoisomerase inhibitors, both of 

which are commonly used in cancer treatment with the aim to eliminate tumor cells by 

apoptosis. The Mre11/Rad50/Nbs1 (MRN) sensor protein complex is among the first to 

be recruited to such lesions, mediating the autophosphorylation of ataxia telangiectasia 
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mutated (ATM).7 ATM can phosphorylate checkpoint 

kinase 2 (Chk2), p53, and breast cancer type 1 susceptibility 

protein (BRCA1), which are involved in mediating cell cycle 

arrest and DNA repair or apoptosis.4 Moreover, DSBs can 

also cause a posttranslationally processed form of PIDD 

to enter the nucleus.8,9 Nuclear p53-induced protein with a 

death domain (PIDD) binds via receptor-interacting protein 1 

(RIP1) to nuclear factor-kappa B (NF-κB) essential modula-

tor (NEMO),10 which then becomes sumoylated by protein 

inhibitor of activated STAT y (PIASy).10,11 Thereafter, ATM 

phosphorylates NEMO, followed by its monoubquitinylation 

and export to the cytosol.11–14 Inside the cytosol, NEMO 

activates IκB kinase β (IKKβ)11,12 to phosphorylate inhibitors 

of κBs (IκBs), followed by their ubiquitinylation-mediated 

degradation.15 Since NF-κB dimers are retained in the cytosol 

by binding to IκBs, degradation of the latter leads to release 

of NF-κB, enabling its entry into the nucleus to drive the 

transcription of dedicated target genes.16,17 NF-κB-regulated 

target genes mostly exert antiapoptotic effects. Therefore, 

a major reason for resistance of tumor cells against radio- and 

chemotherapy can be attributed to the activation of NF-κB 

impeding the efficient elimination of cancer cells.18 Increase 

of the nuclear level of NF-κB has been observed in several 

human solid tumor cell lines and some breast tumors.18 This 

is one of the reasons why the molecular mechanisms of 

genotoxic stress response, in particular, the NF-κB-related 

pathways are of high interest.

Despite the high clinical relevance of the genotoxic 

stress response, the molecular interplay is poorly understood, 

particularly due to the high complexity of related signaling 

pathways, leading to the complication for finding promising 

drug targets for therapeutic treatments. Therefore, systems 

biological approaches might be of high value to give new 

insights into the understanding of the complex cellular 

networks. The prevailing formalism to model cellular 

networks is kinetic analysis, which has been mainly applied to 

signaling networks of smaller size. Qualitative (ie, parameter-

free) models enable the computational representation and 

analysis of even large-scale signaling networks. A functional 

analysis of the network structure already enables researchers 

to address important issues, such as detection of network-

wide functional interdependencies, identification of interven-

tion strategies and predictions on the effects of perturbations. 

Boolean networks have been shown to be a useful tool for 

qualitative modeling of biological processes, particularly due 

to their computational simplicity.19–22 Recently, a particular 

representation of logical networks, logical interaction hyper-

graphs has been shown to be well suitable for visualization 

and qualitative analyses of logical models of signal 

transduction networks.23–25 Using this in silico approach, 

putative therapeutic targets in human signal transduction 

pathways induced by the pathogen Helicobacter pylori have 

been identified.26

Here, we present a logical model of the DNA-damage 

response in human epithelial cells with the major focus 

on the induction of the NF-κB system by DNA double-

strand breaks. By simulating treatment of tumor cells with 

ionizing radiation and the topoisomerase II inhibitor VP16 

(VePesid®, etoposide), we identified putative target molecules 

to impede tumor cell survival by abrogating activation of 

NF-κB while leaving apoptotic pathways unaffected. Further, 

our results give new insights into the understanding of 

complex signaling pathways, in particular the role of NF-κB 

in response to genotoxic stress.

