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Purpose: Pharmacogenes have an influence on biotransformation pathway and clinical

outcome of primaquine and chloroquine which are often prescribed to treat Plasmodium

vivax infection. Genetic variation may impact enzyme activity and/or transporter function

and thereby contribute to relapse. The aim of the study was to assess allele, genotype

frequencies and the association between pharmacogenes variation and primaquine response

in Thai patients infected with Plasmodium vivax.

Patients and Methods: Fifty-one patients were genotyped for 74 variants in 18 genes by

Sequenom MassARRAY® and Taqman® SNP Real-Time PCR.

Results: SNP frequencies were not significantly different between relapse (n=4) and non-

relapse (n=47) patients. However, the CYP2C19 c.681G>A, the frequency of the A-allele

that defines the non-functional CYP2C19*2 haplotype was significantly higher compared to

the G-allele (OR=5.14, p=0.021). Patients heterozygous for ABCG2 c.421C>A had a higher

odds ratio (OR=8.75, p=0.071) and the frequency of the G-allele of UGT2B7 c.372G>Awas

higher compared to the A-allele (OR=3.75, p=0.081). CYP2C19, ABCG2 and UGT2B7

emerged as potential high priority genes.

Conclusion: Decreased activity of CYP2C19, ABCG2 and UGT2B7 in combination with

CYP2D6 intermediate or poor metabolizer status may expose patients to a higher risk of

Plasmodium vivax relapse. Further investigations are warranted to substantiate these findings.
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Introduction
Primaquine (PQ), an 8-amino-6-methoxyquinoline (8AQ) derivative is the only drug

approved by the United States Federal Drug Administration to treat acute illness and

relapse of Plasmodium vivax (P. vivax) and P. ovale infection caused by hypnozoites that

persist in the hepatocytes of infected patients.1,2 Recently, a number of studies reported

on the metabolism of PQ showing that biotransformation occurs through three main

pathways which are Cytochrome P450 (CYP450) enzymes (CYP2D6, CYP2C19,

CYP3A4, CYP1A2), monoamine oxidases (MAO-A and B) and flavin-containing

monooxygenase-3 (FMO-3).3–7 PQ is a pro-drug primarily metabolized by MAO-A to

PQ aldehyde, which is further oxidized by aldehyde dehydrogenase (ADH) to carbox-

yprimaquine, the major PQ metabolite found in plasma.4,8 Carboxyprimaquine is further

oxidized by FMO to the N-hydroxylated PQ metabolite which can cause hemotoxicity.9

Finally, PQ is metabolized via CYP2D6 to 5-hydroxyprimaquine, 5, 6-orthoquinone, and

other phenolic metabolites; other P450 enzymes are also believed to contribute to PQ
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metabolism.4,5,10 Chloroquine (CQ) is metabolized into

N-desethylchloroquine by CYP2C8, CYP3A4, and CYP2D6

by in vitro study.11

The major challenge of elimination of malaria caused

by P. vivax and P. ovale in endemic areas is relapse of

dormant hypnozoites that survive in the liver of the patient

after primary infection. These hypnozoites can persistent

in the liver for weeks, months or even years following

a primary attack.12,13 Although PQ has been used to treat

P. vivax and P. ovale infections for several decades, the

exact mechanisms of PQ efficacy and toxicity are still not

well understood, neither have the metabolic pathways

been fully elucidated. It has been postulated that human

host genetics may, at least in part, contribute to the failure

of PQ treatment.7 Bennett et al7 first reported a significant

association between CYP2D6 metabolizer phenotype and

relapsing P. vivax infection. Relapsing CYP2D6 poor

(PM) and intermediate metabolizer (IM) patients had

a significant higher plasma concentration of the parent

drug after 24 hrs compared to non-relapsing patients.

These data supported the hypothesis that the CYP2D6-

dependent pathway is crucial for the bioactivation of PQ

to its phenolic metabolites which are the active metabo-

lites responsible for the elimination of dormant hypno-

zoites in the liver. Furthermore, these data suggested that

patients with impaired CYP2D6 activity caused by genetic

variation in the CYP2D6 gene may be at a higher risk of

relapse of P. vivax. However, a previous study by our

group has also found relapsing infections in patients with

normal CYP2D6 metabolism.14 It needs to be noted that

our patients have been treated with a combination of PQ

and CQ (per standard Thai guidelines). Thus, we are

speculating that genetic variation in other genes that con-

tribute to PQ and CQ metabolism may also impact

a patient’s response to P. vivax treatment in Thai patients.

