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Abstract: Asbestos is a naturally occurring mineral consisting of extremely fine fibres that can

become trapped in the lungs after inhalation. Occupational and environmental exposures to

asbestos are linked to development of lung cancer and malignant mesothelioma, a cancer of the

lining surrounding the lung. This review discusses the factors that are making asbestos-induced

lung cancer a continuing problem, including the extensive historic use of asbestos and decades

long latency between exposure and disease development. Genomic mutations of DNA nucleo-

tides and gene rearrangements driving lung cancer are well-studied, with biomarkers and targeted

therapies already in clinical use for some of these mutations. The genes involved in these

mutation biomarkers and targeted therapies are also involved in epigenetic mechanisms and

are discussed in this review as it is hoped that identification of epigenetic aberrations in these

genes will enable the same gene biomarkers and targeted therapies to be used. Currently,

understanding of how asbestos fibres trapped in the lungs leads to epigenetic changes and lung

cancer is incomplete. It has been shown that oxidoreduction reactions on fibre surfaces generate

reactive oxygen species (ROS) which in turn damage DNA, leading to genetic and epigenetic

alterations that reduce the activity of tumour suppressor genes. Epigenetic DNA methylation

changes associated with lung cancer are summarised in this review, and some of these changes

will be due to asbestos exposure. So far, little research has been carried out to separate the

asbestos driven epigenetic changes from those due to non-asbestos causes of lung cancer.

Asbestos-associated lung cancers exhibit less methylation variability than lung cancers in

general, and in a large proportion of samples variability has been found to be restricted to

promoter regions. Epigenetic aberrations in cancer are proving to be promising biomarkers for

diagnosing cancers. It is hoped that further understanding of epigenetic changes in lung cancer

can result in useful asbestos-associated lung cancer biomarkers to guide treatment. Research is

ongoing into the detection of lung cancer epigenetic alterations using non-invasive samples of

blood and sputum. These efforts hold the promise of non-invasive cancer diagnosis in the future.

Efforts to reverse epigenetic aberrations in lung cancer by epigenetic therapies are ongoing but

have not yet yielded success.

Keywords: lung cancer, epigenetic biomarkers, microRNA, DNA methylation,

immunohistochemistry, IHC, fluorescence in situ hybridization, FISH

Asbestos And Lung Cancer
Asbestos is a group of naturally occurring fibrous silicate minerals with multiple

commercial applications. Asbestos material is resistant to heat and corrosion. Its

natural fibrous nature enables it to be woven into cloth, incorporated into cement

materials, ceiling tiles, break and clutch linings, flooring, resins, polymers, and filter

papers. In the 19th and 20th centuries, asbestos was used in a large number of

industries with minimal control of exposure. From 1950 to 1985, it was extensively
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used in construction and ship building for insulation and

fire protection, and as material for anti-friction and filter-

ing. It is estimated that one in every three houses in

Australia built before 1990 contains asbestos,1 putting

Australians at risk of exposure.

Lung cancers are aggressive respiratory tumours with

poor survival.2 While tobacco smoking remains the princi-

pal cause for lung cancers, exposure to asbestos is the most

important occupational risk factor for these cancers.3

Asbestos exposure causes 6 to 23% of all male lung cancers

(estimates depend on the exposure and population),4,5 and

>107,000 deaths annually in Europe from asbestos-related

diseases. In 2018, there were 12,741 reported lung cancer

deaths in Australia, which is equivalent to 500 deaths for

every one million people, placing lung cancer in the top five

deadly cancers.6 All forms of asbestos are carcinogenic to

humans.4 It is estimated that asbestos exposure causes six

times more lung cancer than malignant mesothelioma,7 and

mesothelioma deaths are estimated to be 38,400 per year

worldwide.8 Research has linked asbestos exposures to

development of lung cancer and malignant mesothelioma,9

and has shown the potential for asbestos to induce forma-

tion of reactive oxygen species (ROS) that cause damage of

DNA and alterations that reduce the activity of tumour

suppressor genes.10 Given that the latency of cancer devel-

opment may be as long as 30–40 years after asbestos

exposure and the fact that demolition of asbestos-containing

buildings is common, asbestos exposure will continue to

inflict substantial disease morbidity and mortality in future

years.4,11 Although the link between asbestos and lung

cancer risk is well-established, asbestos-associated neo-

plasms have proven difficult to diagnose early and treat

successfully. As with other cancers, most asbestos-related

lung cancers are diagnosed at late stages of disease, under-

scoring the need for better understanding of the molecular

mechanisms of these diseases, and for identification of

critical gene targets for new diagnostic biomarkers and

therapies.