Methods
Data mining
For the Boolean network assembly we screened the relevant 

literature through PubMed and accessed further data on 

signaling pathways via curate protein–protein interaction 

databases.27,28 Large amounts of published experimental 

works were evaluated and only high quality data from experi-

ments using human epithelial cells were used for modeling. 

Information on intracellular localization of proteins were 

retrieved from the LOCATE database29 if this has not been 

indicated in the analyzed publications.

Logical model construction and analysis
For construction, visualization, and structural analyses of 

the signal transduction network, we employed the logical 

modeling framework of logical interaction hypergraphs.23–26 

Logical interaction hypergraphs are based on a special 

representation of Boolean functions, known as ‘sum of 

products’, which requires only AND, OR, and NOT operators 

for describing the logical relationships. In a logical network, 

nodes typically correspond to variables that can attain 

only discrete values; in the simplest (Boolean) case, each 

species can only be ‘on’ (ie, ‘active’ or ‘present’) or ‘off’ 

(ie, ‘inactive’ or ‘absent’). Hence, each node is considered 

as a binary variable. A Boolean function is assigned to each 

node, determining under which conditions it is ‘on’ or ‘off’. 

Interaction graphs are only capable of representing dependen-

cies between two species. Therefore, in interaction graphs, 

every relationship is represented by an arc, connecting one 

tail (start) node with one head (end) node. A species may be 

activated by several distinct signaling events independently. 
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This is represented by a logical OR connection of all arcs 

sharing the same head node. Therefore, each arc represents 

one means by which the species represented by the head 

node becomes active. However, in signaling networks, 

an interaction often represents a relationship between more 

than two species. For example, DSBs arise (are ‘on’) if both 

camptothecin and a topoisomerase I are present (ie, both 

are ‘on’). This logical AND connection is represented by a 

hyperarc: the two tail nodes reflect the premise, that both 

of them have to be ‘on’ in order to activate the head note. 

Generally, a hyperarc can have an arbitrary number of start 

and end nodes, ie, can have arbitrary cardinality. Again, any 

hyperarcs pointing into the same node are connected by a 

logical OR. Moreover, inhibiting influences are represented 

by a logical ‘NOT’.

The network diagram was constructed using the software 

CellDesigner 4.0.1 (The Systems Biology Institute, Tokyo, 

Japan).30 We analyzed the logical model with the software 

CellNetAnalyzer 9.0 (CNA), a MATLAB package for graph-

theoretical and logical analyses (The MathWorks, Natick, 

MA, USA).24

We studied the qualitative effects of input stimuli on 

downstream signaling events and on the logical pattern of 

outputs by computing logical steady states (LSS) of the net-

work.23 Importantly, the calculation of LSS also provides the 

basis for calculations of minimal intervention sets,23,24 which 

are defined as minimal sets of network elements that are to 

be removed (by knockout, knockdown or inhibition) or to be 

added (by activation) to achieve a certain intervention goal. 

CNA enables the setting of a maximum cardinality (maximum 

number of interventions allowed) for each minimal interven-

tion set calculation.

Some functions of CNA operate on the level of the inter-

action graph underlying the logical model. The projection 

of a logical model to its underlying interaction graph can 

be conducted easily if a logical network is given in logical 

interaction hypergraph representation as in CNA (all the 

AND connections (hyperarcs) are being split into arcs). 

Within the interaction graph model one may then calculate 

graph-theoretical properties of the network including signal-

ing paths, or the dependency matrix.23,24 The latter reveals 

functional interdependencies between each pair of species, 

eg, revealing whether a species i is an activator (ie, there 

are only positive paths) or an inhibitor (ie, there are only 

negative paths) or an ambivalent factor (ie, positive and nega-

tive paths to the selected species exist) for another species j. 

This feature facilitates qualitative predictions of the effects 

of perturbations or knockout experiments.

Results and discussion
Boolean network of genotoxic 
stress-induced signal transduction
Based on quality-controlled published data gained from 

experiments using human epithelial cell lines, we built a 

Boolean network of NF-κB signal transduction in response to 

genotoxic stress (Figure 1). The network was drawn according 

to the recently released Systems Biology Graphical Notation 

process diagram level 1,31 which facilitates the communica-

tion of knowledge about signal transduction networks.