Moreover, in addition to drug-metabolizing enzymes,

transporters have been shown to affect PQ efficacy.15,16

Sortica et al found that SLCO2B1, SLCO1A2 and

SLCO1B1 were associated with the clearance of P. vivax

in patients treated with PQ and CQ.16 The MRP transpor-

ter, for example, can be inhibited by quinoline

derivatives,17 and Hayeshi et al demonstrated inhibitory

effects of several antimalarial drugs to P-glycoprotein

(P-gp) mediated transport and reported that both, PQ and

chloroquine, inhibit P-gp.18

This study aimed to investigate genetic variation in

drug-metabolizing enzymes and drug transporters and

their association with relapse in Thai patients treated

with a PQ/CQ combination regimen.

Materials and Methods
This exploratory investigation included 51 Thai patients

from a previous study.14 The study was approved by the

Internal Ethics Review Committee on Human Research of

the Faculty of Medicine, Ramathibodi Hospital, Mahidol

University, Thailand (MURA 2016/657) and conducted in

accordance with the Declaration of Helsinki. Briefly,

symptomatic P. vivax patients from the Tha Song Yang

malaria clinic, Tak province, Thailand were recruited

from April 2014 to September 2015; all patients gave

written informed consent. Patients were diagnosed with

P. vivax infection and treated with 25 mg base/kg body

weight CQ over 3 days and 0.3 mg/kg PQ daily for 14

days. Finger-prick blood samples were collected before

treatment and at 1 and 2 weeks after enrollment, then

every 2 weeks for 6 months, then every 4 weeks until 9

months.14 Patients for the current study were selected

based on the availability of genomic DNA and clinical

data including recurrent status and date of follow up/

survival data.

Genes Analyzed with MassARRAY and

Real-Time PCR
DNA samples diluted to 10 ng/μL were genotyped using the

SequenomMassARRAY® System (Agena Bioscience™, San

Diego, CA, USA). The panel consisted of pre-designed SNPs

and indels (referred to SNVs therein), and CNV assays that

target the most relevant variants in 11 important pharmaco-

genes. A total of 53 SNVs were interrogated and five assays

were utilized to determine CYP2D6 gene copy number varia-

tion (CNV) (Table 1). The iPLEX® PGx 68 Panel (Agena, San

Diego, CA) included drug transporters (ABCB1, SLCO1B1,

SULT4A1), Phase I enzymes (COMT, CYP1A2, CYP2B6,

CYP2C9,CYP2C19, CYP2D6,CYP3A4, CYP3A5). Thework-

flow consisted of five steps: PCR amplification, primer exten-

sion or fragmentation, dispensed extension product onto

a SpectroCHIP® Array and MassARRAY MALDI-TOF

mass spectrometry. Automated software provided diplotype,

haplotype, and CNV calls in a single combined report. The

overall process was completed in less than 10 hrs.

An additional 21 SNVs of 10 genes including CYP2B6,

CYP3A4, ABCA1, ABCB1, ABCC2, ABCC4, ABCG2,

SLC25A40, SULT1A1, and UGT2B7 were genotyped

with commercially available TaqMan® Genotyping Assays
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(Applied Biosystems™, Carlsbad, CA, USA) following man-

ufacturer’s instructions. Details are provided in Table 1.

Allelic variants were designated according to the

Pharmacogene Variation Consortium (PharmVar) at www.

PharmVar.org.19,20

Activity scores (AS) were assigned as previously

described21 and applied in CPIC guidelines.22–25 To assess

the combined impact of CYP2D6 and CYP2C19 activity, we

assigned a composite AS, which is the sum of the AS assigned

to each gene.