When a person inhales airborne asbestos particles, the

asbestos fibres can become lodged in their lung tissue.12,13

Exposure to asbestos puts people at risk of developing

cancers in the lungs (lung cancer),12–15 pleural and perito-

neal lining (pleural and peritoneal mesothelioma),12,14–16

larynx,17 and ovaries.18 All four major histological types

of lung cancers (squamous, adeno, large-cell, and small

cell) can be caused by asbestos exposure.14 Almost all

mesotheliomas are caused by asbestos exposure.16 Over

many years, asbestos fibres can cause genetic, epigenetic,

and cellular damage, causing lung cells to become malig-

nant. For these cancers, there is a long latency period

between exposure and development of symptoms. Lung

cancer caused by asbestos is different from pleural malig-

nant mesothelioma, with the former developing inside the

lung and the latter in the outer lining of the lung.

Biomarkers Used In Lung Cancers
To Choose Treatment (Table 1)
The identification of genetic alterations in lung cancers

allows clinicians to select optimal treatments tailored to

an individual’s pathology. Replacing the generalised

approach, the use of agents targeting specific driver gene

mutations or overexpression has served to increase thera-

peutic effect and overall survival, often with a more toler-

able side effect profile than traditional chemotherapy.

Genes frequently mutated in lung cancer and thus used as

biomarkers are summarised in Table 1. Amongst these bio-

markers, alterations in EGFR, ALK, ROS1 and BRAF genes

are currently the most relevant in clinical practice with clini-

cally effective specific targeted treatments available.19

EGFR mutations for example, present in approximately

15% of patients with adenocarcinoma in Western countries

and over 50% in some Asian populations,20 have been man-

aged with first generation EGFR tyrosine kinase inhibitors

(TKIs) (e.g. gefinitib or erlotinib) with demonstrable super-

iority over systemic first line chemotherapy.21 These agents

traditionally proved ineffective in tumours with T790M

EGFR mutations, though third generation agents (e.g. osi-

mertinib) have proven capable of not only overcoming the

development of this resistance mutation, but offer improved

progression free survival over first generation agents in treat-

ment naïve EGFR mutation positive populations, with or

without a T790M mutation.

Additional driver mutations are currently under inves-

tigation with preliminary evidence of treatment efficacy

when targeted therapies are utilised, including HER2

mutations, MET14 mutation or amplification, and RET

rearrangements, whilst RAS and PIK3CA mutations may

confer worse prognosis and response to other therapies

(e.g. EGFR TKIs in EGFR-mutant non-small cell lung

cancer (NSCLC)).

Table 2 summaries other relevant treatment options

indicated by biomarker alterations. Most of these biomar-

kers are nucleotide mutations and gene rearrangements

rather than epigenetic alterations. It is hoped that future

characterisation of epigenetic alterations will increase the
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number of targetable individual cancers for which

a potentially beneficial treatment can be identified.

Asbestos-Induced Epigenetic
Changes (Figure 1)
How asbestos induces epigenetic changes is not fully under-

stood. Several studies have shown both clastogenic and cyto-

toxic responses of cells to asbestos fibres.32,33 Phagocytosis of

fibres by macrophages and oxidoreduction reactions on fibre

surfaces are known to generate genotoxic ROS that result in

DNA damage and oxidative stress, leading to genetic altera-

tions in the cells.34–36 When asbestos interacts with human

cells, asbestos silicates attract and bind cations, and in the

lungs, asbestos fibres will both retain the ions on the fibre

surface and leach them into the cellular milieu.37 These pro-

cesses can generate reactive oxygen species and free radicals

that initiate the processes of cellular and DNA damage and

genotoxicity.38,39 The high iron content of some asbestos

fibres, as well as the propensity for asbestos to adsorb iron

in vivo, have led to the suggestion that iron-induced Fenton

reactions also contribute to increased ROS, inflammation, and

carcinogenesis.40 Chrysotile and crocidolite types of asbestos

were shown to induce oxidative stress and induce local inflam-

matory mediators (cytokines and growth factors), leading to

a reactivemicroenvironment of inflammation and proliferation

of cells.41,42 Exposure of cells to asbestos induces extensive

alterations in expression of genes involved in integrin-

mediated signalling, DNA damage repair, and cell cycle reg-

ulation pathways.43,44 The chronic inflammation caused by

exposure of serosal surfaces to asbestos fibres is likely to

represent a central factor in the carcinogenesis and is likely

to be mediated through epigenetic changes.45

Many studies have investigated microRNAs associated

with asbestos induced epigenetic alteration in mesothelioma

(a highly specific cancer induced by asbestos exposure).46–48

However, there has been only limited exploration in asbes-

tos-related lung cancers, including adenocarcinoma, adenos-

quamous carcinoma, small cell lung cancer and large cell

lung cancer.49 Although these demonstrated effects show the

potential of asbestos to induce epigenetic alterations, it is

nonetheless unclear how these factors contribute to cell toxi-

city and the transformation to a malignant state.