The model encompasses 69 species connected by 

72 reactions and reflects the typical structure of signaling 

networks. Therein, genotoxic stimuli constitute the input 

layer (top of the network). The signals will be transmitted 

to the intermediate layer, and processed. Eventually, the 

processed signals are connected to proteins in the output 

layer (bottom), eg, resulting in apoptosis, as indicated by 

dashed lines. The numbers assigned to the interactions in 

Figure 1 correspond to the numbers of the model reactions 

(equations) listed in Table 1. All model species are listed in 

Table 2. The proteins linked to apoptosis or cell survival are 

indicated in Table 3.

Network-wide interdependencies 
revealed by the logical model
For the analysis of the model, we calculated network-wide 

interdependencies comprehensively displayed in the depen-

dency matrix (Figure 2). This matrix indicates the type of 

the impact of a certain species (left) on another species 

(bottom), regardless of the type of stimulus. For instance, 

it can be inferred from Figure 2, that ataxia telangiectasia 

and Rad3-related (ATR), which forms a complex with 

ATR interacting protein (ATRIP), has an inhibitory effect 

on Bcl-3/p52/p52. ATR activates p53 by phosphorylating 

it at serine 15 (equation 49, Table 1).32 Additionally, ATR 

phosphorylates checkpoint kinase 2 (Chk2) (equation 60),33,34 

which subsequently initiates the degradation of murine 

double minute X (MDMX) (equation 66).35 Notably, MDMX 

itself ubiquitinylates p53, leading to degradation of p53.35 

Thus, ATR-mediated degradation of MDMX stabilizes p53, 

which in turn initiates degradation of Bcl-3 (equation 40).36 

This represents an inhibition in a logical sense, whereby 

the formation of the Bcl-3/p52/p52 complex (equation 41) 

is impeded, which leads to the inactivation of the NF-κB 

complex p52/p5236 and further induces apoptosis. Moreover, 

the MDMX molecule itself can be ubiquitinylated by 

the E3 ligase murine double minute 2 (MDM2), leading 
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Table 1 The Boolean model reactions. Interactions of the logical model  

Boolean equations  Explanations and references

  1. �I R → DNA DSBs Ionizing radiation causes DNA double-strand breaks in all cell types51

  2. �SN 38 ⋅ topoisomeraseI → DNA DSBs SN 38 causes DNA double-strand breaks by inhibiting topoisomerase I52

  3. � camptothecin ⋅ topoisomeraseI → DNA DSBs Camptothecin causes DNA double-strand breaks by inhibiting topoisomerase I52

  4. �VP16 ⋅ topoisomeraseII → DNA DSBs VP16 causes DNA double-strand breaks by inhibiting topoisomerase II53

  5. � daunomycin ⋅ topoisomeraseII → DNA DSBs Daunomycin causes DNA double-strand breaks by inhibiting topoisomerase II54

  6. � doxorubicin ⋅ topoisomeraseII → DNA DSBs Doxorubicin causes DNA double-strand breaks by inhibiting topoisomerase II55

  7. � DNA DSBs ⋅ MRN → ATM(P) The MRN complex facilitates autophosphorylation of ATM at serine 198139,56,57

  8. � ATM(P) ⋅ MRN → MRN(P) Activated ATM phosphorylates serine 343 of Nbs1 within the MRN complex58

  9. � DNA DSBs ⋅ MRN(P)→ ATM(P) The phosphorylated MRN complex facilitates autophosphorylation of ATM at 
serine 198139,56,57

10. � DNA DSBs → PIDD DNA double-strand breaks activate PIDD (by autocatalytic cleavage, potentially 
expression)8,9

11. � PIDD → PIDD/RIP1/NEMO Activated PIDD enters the nucleus and forms a complex with RIP1 and NEMO10,9