Table 1 List of Genes and SNPs Detected by MassArray® and Taqman® RT-PCR

No. Genes Nucleotide Change SNP ID Alleles Detected

1 CYP1A2 g.-3860G>A, g.-163C>A, g.-729C>T,

g.3533G>A, g.558C>A

rs2069514, rs762551, rs12720461,

rs56107638, rs72547513

*1A,*1C,*1F,*1K,*7,*11

2 CYP2B6 c.983T>C, c.64C>T, c.516G>T, c.785A>G rs28399499, rs8192709, rs3745274,

rs2279343

*2, *4, *6, *16, *18

3 CYP2C9 c.430C>T, c.1075A>C, c.1076T>C,

c.1080C>G, c.818delA, c.449G>A,

c.1003C>T, c.1465C>T, c.269T>C,

c.485C>A

rs1799853, rs1057910, rs56165452,

rs28371686, rs9332131, rs7900194,

rs28371685, rs9332239, rs72558187,

rs72558190

*2, *3, *4, *5, *6, *8, *11,

*12,*13, *15, *18, *25

4 CYP2C19 c.681G>A, c.636G>A, c.1A>G, c.1297C>T,

c.395G>A, g.19294T>A, c.358T>C, g.-

806C>T

rs4244285, rs4986893, rs28399504,

rs56337013, rs72552267, rs72558186,

rs41291556, rs12248560

*2,*3, *4, *5, *6, *7, *8, *17

5 CYP2D6 g.2850C>T, g.4180G>C, g.2549delA,

g.1846G>A, g.1707delT, g.2935A>C,

g.1758G>T, g.2615_2617delAAG, g.100C>T,

g.883G>C, g.124G>A, g.137_138insT,

g.1023C>T, g.4125_4133dupGTGCCCACT,

g.2539_2542delAACT, g.1973_1974insG,

g.3183G>A, g.2988G>A, g.4155C>T

rs16947, rs1135840, rs35742686,

rs3892097, rs5030655, rs5030867,

rs5030865, rs5030656, rs1065852,

rs201377835, rs5030862, rs774671100,

rs28371706, hCV32407220, rs72549353,

rs72549354, rs59421388, rs28371725,

rs28371735

*1,*2,*3,*4,*6,*7,*8,*9,*10,

*11,*12,*14A,*14B,*15,*17,

*18,*19,*20,*29,*36,*41,*69

and *5 del

6 CYP3A4 c.664T>C, c.566 T>C, g.15389C>T, c.-

392A>G, c.878T>C

rs55785340, rs4987161, rs35599367,

rs2740574, rs28371759

*1B, *2, *17, *18, *22

7 CYP3A5 g.27289C>A, g.6986A>G,

g.27131_27132insT

rs28365083, rs776746, rs41303343 *1A,*2,*3,*7, *10

8 ABCB1 c.1236C>T, c.2677G>T/A, c.3435C>T rs1128503, rs2032582, rs1045642 *1, *2, *6

9 ABCA1 c.2649A>G, c.4760A>G rs2066714, rs2230808 n/a

10 ABCC2 c.-24C>T, c.3972C>T, g.68231A>G rs717620, rs3740066, rs3740065 *1A, *1C

11 ABCC4 c.912C>A, c.2269G>A rs2274407, rs3765534 n/a

12 ABCG2 c.421C>A rs2231142 n/a

13 SLCO1B1 g.37041T>C rs4149056 *5

14 SULT1A1 c.638G>A rs9282861 n/a

15 SULT4A1 *1113A>G rs763120 n/a

16 SLC25A40 g.87868008C>G rs10239908 n/a

17 COMT c.322G>A rs4680 n/a

18 UGT2B7 c.-161C>T, c.211G>T, c.372A>G, c.802C>T rs7668258, rs12233719, rs28365063,

hCV32449742

*1d, *2a, *3

Notes: Allele definitions are according to the Pharmacogene Variation Consortium at www.PharmVar.org. SNV coordinates are provided either on the gDNA or cDNA

level based on which numbering is more commonly used in the literature. n/a, not available, ie SNP is not part of a star (*) allele definition. The reference SNP ID in bold are

in the MassArray iPLEX PGx68 panel; the CYP2D6 variants were defined as M33388 reference sequence.
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Statistical Analysis
Deviation from Hardy-Weinberg expectations was

assessed using an exact and chi-square test. SNV and

genotype frequencies were determined by direct count-

ing. Linkage disequilibrium measures (r2) and haplotype

analysis were performed using Haploview version 4.2.26

Comparisons of SNV and genotype frequencies between

relapsing and non-relapsing patients were performed

using the χ2 test, odds ratio and 95% confidence inter-

vals were calculated as measurements of the strength of

association. The probability of significant associations

was set at p<0.05. Relapse-free survival (RFS) was

estimated using the log-rank test and Kaplan–Meier

curves. The Cox proportional hazards model was con-

ducted to assess the impact of candidate SNPs on

relapse of P. vivax. All statistical analyses were per-

formed using STATA software version 14 (StataCorp

LP, TX, USA).

Results
Demographic Data
The average age of the 51 patients was 26.37 (min–max;

7–71) years with 32 (63%) males and 19 (37%) females.

There were four recurrent P. vivax infections, which occurred

between 8 and 32-weeks after the initial treatment, the

average time of follow-up was 7.7±1.7 months. The clinical

status of 45 patients was recorded for at least 6 months.