Epigenetic Biomarkers In Cancer
DNA methylation is a fundamental epigenetic mechanism for

regulating gene expression. Dysregulation of epigenetic tran-

scriptional control, particularly aberrant promoter DNAT
ab
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methylation and histone modifications, is a fundamental fea-

ture of human malignancies.10 Many cancers present with

a global DNA hypomethylation of non-coding regions, and

site-specific hypermethylation of CpG islands (CGI) in tumour

suppressor regions.50 To what extent epigenetic changes cause

carcinogenesis is currently being investigated.51 Complicated

epigeneticsmechanisms, includingCGI shores’ and gene body

methylation may contribute to the carcinogenesis process.51,52

Genomic regions having different DNA methylation status in

cancer versus non-cancer are referred to as differentially

methylated regions (DMRs). The most widely studied epige-

netic alterations are DNA methylation at CpG dinucleotides.

These are highly concentrated in CpG islands within promoter

regions or near the first exon of genes. Their state of methyla-

tion controls gene expression.53 Differences in DNAmethyla-

tion status lead to various levels of gene silencing in cancer.

Promoter hypermethylation has been linked to the silencing of

tumour suppressor genes and oncogenesis.54–56 DNA methy-

lation heterogeneity and variability are observed at distinctive

genomic regions in cancer tissue.57,58 These differentially

methylated CpGs (DMCs) are consistently methylated in

a non-cancer group, and variably methylated in cancer groups,

with the highly variable CpGs hypothesised to contribute to

tumour heterogeneity.59 Studies have identified differentially

variable and differentially methylated CpGs (DVMCs) using

algorithms that identify regions of differential variability and

rank or filter them by the statistical significance of their differ-

ential methylation.59 There are a number of epigenetic biomar-

kers that showpotential for the early detection of cancers due to

their involvement in the initiation of carcinogenic

pathways.60,61 Epigenetic biomarkers have high potential and

wide scope to be implemented as early diagnostic biomarkers.

Amongst all epigenetic alterations in cancer, aberrant

DNA hypermethylation is more studied than aberrant hypo-

methylation, and diagnostic tests being developed also tend

to look for hypermethylated regions rather than hypomethy-

lated ones.62 The reason for the focus on hypermethylation

instead of hypomethylation is technical. Methylation assays

produce a signal for methylated DNA, and a lack of signal

signifies a lack of methylated DNA due to either hypomethy-

lation of the DNA present or due to absence of the targeted

DNA in the assay. Thus, molecular tests to identify

Table 2 Gene alteration and drug approval status in NSCLC

Gene Alteration Drug Approval Status Frequency In NSCLC Ref

AKT1 Mutation Drugs approved in NSCLC. 0.6–2% [101]

ALK Rearrangement Drugs approved in NSCLC. 1–5% [102]

BRAF Mutation Drugs approved in other cancer. 2–4% [103, 104]

DDR2 Mutation Drugs approved in other cancer. 2–4% [105, 106]

EGFR Mutation Drugs approved in NSCLC. 4–40% [107, 108]

FGFR1 Amplification Drugs in clinical development. 8.7–21% [109–112]

HER2 Mutation Drugs approved in other cancer. 1–4% [113–115]

KRAS Mutation Drugs in clinical development. 15–25% [116]

MEK1 Mutation Drugs approved in other cancer. ~1% [117]

METa Amplification Drugs approved in NSCLC but for other molecular subtype. 1% [118]

NRAS Mutation Drugs in clinical development. 1% [116]

PIK3CA Mutation Drugs in clinical development. 3.7% [119]

PTEN Mutation Drugs in clinical development. 4.5% [120]

RET Rearrangement Drugs in clinical development. 1–2% [121]

ROS1a Rearrangement Drugs approved in NSCLC. 1–2% [122, 123]

Key:
Drugs approved in NSCLC.

Drugs approved in NSCLC but for other molecular subtype.

Drugs approved in other cancer.

Drugs in clinical development.
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methylated DNA are carried out more often than tests for

hypomethylation. On the other hand, hypomethylation of

genes leads to overexpression of their protein. Thus, immu-

nohistochemistry (IHC) to measure protein expression is

a common tool in the diagnostic setting.