12. � PIASy ⋅ PIDD/RIP1/NEMO → PIDD/RIP1/NEMO(S) PIASy sumoylates NEMO within the PIDD/RIP1/NEMO complex10,11

13. � ATM(P) ⋅ PIDD/RIP1/NEMO(S) → ATM(P)/NEMO(P) Upon sumoylation,  ATM phosphorylates NEMO at serine 8512,13

14. � ATM(P) / NEMO(P) → nuclear ATM(P)/NEMO(Ub) Upon phosphorylation, NEMO becomes monoubiquitinylated12,13

15. �N uclear ATM(P)/NEMO(Ub) ⋅ Ca2+ → cytosolic 
ATM(P)/NEMO(Ub)

Export of ATM(P)/NEMO(Ub) to the cytoplasm is dependent on Ca2+12,14

16. � Cytosolic ATM(P)/NEMO(Ub) → ATM(P)/NEMO(Ub)/IKKβ ATM(P)/NEMO(Ub) binds to IKKβ (or the whole IKK complex?)11,12

17. � ATM(P)/NEMO(Ub)/IKKβ → IKK complex(P) IKK becomes activated by DNA double-strand breaks14,59

18. � Camptothecin → NIK(P) Camptothecin activates NF-κB partly via NIK60

19. �NI K(P) → IKK complex(P) NIK activates IKK60

20. � Doxorubicin → MEK(P) Doxorubicin activates MEK61

21. � MEK(P) → ERK(P) MEK activates ERK1/261

22. �E RK(P) → p90(P) ERK1/2 mediates binding of p90rsk to IKKβ, leading to phosphorylation of both61

23. � p90(P) → IKK complex(P) ERK1/2 mediates binding of p90rsk to IKKβ, leading to phosphorylation of both61

24. � Cisplatin → Oxo8-Guanine Cisplatin leads to formation of Oxo8-Guanine lesions62

25. � UVA → Oxo8-Guanine UVA leads to formation of Oxo8-Guanine lesions62

26. �I L-1 ⋅ Oxo8-Guanine → IKK complex(P) IL-1 and Oxo8-Guanine synergistically activate IKK to phosphorylate IκBα62

27. � UVB → pyrimidine dimers UVB leads to formation of pyrimidine dimer lesions62

28. �I L-1 ⋅ pyrimidine dimers → IKK complex(P) IL-1 and pyrimidine dimers synergistically activate IKK to phosphorylate IκBα62

29. � UVB → nuclear NF-κB UVB induces binding of NF-κB to DNA63,64

30. � UVC → PI3K(P) UVC triggers activation of PI3K65

31. � PI3K(P) → AKT2(P) Activated PI3K mediates phosphorylation of AKT265

32. � AKT2(P) → IKKα(P) Phosphorylated AKT2 phosphorylates IKKα at threonine 2365

33.  !IKKα(P) ⋅ !IKK complex(P) ⋅ !CK2 → IκBα Several forms of genotoxic stress trigger IKK or CK2 to phosphorylate IκBα, 
leading to its proteolysis59,60,62,65–71

34.  !IκBα → cytosolic NF-κB Degradation of IκBα releases NF-κB15

35.  Cytosolic NF-κB → nuclear NF-κB Released NF-κB enters the nucleus15

36. � UVC → p38MAPK(P) UVC activates p38MAPK 70

37. � p38MAPK(P) → CK2 Activated p38MAPK activates CK270

38. � !IKK complex(P) → IκBβ Genotoxic stress-triggered phosphorylation of IKK mediates proteolysis of IκBβ60

39. � UVC ⋅ !MDMX ⋅ !MDM2 → p53(P)S15 UVC triggers phosphorylation of p53 at serine 15, MDM2 and MDMX 
ubiquitinylate p53, leading to its proteolysis35,36,38,72

(Continued)
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Table 1 (Continued)