Association of Pharmacogene Variation

and Relapse
The call rate for SNV genotyping was 100% for both testing

platforms. Table 1 summarizes the genes and SNVs tested by

MassArray® and Taqman RT-PCR®. SNV and genotype fre-

quencies in the relapsing and non-relapsing patients are pro-

vided in Tables 2 and 3, respectively. All SNVswere in Hardy-

Weinberg equilibrium except CYP2D6 g.4180G>C and

Table 2 SNP Frequencies of Drug Metabolizing Genes Between Relapse and Non-Relapse Groups

Gene Genotype N (%)

(N=51)

Association Test OR (95% CI) p value

Relapse Non-Relapse

(N=4) (N=47)

CYP2C19

c.681G>A G/G 28 (54.9) 0 28 – 0.052*

rs4244285 G/A 18 (35.3) 3 15 6.40 (0.61–66.76) 0.120

A/A 5 (9.8) 1 4 3.58 (0.30–42.97) 0.347

G/A+A/A 23 (45.1) 4 19 7.25 (0.79–66.84) 0.082

G 74 (72.6) 3 71 –

A 28 (27.5) 5 23 5.14 (0.90–35.01) 0.021**

UGT2B7

c.372A>G A/A 30 (58.8) 1 29 – 0.177*

rs28365063 A/G 17 (33.3) 2 15 2.13 (0.27–16.63) 0.593

G/G 4 (7.8) 1 3 4.89 (0.38–62.46) 0.286

A/G+G/G 21 (41.2) 3 18 4.83 (0.47–50.09) 0.293

A 77 (75.5) 4 73 –

G 25 (24.5) 4 21 3.48 (0.59–20.08) 0.081

ABCG2

c.421C>A C/C 34 (66.7) 1 33 – 0.152*

rs2231142 C/A 15 (29.4) 3 12 8.75 (0.83–92.32) 0.071

A/A 2 (3.9) 0 2 3.07 (0.27–35.33) 0.379

C/A+A/A 18 (33.3) 3 14 7.07 (0.68–73.99) 0.102

C 83 (81.4) 5 78 –

A 19 (18.6) 3 16 2.93 (0.41–16.65) 0.153

Notes: *Overall p value; **significance (p<0.05); ref, reference was compared to others in the sub-analysis.

Abbreviations: N, number; OR, odds ratio; 95% CI, 95% confidence interval.
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ABCA1 c.4760A>G (p<0.05) which were excluded from sub-

sequent analyses. Nine SNVs in nine genes had minor allele

frequency (MAF) of less than 5% (Table S1). The frequencies

of the most common genotypes are shown in Table 3 which

were CYP1A2*1A/*1F (31.4%), CYP2B6*1/*6 (41.2%),

CYP2C9*1/*3 (5.9%), CYP2C19*1/*2 (33.3%), CYP2D6*2/

*10 (21.6%),CYP3A4*1/*1B (3.9%),CYP3A5*3/*3 (54.9%),

and SLCO1B1*1/*5 (7.8%). In addition, frequencies for 0, 1,

2, 3 and 4 CYP2D6 gene copies were 1.96% (n=1), 9.80%

(n=5), 45.10% (n=23), 41.18% (n=21), and 1.96% (n=1),

respectively. The CYP2D6 CNV status and genotype of the

four relapsed patients were three copies (two patients with

a CYP2D6*2/*10 and 1 patient with a CYP2D6*10/*10 gen-

otype) and one copy (one patient genotyped as CYP2D6*1/

*5). None of these genotypes, or any other genotypes, revealed

statistically significant association between relapse and non-

relapse (Tables 3 and S2).

The genotype frequencies of the majority of drug-

metabolizing enzyme and transporter genes of the relapsing

patients were similar with those previously described for

Thai. Frequencies for the candidate genes including

CYP2D6, CYP2C9, CYP2C19, CYP3A4, CYP1A2 were

not significantly different among non-relapsing and relap-

sing patients (p>0.05). As shown in Table 3 there was

a trend, however, for a significant association between

CYP2C19 c.681G>A, and relapse (G/A+A/A genotypes vs

G/G genotype; OR=7.25, 95% CI; 0.79–66.84, p=0.082).