DNA Methylation In Lung Cancers
There are a number of genes that have been reported as

aberrantly hypermethylated in human lung cancers (Table 3).

Studies have shown that epigenetic alterations (Figure 1),

especially DNA methylation, can be used to identify patients

at risk of developing lung cancer.44 The relationship between

promoter DNA hypermethylation and inflammation has been

documented in many forms of cancer, including asbestos-

related lung cancer.76 It is hypothesised that asbestos exposure

contributes to lung cancer formation through this

relationship.45 Genomic investigations have shown DNA

copy number alterations, changes in miRNA profiles, and

deregulation of expression of certain genes in asbestos-related

lung cancer.49,51,77,78 However, little is known about how

asbestos fibres directly or indirectly interact with cells at the

molecular level.78

Table 3 Genes Found To Have Hypermethylated DNA In Human Lung Cancer

Gene % (And Number) Of Lung Cancers Exhibiting Hypermethylation Year Reported Reference

CDKN2A 44% (9/22)/25%(27/107)/47% (8/17)/25.9%(22/85)/34%(22/99)/14%(3/21) 1999/2001/2005/2007/2007/2009 63/64/65/66/67/68

MGMT 27% (6/22)/21% (22/107) 1999/2001 63/64

RAR beta 59%(178/301)/44.6%(41/92)/31%(19/61) 2000/2007/2004 69/66/70

CYGB 48%/(25/52) 2006 71

RASSF1 33%/(30/90)/36%(64/178)/39%(28/72)/ 2007/2012 66/68/70

APC 31%(28/91)/48%(48/99) 2007/2007 66/67

DAPK 26%(24/92) 2007 66

FHIT 34%(34/99)/48%(21/44)/42.6%(23/54) 2007/2004/2009 67/70,72

DOK1 81%(68/84) 2012 68

TCF21 81%(85/105) 2011 73

BRMS1 35%(14/40)/44%(58/132) 2010/2011 74,75

Caspase 9, Caspase 3

DNA Damage, 
mutation

Apoptosis

Gene deletion

Asbestos

DNA 
methylation

HDACs
Other 

transcription 
factors

Tumour suppressor genes
Tumour suppressor microRNAs

p53

Drosha 

p53
Pri-miRNA

m
iR

N
A

Figure 1 Potential molecular responses of affected cells to the presence of asbestos. When cells are exposed to asbestos, the generation of reactive oxygen species (ROS)

will lead to alteration of DNA methylation and microRNA (miRNA) expression/processing, resulting in cell apoptosis or epigenetic alterations that allow cells to progress to

diseased states.
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Lung cancer cases with no documented occupational

exposure to asbestos have been found to have larger

methylation variability and a higher proportion of hypo-

methylated DVMCs than asbestos-exposed subjects.76

A large proportion of DVMCs in lung tumours of the

asbestos-exposed subjects have been found within 1

kilobasepair (kb) of promoter regions.76 The genes

NPTN, NRG2, and TRPC3 exhibit significant asbestos-

related DVMCs.76 NRG2 has a cell proliferation role

and thus its DVMC in asbestos-related lung cancers may

be playing a role in the cancer.76 Little is known about

the role of NPTN (neuroplastin), and it may potentially

be involved in modulating intracellular Ca2+ as a result

of its interaction with FGFR.79 This may result in sti-

mulating the Ca2+ sensing receptor that promotes the

expression of TRPC3, a member of the canonical tran-

sient receptor potential channels, leading to perturbation

in Ca2+ homeostasis.80 Hypermethylation of TRPC3 was

observed in lung cancer cases that were not associated

with asbestos exposure. In asbestos-associated tumours,

TRPC3 methylation remained at the same level as in

peripheral normal lung tissue.81

In asbestos-associated lung cancers, DMRs were iden-

tified in genes RARB, GPR135, MYT1L, TPO, and

RPTOR.76 Hypomethylation of TPO was observed in

asbestos-associated lung tumours.76 TPO is a thyroid per-

oxidase that is responsible for oxidative metabolic reac-

tions and was mostly studied in thyroid cells.82 The

carcinogenesis mechanism of asbestos is hypothesised to

involve reactive oxygen species (ROS).39 An increase in

expression of TPO has been observed in tumour and lung

tissue of adenocarcinoma patients with high intakes of red

meat and the increased expression was attributed to a gene

product linked to heme-iron toxicity and oxidative stress.83

Iron-related toxicity mechanisms have also been proposed

for asbestos.4 Importantly, TPO expression was not found

to be associated with smoking in lung adenocarci

noma.83

Epigenetic Biomarkers Detectable
In Lung Cancer Using Minimally
Invasive Biopsy Samples
Of all the known types of epigenetic alterations, DNAmethy-

lation is the most widely studied in cancer due to the stability

of DNA and it being readily detectable in blood circulation.