Boolean equations  Explanations and references

40. � !p53(P)S15 → Bcl-3 p53(P)S15 destabilizes Bcl-336

41. � Bcl-3 ⋅ !HDAC1 → Bcl-3/p52/p52 Bcl-3 competes with HDAC1 for binding to the NF-κB p52/p5236

42. � Bcl-3/p52/p52 → Cyclin D1 Bcl-3/p52/p52 binds to DNA and drives the expression of Cyclin D136

43. � UVB ⋅ nuclear NF-κB → Egr-1 UVB activates NF-κB to drive the expression of Egr-1 in several cell lines63,73,74

44. �E gr-1 → Gadd45α Egr-1 drives the expression of Gadd45α in several cell lines63

45. �G add45α → caspase3 Gadd45α activates caspase-363

46. �E gr-1 → Gadd45β Egr-1 drives the expression of Gadd45β in several cell lines63

47. �G add45β → caspase3 Gadd45β activates caspase-363

48. � caspase3 → caspase7 caspase-3 becomes activated along with caspase-763

49. � ATR/ATRIP ⋅ !MDMX ⋅ !MDM2 → p53(P)S15 ATR (which is bound to ATRIP) phosphorylates p53 at serine 1532,75, MDM2 and 
MDMX destabilize p53 (reaction 39).

50. � p53(P)S15 → p21 p53(P)S15 drives the expression of p2176–78

51. � PIDD → PIDD/RAIDD/caspase2 Activated PIDD binds via RAIDD to caspase-2, which becomes activated.8,10,46

52. � ATM(P) → BARD1/BRCA1(P) Activated ATM phosphorylates serines 1387, 1423 and 1524 of BRCA1, which 
requires binding to BARD1 for stability40,79,80

53. � ATM(P) ⋅ !MDMX ⋅ !MDM2 ⋅ BARD1/BRCA1(P) →  
p53(P)S15

Activated ATM phosphoryltes p53 at serine 15, dependent on phosphorylated 
BRCA1.39,40,41 MDM2 and MDMX destabilize p53 (reaction 39).

54. � ATM(P) → ATR/ATRIP Activated ATM recruits ATR/ATRIP to nuclear foci, potentially via the MRN 
complex75,81

55. � DNA DSBs → RPA(P) DNA double-strand breaks are associated with single strand breaks, to where 
RPA is recruited to within nuclear foci; it is unclear whether RPA is indeed 
required for MRN complex assembly57,81

56. � RPA(P) → ATR/ATRIP Activated RPA recruits ATR/ATRIP to DNA75

57. � ATR/ATRIP → Chk1(P) Activated ATR phosphorylates Chk1 at serines 317 and 34581,82

58. � Chk1(P) ⋅ !MDMX ⋅ !MDM2 → p53(P)S20 Activated Chk1 phosphorylates p53 at serine 20.79,83 MDM2 and MDMX destabilize 
p53 (reaction 39).

59. � ATM(P)→ Chk2(P) Activated ATM phosphorylates Chk2 at threonine 6884

60. � ATR/ATRIP → Chk2(P) Activated ATR phosphorylates Chk2 at threonine 68.33,34

61. � !Chk1(P) ⋅ !Chk2(P) → Cdc25A Chk1 and Chk2 phosphorylate Cdc25A at serines 76 and 123, respectively, leading 
to its ubiquitinylation-mediated degradation85,86

62. � Cdc25A → Cdk2 Cdc25A activates Cdk2 by dephosphorylating it at tyrosine residues87

63. � Chk2(P) → Cdc25C(P) Activated Chk2 phosphorylates Cdc25C at serine 21688

64. � Chk2(P) → E2F-1(P) Activated Chk2 stabilizes E2F-1 by phosphorylation at serine 36489

65. � Chk2(P) ⋅ !MDMX ⋅ !MDM2 → p53(P)S20 Activated Chk2 mediates phosphorylation of p53 at serine 20,90 MDM2 and 
MDMX destabilize p53 (reaction 39).