Furthermore, the c.681A SNV defining the non-functional

CYP2C19*2 allele was significantly more common than the

c.681G allele in relapse versus non-relapse patients

Table 3 Genotype Frequencies of Drug Metabolizing Genes

Between Relapse and Non-Relapse Groups

Gene Genotype N (%) Association Test p value

Relapse Non-

Relapse

(N=51) (N=4) (N=47)

CYP1A2 *1A/*1A 2 (3.9) 0 2 0.608*

*1A/*1F 16 (31.4) 1 15

*1A/*1L or

*1C/*1F

6 (11.8) 1 5

*1F/*1F 8 (15.7) 0 8

*1F/*1L 14 (27.5) 1 13

*1L/*1L 5 (9.8) 1 4

*1A/*1A vs

others

4 45 0.379

CYP2B6 *1/*1 15 (29.4) 1 14 0.180*

*1/*2 1 (2.0) 0 1

*1/*4 2 (3.9) 1 1

*1/*6 21 (41.2) 1 20

*2/*6 1 (2.0) 0 1

*4/*6 3 (5.9) 1 2

*6/*6 8 (15.7) 0 8

CYP2C9 *1/*1 47 (92.2) 4 43 1.000*

*1/*3 3 (5.9) 0 3

*3/*3 1 (2.0) 0 1

CYP2C19 *1/*1 23 (45.1) 0 23 0.211*

*1/*2 17 (33.3) 3 14

*1/*3 4 (7.8) 0 4

*1/*5 1 (2.0) 0 1

*2/*2 5 (9.8) 1 4

*2/*3 1 (2.0) 0 1

*1/*2+*2/

*2 vs

others

22 (43.1) 4 18 0.075*

CYP2D6 *1/*1 5 (9.8) 0 5 0.937*

*1/*2 4 (7.8) 0 4

*1/*5 4 (7.8) 1 3

*1/*10 4 (7.8) 0 4

*1/*41 1 (2.0) 0 1

*2/*2 6 (11.8) 0 6

*2/*10 11 (21.6) 2 9

*2/*41 3 (5.9) 0 3

*4/*10 1 (2.0) 0 1

*5/*5 1 (2.0) 0 1

*5/*10 1 (2.0) 0 1

*10/*10 8 (15.7) 1 7

*10/*41 2 (3.9) 0 2

CYP3A4 *1/*1 49 (96.1) 4 45 0.379*

*1/*1B 2 (3.9) 0 2

(Continued)

Table 3 (Continued).

Gene Genotype N (%) Association Test p value

Relapse Non-

Relapse

(N=51) (N=4) (N=47)

CYP3A5 *1A/*1A 4 (7.8) 1 3 0.492*

*1A/*3 19 (37.3) 1 18

*3/*3 28 (54.9) 2 26

*1A/*3+*3/

*3

47 (92.2) 3 44 0.286

SLCO1B1 *1/*1 47 (92.2) 3 44 0.286*

*1/*5 4 (7.8) 1 3

Note: *Overall p-value.
Abbreviations: OR, odds ratio; 95% CI, 95% confidence interval.
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(OR=5.14, 95% CI; 0.90–35.01, p=0.021). Moreover, the

ABCG2 c.421C>A transporter SNV had a higher odds ratio,

although this did not reach statistical significance

(OR=8.75, 95% CI; 0.83–92.32, p=0.071). Lastly, we also

explored the relationship between a composite AS for

CYP2D6 + CYP2C19 and PQ response. A composite AS,

however, was not significantly different (p=0.09)

(Table S3).

Survival Analysis
RFS was calculated from enrollment date to the time of

P. vivax relapse. The effect of genetic variation in pharmaco-

genes on RFS was investigated by grouping patients by SNVs

and genotype. Kaplan–Meier analysis revealed no statistically

significant differences in RFS rates for most of the variable

factors. However, a trend toward statistical significance of

RFS rates was observed for patients carrying the CYP2C19*2

allele (c.681G>A) (Log-rank test; p=0.077, Figure 1A), and

ABCG2 c.421C>A (Log-rank test; p=0.099, Figure 1B).

Also, as shown in Figure 1C and D, a sub-analysis of

CYP2D6 copy number variation revealed significantly differ-

ent RFS rates between 1 and 2 gene copies (p=0.007) and

between 2 and 3 gene copies (p=0.065), respectively. There

was no statistical difference in RFS rates among groups for

any of the other variable factors (Table S4).

Relapse-Free Survival Rate by Univariate

and Multivariate Analysis
Cox proportional hazards analysis was used for the deter-

mination of univariate and multivariate association analy-

sis of the SNVs with RFS. In multivariate analyses, there

was no significant difference in RFS rates between SNVs,

genotype or other variables (Table 4). However, a sub-

analysis showed that CYP1A2 g.-163C>A, CYP2C19*2

(c.681G>A), CYP2D6 copy number, ABCA1 c.2649A>G,

ABCB1 c.1236C>T, ABCC2 g.68231A>G, ABCG2 c.42

1C>A, and SLCO1B1 g.37041T>C had statistically

Log rank test; P = 0.077 Log rank test; P = 0.099 

Log rank test; P = 0.007 Log rank test; P = 0.065 

A B

DC

Figure 1 Kaplan–Meier estimates of relapse-free survival according to (A) CYP2C19 c.681G>A genotype, (B) ABCG2 c.421C>A genotype, (C) CYP2D6 copy number

variation (CNV) 1 vs 2 gene copies, (D) CYP2D6 CNV 2 vs 3 gene copies.
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Table 4 Univariate and Multivariate Analysis of the Effects of Different Variables on P. vivax Relapse Outcome