To definitively diagnose lung cancer, a tissue biopsy needs to

be obtained from the patient based upon the initial clinical

and radiological findings. The lesion is often detected by an

initial thoracic screening for respiratory lesions performed by

computed tomography (CT). This method is considered

highly sensitive for lung cancer. However, it has a high

false positive rate as a proportion of the lesions are benign

tumours.84,85 There are several tissue and circulating epige-

netic biomarkers for lung cancers, including EGF-like and

two follistatin domains (TMEFF2),86 that are detectable in

the blood of lung cancer patients as tumours shed tumour

DNA into the blood. TMEFF2 is inactivated through hyper-

methylation in many cancers including NSCLC and is com-

mon in non-EGFR mutated patients who have never

smoked.86 RASFF1A hypermethylation was detected in

33.8% of NSCLC patients and not in healthy control benign

pulmonary disease.54 Confirmation by tissue or other biopsy

is currently still required for definitive diagnosis.87 In

NSCLC, sputum represents a good source for biomarker

Table 4 Epigenetic Biomarkers In Lung Cancer Using Minimally Invasive Biospecimens

Lung Cancer

Subtypes

Gene DNA Source Ref miRNA

Source

microRNA Ref

NSCLC CDKN2A cfDNA 90 cfmiRNAs Up: miR-21, miR-210, miR-182, miR-31, miR-200b, miR-205, miR-

183; Down: miR-21, miR-210, miR-182, miR-31, miR-200b, miR-

205 and miR-183

91

NSCLC RARB2 cfDNA 92

LCLC/SCLC/SCLC RASSF1A cfDNA 93 cfmiRNAs Up: miR-20a, miR-24, miR-25, miR-199a-5p, miR-221, miR-222,

miR-223; Down: mir-145, miR-152, miR-320

94

NSCLC SOX17 cfDNA 95

NSCLC TMEFF2 serum 86

NSCLC MGMT Bronchial wash 96
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detection, as cancer cells shed tumour DNA from the lung

into the sputum.54,88 Various studies utilised sputum as

a minimally invasive biospecimen and identified DNA

methylation biomarkers including p16, DAPK, PAX5b,

GATA5,88 RASSF1A, PRDM14, and 3OST236 for early detec-

tion of lung cancer in stage 1 of the disease.MGMT has been

shown to be capable of identifying squamous cell lung carci-

noma three years before clinical diagnosis.89 Table 4 sum-

marises the most useful of the promising epigenetic

biomarkers detected using minimally invasive lung cancer

biospecimens.

Epigenetic Alterations As
Treatment Options For Lung
Cancer
Unlike gene mutations, epigenetic dysregulation can be

reversed by selectively targeted treatment. Studies suggest

that epigenetic dysregulation may contribute to drug-

resistance in subpopulations of cells within the heteroge-

neous tumour population.97 Single-agent demethylation

drugs such as azacytidine have been investigated for treat-

ing NSCLC solid tumours. A comparison of outcomes for

103 patients treated between 1972 and 1977 indicated that

single epigenetic agents have limited efficacy in NSCLC,

with an objective response rate of only 8%.98 A study of

more than 200 NSCLC patients enrolled in a single epi-

genetic-agent trial produced disappointing initial

findings.98 Given these initial findings for single epige-

netic agents in treating solid tumours, researchers are

investigating combination therapies on the basis that the

ineffectiveness of single-agent epigenetic therapies may be

due to complications associated with DNMT inhibitors at

cytotoxic doses.99 The results of a phase I/II study of

azacytidine and etinostat combination therapy in 45 heav-

ily pre-treated advanced NSCLC patients indicate that

combinations with low-dose epigenetic therapy may be

beneficial for treating solid tumours.99 More combination

clinical trials are needed to confirm the efficacy of epige-

netic therapy, and such trials are in progress.100

Conclusion
In summary, DNAmethylation and microRNA alterations are

key epigenetic alteration features in asbestos-related lung can-

cers. There are a number of epigenetic biomarkers (CDKN2A,

RARB2, RASSF1A, SOX17, TMEFF2 and MGMT) that are

potentially useful for identifying asbestos-related lung cancers.

However, further studies are needed to clarify the direct link

between asbestos and these biomarkers. Development of new

treatments is needed for better outcomes in asbestos-related

lung cancers. Currently, despite their promise, no epigenetic

therapies have been implemented clinically. Therefore, further

characterisation and development in utilising epigenetic bio-

markers for drug treatment discovery is warranted.
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