66. � !ATM(P) ⋅ !Chk2(P) → MDMX MDMX becomes phosphorylated by Chk2 at serines 342 and 367 and by 
activated ATM at serine 403, leading to ubiquitinylation-mediated degradation 
of MDMX35,37,43

67. � !MDM2 ⋅ !c-Abl(P) → MDMX The E3 ligase MDM2 polyubiquitinylates MDMX, leading to its degradation,35,37,43 
this works only as long as c-Abl itself is not destabilized (see reactions 68, 69).

68. � ATM(P) → c-Abl(P) Activated ATM phosphorylates c-Abl.91,92

69. � !c-Abl(P) → MDM2 Activated c-Abl mediates phosphorylation of MDM2 at serine 397, leading to its 
ubiquitinylation-mediated proteolysis38

70. � DNA DSBs → DNA-PK DNA double-strand breaks lead to DNA-PK-dependent phosphorylation of Sp193

71. � DNA-PK → Sp1(P) DNA double-strand breaks lead to DNA-PK-dependent phosphorylation of Sp193

72. � !Bcl-3 → HDAC1  In the absence of Bcl-3, HDAC1 binds to p52 dimers36

Notes: An exclamation mark denotes a logical NOT and a product sign (⋅) indicates an AND operation.
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to degradation of MDMX (equation 67), thus MDM2 

stabilizes p53 by exerting an inhibitory effect on MDMX.35,37 

Interestingly, MDM2 is able to ubiquitinylate p53 as well, 

which could also result in p53 degradation (equations 39, 

49, 53, 58, and 65).38 Therefore, in terms of logical interaction 

hypergraphs, MDM2 is an ambivalent factor for p53 and 

Bcl-3/p52/p52.

Apart from ATR, breast cancer type 1 susceptibility 

protein (BRCA1) exerts also an inhibitory effect on the 

formation of the Bcl-3/p52/p52 complex through the ataxia 

telangiectasia mutated (ATM)-mediated phosphoryla-

tion of p53 (serine 15) in a BRCA1-dependent manner 

(equation 53).39–41 Thus, BRCA1 acts as an inhibitor of the 

Bcl-3/p52/p52 complex in a logical sense.

Table 2 The Boolean model species

Species IDs Full names Species IDs Full names

AKT2(P) IL-1

ATM(P) ATM(P)S1981 IR

ATM(P)/NEMO(P) ATM(P)S1981/NEMO(P)S85 IκBα

ATM(P)/NEMO(Ub)/IKKβ ATM(P)S1981/NEMO(Ub)/IKKβ IκBβ

ATR/ATRIP MDM2

BARD1/BRCA1(P) BARD1/BRCA1(P)1387(P)S1423(P)1524 MDMX

Bcl-3 MEK(P) MEK(P) (unspec. phosphoryl. site)

Bcl-3/p52/p52 MRN Mre11/Rad50/Nbs1

Ca2+ MRN(P) Mre11/Rad50/Nbs1(P)S343

c-Abl(P) c-Abl(P) (unspec. phosphoryl. site) NIK(P)

Camptothecin Nuclear ATM(P)/NEMO(Ub) Nuclear ATM(P)S1981/NEMO(Ub)

Caspase3 Nuclear NF-κB

Caspase7 Oxo8-Guanine

Cdc25C(P) Cdc25C(P)S216 p21

Cdc25A p38MAPK(P) (unspec. phosphoryl. site)

Cdk2 p53(P)S15

Chk1(P) Chk1(P)S317(P)S345 p53(P)S20

Chk2(P) Chk2(P)T68 p90(P) (unspec. phosphoryl. site)

Cisplatin PI3K(P)