Variable Factors Univariate Analysis Multivariate Analysis

HR (95% CI) p value HR (95% CI) p value

CYP1A2 genotype

*1A/*1A Ref. – –

*1A/*1F 1.66e+09 – – –

*1A/*1L or *1C/*1F 4.15e+09 (2.60e+08 – 6.64e+10) <0.001 – –

*1F/*1F – 1.000 – –

*1F/*1L 1.72+09 (1.08 e+08 – 2.75e+10) <0.001 – –

*1L/*1L 4.54+09 (2.84e+08 – 7.28e+10) <0.001 – –

CYP1A2 g.-163C>A 1.46 (0.08–26.25) 0.799*

C/C Ref.

C/A 2.30e+08 - – –

A/A 1.68e+08 (2.38e+07-1.19e+09) <0.001 13.85 1.000

CYP2C19 genotype

*1/*1 ref. – –

*1/*2 1.69e+10 (1.76e+09-1.63e+11) <0.001 – –

*1/*3 1.12e-07 1.000 – –

*1/*5 1.12e-07 1.000 – –

*2/*2 1.95e+10 - – –

*2/*3 1.12e-07 1.000 – –

CYP2C19 c.681G>A 18.64 (0.79–439.28) 0.070*

G/G Ref.

G/A 1.52e+10 (1.58e+09-1.46e+11) <0.001 4.24e+37 0.998

A/A - - – –

G/G vs A/A 8.08e+17 1.000 – –

CYP2D6 genotype 1.31 (0.60–2.89) 0.505*

*1/*1 Ref. – –

*1/*10 8.32e-07 1.000 – –

*1/*2 8.32e-07 1.000 – –

*1/*41 8.32e-07 1.000 – –

*1/*5 4.78e+10 - – –

*10/*10 1.26e+10 (6.95e+08-2.29e+11) <0.001 1.94e-19 –

*10/*4 8.32e-07 1.000 – –

*10/*41 8.32e-07 1.000 – –

*10/*5 8.32e-07 1.000 – –

*2/*10 1.74e+10 (1.37e+09-2.22e+11) <0.001 8.97e-38 –

*2/*2 7.85e-07 1.000 – –

*2/*41 8.32e-07 1.000 – –

*5/*5 8.32e-07 1.000 – –

CYP2D6 CNV 1.36 (0.32–5.705) 0.678 –

CNV: 2 copy vs 1 copy 3.55e-18 -

CNV: 2 copy vs 3 copy 2.99e+15 -

ABCB1 c.1236C>T 0.150 (0.01–3.233) 0.225*

C/C Ref. –

C/T 5.10e+08 (7.16e+07-3.64e+09) <0.001 0.002 1.000

T/T 1.60e+08 – -

(Continued)
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different RFS rates (p<0.05). However, there were no

differences in RFS rates in the multivariate analysis.

Discussion
This study investigated the frequencies of sequence varia-

tions in eleven drug-metabolizing enzymes contributing to

phase I (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6,

CYP3A4 and CYP3A5) and Phase II (COMT, SULT1A1,

SULT1A4 and UGT2B7) metabolism of PQ and CQ as well

as seven drug transporter genes (ABCB1, ABCA1, ABCC2,

ABCC4, ABCG2, SLCO1B1 and SLC25A40) in 51 Thai

patients infected with P. vivax. Although the influence of

drug-metabolizing enzymes and drug transporters on the

efficacy of PQ treatment on P. vivax infection has been

studied,7,14,16,27 their contribution to relapse is still unclear.

In vitro studies have shown that several phase I and II

enzymes strongly relate with PQ metabolisms including

CYP450 1A2, 2C19, 2C9, 2D6, 3A4, FMO-1, 3, 5 and

MAO-A and B4–6 and CYP2C8, CYP3A4, and CYP2D6

with CQ metabolism.11 Therefore, genetic variation in these

enzymes likely impacts the pharmacokinetics of both drugs

to various degrees. However, to the best of our knowledge,

no studies have assessed the association of pharmacogene

variation and relapse other than CYP2D6 after treatment with

PQ or a combination of PQ and CQ. It has been reported that

CYP2D6 metabolizer status influences PQ efficacy.7,14

Bennette et al7 first described that two study participants

(6%), one PM with a CYP2D6*5/*6 genotype and one IM

with a CYP2D6*4/*41 genotype signifying considerable

decreased activity, had multiple relapses of P. vivax while

participants with genotypes predicting normal metabolizer

(NM) status were not found to relapse. Furthermore, relapse

patients had significantly higher amounts of the parent drug

PQ AUCinf (p<0.001) compared with non-relapse patients.