CK2 PIASy

Cyclin D1 PIDD

Cytosolic ATM(P)/NEMO(Ub) Cytosolic ATM(P)S1981/NEMO(Ub) PIDD/RAIDD/caspase2

Cytosolic NF-κB PIDD/RIP1/NEMO

Daunomycin PIDD/RIP1/NEMO(S) PIDD/RIP1/NEMO(SUMO-1) 
K277(SUMO-1)K309

DNA_DSBs Pyrimidine_dimers

DNA-PK RPA(P) RPA(P) (unspec. phosphoryl. site)

Doxorubicin SN38

E2F-1(P) E2F-1(P)S364 Sp1(P) Sp1(P) (unspec. phosphoryl. site)

Egr-1 Topoisomerasei

ERK(P) ERK(P) (unspec. phosphoryl. site) Topoisomeraseii

Gadd45α UVA

Gadd45β UVB

HDAC1 UVC

IKK complex(P) IKKα/IKKβ/NEMO(P) 
(unspec. phosphoryl. site)

VP16

IKKα(P) IKKα(P)T23   

Abbreviations: P, phosphorylation; S, sumoylation (SUMO-1); Ub, ubiquitinylation.
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Furthermore, our model predicted candidate kinases 

for MDMX, which are crucial for the degradation of 

MDMX. Previous studies have shown that the genotoxic 

stress-induced degradation of MDMX can be mediated not 

only by the wortmannin-sensitive kinase ATM but alterna-

tively also by other wortmannin-sensitive kinases.42,35 Our 

network analysis revealed ATM, Chk2 (equation 66) and 

ATR (equation 60) as genotoxic stress-induced kinases, 

which could phosphorylate MDMX.33–35,37,43 Since Chk2 

itself is not wortmannin-sensitive, we predicted ATR as 

an additional kinase crucial for MDMX phosphorylation-

mediated degradation, whereby Chk2 is activated by ATR 

(equation 60).33,34

Logical model of signal transduction 
induced by genotoxic stress
In clinical practice, many cancers are treated with combined 

radio- and chemotherapy, which have a synergistic effect.44 

Goal of this therapy is to induce apoptosis in treated tumor cells 

to eliminate the tumor. Using the logical model, we simulated 

the induction of the signal transduction in response to 

combined radio- and chemotherapy caused by ionizing 

radiation (equation 1) and VP16 (equation 4). This scenario 

mimics for instance treatment of lung cancer in patients.44

Ionizing radiation and VP16 induce activation of ATM 

(equations 7 to 9) and ATR (equations 54, 56) (Figure 3), 

which subsequently (ATM equation 53 and ATR equation 49) 

phosphorylate p53 at serine 15 leading to the activation of 

the expression of numerous proapoptotic genes.45 Moreover, 

p53 phosphorylated at serine 15 leads to the degradation of 

Bcl-3, a binding partner and transcriptional coactivator of 

the NF-κB subunit p52. Upon degradation of Bcl-3, HDAC1 

binds to the NF-κB subunit p52 leading to repression of the 

antiapoptotic p52 target genes (equations 40, 41, 72).36

Simultaneously, DNA damage by DSBs can induce 

PIDD to form a complex with RIP-associated ICH-1/CED-3 

homologous protein with a death domain (RAIDD) and 

caspase-2 (equation 51), constituting another pathway 

resulting in caspase-2 activation and apoptosis in epithelial 

cells and Jurkat T cells.8,10,46 However, two other reports 

suggest PIDD-independent caspase-2 activation and apop-

tosis following DNA damage in lymphocytes of mice and 

mouse embryo fibroblasts.47,48 Thus, the differences may 

be inherent to the cell types analyzed, as suggested by 

Manzl and colleagues.47 Further, DNA damage-induced 

regulation of the different PIDD isoforms is complex. DSBs 

induce upregulation of the PIDD isoform 3, and in addition 

proteolytic processing of PIDD varies among the isoforms of 

PIDD.8 Nevertheless, PIDD exerts a prominent role in DNA 

damage-induced apoptosis. An important role of PIDD in 

NF-κB activation is undoubtedly.