These data support their hypothesis that the highly poly-

morphic CYP2D6 gene contributed to the failure to bioacti-

vate PQ to its active phenol metabolites that are responsible

for killing hypnozoites. The clinical study by Nelwan et al28

demonstrated high efficacy of PQ against P. vivax relapse in

Indonesia although relatively high relapse rates of 14% were

observed among treatment groups while 75% of the patients

in the control arm relapsed. Unfortunately, CYP2D6 geno-

typing was not performed in this study. Subsequent studies

by Baird et al29 reported that decreased CYP2D6 activity was

associated with increased risk of therapeutic failure. These

authors reported that patients with CYP2D6 activity scores of

1.0 or less had a higher risk of relapse compared to patients

with scores >1.0 (OR=9.4, P=0.001). Another study con-

ducted by Spring et al30 confirmed that subjects with

CYP2D6 IM or PM phenotypes have reduced PQ metabo-

lism compared to those with an NM phenotype. In contrast,

Chen et al31 found that CYP2D6 phenotype or activity scores

Table 4 (Continued).

Variable Factors Univariate Analysis Multivariate Analysis

HR (95% CI) p value HR (95% CI) p value

ABCA1 c.2649A>G 4.30 (0.18–101.12) 0.365*

A/A Ref. –

A/G 1.64e+09 (1.71e+08-1.58e+10) <0.001 1.28e+08 0.999

G/G 1.46e+09 - – -

ABCC2 g.68231A>G 30.90 (0.13–7451.06) 0.220*

A/A Ref. –

A/G 4.61 (0.48–44.30) 0.186 1.07e+32 0.997

ABCG2 c.421C>A 9.28 (0.15–557.93) 0.287*

C/C Ref. –

C/A 7.57 (0.79–72.86) 0.080 1.08e+15 –

A/A 8.69e-16 1.000 - –

C/C vs A/A 2.40e-08 1.000 –

SLCO1B1 g.37041T>C 120.68 (0.14–102070.4) 0.163*

T/T ref. – –

T/C 5.03 (0.52–48.80) 0.163 2.94e+46 –

Notes: Reference was compared to others in the sub-analysis; *overall p-value; vs, versus.
Abbreviations: HR, hazards ratio; 95% CI, 95% confidence interval; ref, reference.
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were not significantly different between their relapse and

non-relapse groups.

One explanation of why the present study did not find

a relationship between CYP2D6 genotype or metabolizer

status and PQ response may be due to the co-

administration of CQ. Based on in-vitro studies, CQ is

metabolized into N-desethylchloroquine by CYP2C8,

CYP3A4, and CYP2D6. CYP2C8 and CYP3A4 constitute

low-affinity, high-capacity systems while CYP2D6 may

play a more important role at low CQ concentrations

contributing to low-affinity, high-capacity systems11 of

metabolism explaining why CQ may cause modest inhibi-

tion of CYP2D6 activity in humans when co-administered

with debrisoquine.32 Thus, it cannot be excluded that CQ

inhibits CYP2D6 activity to a certain extent and thereby

reduce the enzyme’s capacity to efficiently bioactivate PQ.

Furthermore, our study is limited by the small number of

relapsed patients decreasing statistical power; small num-

ber size may also be a source of misclassification bias.

Therefore, the findings of this study need to be viewed as

preliminary. Although the patients were extensively geno-

typed for CYP2D6 and CNVs, we cannot exclude the

possibility that the relapsing patients possess additional

rare, or novel sequence variants and/or structural variants

that decrease or obliterate CYP2D6 activity and drug

response.33 We also like to stress that a lack of hypno-

zoites in the controls at the time of treatment initiation

with PQ may have misclassified these patients as treatment

successes, in fact over 22% of the relapse controls in

clinical trial treated without PQ did not relapse.28,34

Thus, the recruitment of controls lacking hypnozoites

would bias the statistical analysis for patients with

decreased or no CYP2D6 activity. In addition, yet another

explanation needs to be entertained, ie hypnozoite resis-

tance to PQ,35,36 which may occur especially in some

relapsing patients with normal and ultrarapid CYP2D6

activity.