It is well known that the activation of NF-κB in response 

to radio- and chemotherapy plays a key role in the therapeutic 

resistance by activation of antiapoptotic genes. For this 

reason, it is eligible to inhibit the NF-κB activation and 

enforce the expression of the proapoptotic genes ensuring 

the elimination of tumor cells.18 Therefore, in our in silico 

predictions, we focused on the identification of putative 

target structures suitable for abrogation of expression of 

NF-κB-regulated antiapoptotic genes.

By calculating minimal intervention sets with CNA, 

we identified PIDD as a target structure (Figure 4). Inhibition 

of the binding of PIDD to RIP1 will block activation of 

genotoxic stress-induced NF-κB, and the desired induction 

of apoptosis will be achieved. PIDD exists in several 

isoforms. Isoforms 1 and 3 are involved in activation of 

caspase-2 leading to apoptosis (equation 51), isoform 2 

is exclusively involved in activation of NF-κB.8 Further, 

RIP1 or PIASy represent additional candidates, which are 

crucial for genotoxic stress-induced NF-κB activation. 

Herein, biochemical studies already identified PIDD9 and 

RIP110 as mediators in activation of NF-κB by DNA DSBs. 

Table 3 Proteins of the output layer linked to apoptosis or cell survival 

Network components linked to apoptosis 
and cell survival pathways

  Explanations and references 

NF-κB (includes 52 dimers) In most cases, NF-κB triggers antiapoptotic signaling16

Caspases-3/7 Caspases-3/7 promote apoptosis63

p53(P)S15 p53(P)S15 has proapoptotic functions45

Caspase-2 Caspase 2 promotes apoptosis upon activation in the PIDD/RAIDD/caspase2 complex9,46

E2F-1(P)S364  E2F-1(P)S364 promotes p53-dependent and p53-independent apotosis89,94

Notes: Activation of the proteins listed lead to either apoptotic or cell survival pathways.
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Additionally, we identified the MRN complex and ATM as 

putative target structures to prevent activation of NF-κB. 

However, inhibition of MRN or ATM would also abrogate 

some of the pathways leading to activation of the proapop-

totic proteins p53(P)S15 and E2F-1(P)S364. Therefore, the 

MRN complex and ATM might be less suitable therapeutic 

targets.

Conclusions
We presented a Boolean network model of signal transduction 

induced by genotoxic stress in human epithelial cells with 

a special emphasis on NF-κB activation and apoptosis, 

which reveals the important functional interdependencies 

of protein activities. Recently, two Boolean network studies 

of apoptosis have been published. According to a study 

focusing on apoptosis induced by TNF and cell survival 

pathways induced by growth factors,49 the irreversibility of 

apoptosis mostly relies on positive feedback loops, while the 

stability of the cell survival states depends more on the pres-

ence of external prosurvival signals. Another study focused 

on apoptotic pathways induced by Fas ligand in hepatocytes. 

The authors integrated different apoptosis pathways and 

investigated several crosstalk possibilities. Four stable states 

of the network were identified, two states comprising cell 

survival and two states leading to apoptosis.50 Both reports 

focused on global network properties rather than on putative 

therapeutic applications. To our knowledge, until now, 

no model focusing on NF-κB in genotoxic stress response 

has been published in such extent, in particular, with the 

focus on identification of target structures, which may 

potentiate radio- and chemotherapy. Furthermore, we identi-

fied the putative molecular targets PIDD, RIP1 and PIASy to 

abrogate the activation of NF-κB while leaving the apoptotic 

pathways unaffected, therefore resulting in apoptosis of 

tumor cells.

Overall, the model presented in our study identified 

target structures, which may increase the efficacy of radio- 

and chemotherapy of tumors. Furthermore, our study 

provides for the first time a holistic model for both studying 

and understanding the signaling pathways in response to 

genotoxic stress, which may facilitate the understanding and 

interpretation of the large amount of published experimental 

data, hence indicating new targets for therapeutic strategies 

or drug discovery.
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