Finally, there is sparse information, regarding the level

of activity towards PQ that is conferred by alleles classified

as decreased function alleles. For example, the CYP2D6*10

allele, which is the most common decreased function allele

in Asians and has a frequency of 34.31% in our population,

appears to have considerably less activity towards tamox-

ifen compared to the probe drug dextromethorphan. This

observation triggered specific recommendations in the

tamoxifen/CYP2D6 drug/gene pair guideline recently pub-

lished by the Clinical Pharmacogenetic Implementation

Consortium (CPIC) for patients carrying the CYP2D6*10

allele.37 It is not inconceivable that CYP2D6*10 and other

decreased function alleles metabolize PQ and/or CQ at rates

that are lower than expected from their current function

classifications (see variation and functionality tables avail-

able at https://www.pharmgkb.org/page/pgxGeneRef) and

put carriers at risk of relapse due to the failure of producing

sufficiently high levels of exposure to the metabolites that

are responsible for eradicating hypnozoites.

Regarding CYP2C19, the non-functional CYP2C19*2

allele (c.681G>A; rs4244285) was found at a statistically sig-

nificantly higher allele frequency among the relapse patients

(62.5%, 5/8) compared with 24.5% (23/94) among the non-

relapse patients. The minor allele frequency was 26% in our

study cohort making this a rather common non-functional

allele in the Thai population.38–40 Although Pybus et al4

describe CYP2C19 as a minor contributing pathway for PQ

metabolisms into its active metabolites, its contribution may

assume a more prominent role in patients with compromised

CYP2D6 activity. This is exemplified by one of our relapsing

patients who was genotyped as CYP2D6*2/*10 and

CYP2C19*2/*2. A composite activity score taking CYP2D6

and CYP2C19 into account may therefore be more informa-

tive to predict the risk of P. vivax relapse than either of these

genes alone as suggested by our data (Table S3). The use of

a combined metabolism index has been proposed previously

by Villagra et al41 concluding that a

combinatory approach represents an improvement over the

current gene-by-gene reporting by providing greater scope

while still allowing for the resolution of a single-gene

index when needed, especially when drugs are metabo-

lized or activated by multiple pathways

which is clearly the case for the treatment with a combined

PQ/CQ regimen.

This study is the first to examine the impact of variants

in the ABCG2 efflux drug transporter on PQ response. This

gene, also known as the Breast Cancer Resistance Protein

(BRCP) is expressed in intestine, liver, kidney, placenta,

and brain capillaries and plays an important role in the

absorption, distribution, and removal of drugs across the

cell membrane.42 This transporter is believed to play

a protective role by blocking drug absorption at the apical

membrane of the intestine and the blood–brain barrier

among other sites. At the apical membranes of the liver

and kidney, it facilitates efflux of xenobiotics lowering

intracellular drug levels.43,44 Interestingly, although not

significant, more subjects were heterozygous for ABCG2

c.421C/A (rs2231142) than homozygous for the reference
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allele (C/C; p=0.071). The mechanism of this variant,

however, is unknown. ABCB1 is a member of the super-

family of ATP-binding cassette (ABC) transporters like

ABCG2. Sortica et al16 reported that ABCB1 (MDR1,

P-gp) T/nonG/T haplotype carriers (3435C>T, 2677G>A/

T and 1236C>T) were associated with lower parasitemia

clearance rates over treatment time in a model adjusted for

other clinical factors; however, there was no longer statis-

tically significant difference after false discovery rate ana-

lysis. The absence of an association between relapse and

ABCG2 in this study may be due to the small number of

relapse patients and/or inhibitory effects of CQ that seems

to be an inhibitor to some ABC transporters.18 Two pre-

vious studies suggested that MAO-A/B enzyme activity

relates with PQ metabolism,4,6 however, we did not test the

relationships between MAO variants and RFS rates.

In addition to the study limitations mentioned above, we

acknowledge that adherence was assessed retrospectively

by reviewing a data registry. Although a risk of P. vivax

reinfection could not be ruled out, the risk in our region is

less than 5% during the 42-day period, assuming that most

P. vivax infection recurrences were indeed relapses,45,46 and

parasite genotyping for two polymorphic markers suggested

a high probability of late relapsing infections in these

volunteers.14 Nonetheless, further work is warranted to

assess the impact of CYP2D6, CYP2C19, ABCG2 and

potentially other drug-metabolizing enzymes and transpor-

ters on relapse in larger patient populations.

Conclusion
Although we did not find an association between CYP2D6

genotype and relapse, sequence variations in other phar-

macogenes emerged as additional candidate genes that

may contribute to variability in PQ/CQ drug response.

These findings warrant further investigation, however, in

larger study populations.
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