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Abstract: Chemotherapy is an important cancer treatment method. Tumor chemotherapy

resistance is one of the main factors leading to tumor progression. Like other malignancies,

bladder cancer, especially muscle-invasive bladder cancer, is prone to chemotherapy resistance.

Additionally, only approximately 50% of muscle-invasive bladder cancer responds to cisplatin-

based chemotherapy. miRNAs are a class of small, endogenous, noncoding RNAs that regulate

gene expression at the posttranscriptional level, which results in the inhibition of translation or

the degradation of mRNA. In the study of miRNAs and cancer, including gastric cancer, prostate

cancer, liver cancer, and colorectal cancer, it has been found that miRNAs can regulate the

expression of genes related to tumor resistance, thereby promoting the progression of tumors. In

bladder cancer, miRNAs are also closely related to chemotherapy resistance, suggesting that

miRNAs can be a new therapeutic target for the chemotherapy resistance of bladder cancer.

Therefore, understanding the mechanisms of miRNAs in the chemotherapy resistance of bladder

cancer is an important foundation for restoring the chemotherapy sensitivity of bladder cancer

and improving the efficacy of chemotherapy and patient survival. In this article, we review the

role of miRNAs in the development of chemotherapy-resistant bladder cancer and the various

resistance mechanisms that involve apoptosis, the cell cycle, epithelial-mesenchymal transition

(EMT), and cancer stem cells (CSCs).
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Background
Bladder cancer (BCa) is the ninth most common cancer in the world, and the

incidence is higher in men than in women.1,2 Of the cases of initially diagnosed

BCa, 70% are non-muscle-invasive bladder cancer (NMIBC), and approximately

30% are muscle-invasive bladder cancer (MIBC).3 Although the incidence of

MIBC is lower than that of NMIBC, MIBC has a worse prognosis and has become

a great challenge for urologists. The standard treatment for patients with MIBC is

radical cystectomy. However, despite aggressive treatment, the five-year survival

rate for patients with advanced BCa is only 20–40%.4 To improve unsatisfactory

treatment efficacy, cisplatin-based combination chemotherapies, such as methotrex-

ate, vinblastine, doxorubicin and cisplatin (MVAC) and gemcitabine and cisplatin

(GC),5 have become important adjuvant therapies for MIBC and have been used

since the late 1980s; however, the median progression time of the GC regimen is

only 6 months, and the regimen has no effect on overall survival after radical

cystectomy in high-risk patients.5 Furthermore, only 50% of patients with MIBC

respond to cisplatin-based chemotherapy.6 In addition, chemotherapy has failed in

a large proportion of patients due to the gradual occurrence of chemoresistance,
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which leads to the relapse and progression of tumors.

Therefore, overcoming multidrug resistance and exploring

a novel safe and effective treatment strategy is urgently

needed for BCa, especially MIBC.

Recent research has indicated that posttranscriptional reg-

ulatory mechanisms play a crucial role in various tumor bio-

logical properties, including chemotherapy resistance, and the

most important molecules involved include miRNAs and

human antigen R.7,8 miRNAs are a class of endogenous

small noncoding RNAs that are approximately 18–25 nt in

length and were first discovered in 1993.9 Since their discov-

ery, an increasing number of miRNAs have been identified.

miRNAs recognize and bind to the 3ʹ-untranslated region (3ʹ-

UTR) of target mRNAs with complete or incomplete comple-

mentary pairs and cause the degradation of the target mRNA

or the inhibition of translation, thereby negatively regulating

the expression of cancer-related molecules.10 Studies have

revealed that nearly one-third of human genes, including

those involved in tumor development, angiogenesis, invasion,

metastasis and drug resistance, can be regulated by miRNAs.

Therefore, miRNAs act as oncogenes or tumor suppressor

genes, depending on their complex regulatory mechanisms.11

In recent years, tumor-related studies have shown that

miRNAs are involved in the biological properties of BCa,

including chemoresistance. Based on their important roles in

BCa, miRNAs have been widely studied as therapeutic targets

for BCa treatment. This paper will review the role of miRNAs

in the chemoresistance of BCa and explore the related targeted

therapeutic strategies.

Expression Patterns of
Chemoresistance-Related miRNAs
in BCa
Dysregulated expression of miRNAs in tumors involves

pathophysiological processes.12,13 With the development

of microarray analysis methods, real-time polymerase

chain reaction (RT-PCR) and bioinformatic techniques,

numerous cancer-related miRNAs have been discovered,

most of which are closely associated with chemoresistance

in many tumors, including BCa.14–17

The 5637 cell line is themostmultichemosensitive cell line

of the BCa cell lines (5637, T24, EJ, H-bc and Biu87), and

H-bc is the most resistant cell line. An RNA-seq-based

miRomic analysis of the 5637 and H-bc cell lines showed

that 83 miRNAs were differentially expressed by at least

twofold (37 were more highly expressed and 45 were less

highly expressed in the 5637 cells than in the H-bc cells).18

Microarray analysis of gemcitabine-resistant and parental cells

revealed 66 differentially expressed miRNAs, including 41

miRNAs and 25 unidentified human miRPlus sequences in

themiRBase database.19 Among these differentially expressed

miRNAs, miR-1290 and miR-138 showed increased expres-

sion levels in gemcitabine-resistant cells, while let-7b and let-

7i exhibited decreased expression.18,19 Transfection of

pre-miR-138 and pre-miR-1290 into parental cells attenuated

gemcitabine-induced cell death, while transfection of pre-miR-

let-7b and pre-miR-let-7i into the resistant cells augmented cell

death.18,19 These results demonstrated the role of these

miRNAs in the gemcitabine resistance of BCa and implied

the potential role of targeted therapy. Several studies have

shown that the expression of multiple chemoresistance-

related miRNAs in BCa tissues and cell lines was either

upregulated or downregulated. As found by Li et al20 the

expression of miR-34a was frequently decreased in MIBC

tissues and cell lines (5637, HT1376, J82, T24), while its

upregulation promoted the sensitivity of BCa cells to cisplatin.

Bu et al21 also found that the expression of miR-101 was

downregulated in the BCa-resistant cell line T24/CDDP,

while overexpression of miR-101 significantly enhanced cis-

platin-induced apoptosis. Therefore, the differential expression

of miRNAs in BCa confers the significance of miRNAs as

oncogenes or tumor suppressor genes.

miRNAs and BCa Chemoresistance
Although chemotherapy plays an irreplaceable role in the

treatment of advanced BCa, there are still numerous

patients who are unable to tolerate it, and the emergence

of drug resistance greatly limits the long-term curative

effect of chemotherapy. Recent research has indicated

that miRNA-mediated posttranscriptional regulation plays

an important role in chemoresistance and can affect drug

efficacy by regulating the expression of multiple drug-

resistance-related proteins. We hypothesize that the effect

of targeting miRNAs is stronger than the effect of target-

ing individual drug-associated proteins.

Regarding BCa, the first identified drug-resistance-

related miRNAs belonged to the miR-200 family. In 2009,

Adam et al22 showed that the stable expression of miR-200 in

mesenchymal UMUC3 cells increased E-cadherin levels and

sensitivity to EGFR blockers (cetuximab) and decreased the

expression of ZEB1, ZEB2, and ERRFI-1 and cell migration.

Since then, studies have focused on the role of miRNAs in

the chemoresistance of BCa. For instance, miR-21 promoted

cell proliferation and increased cell resistance to doxorubicin

treatment in the BCa cell line T24.23 miR-203 was associated
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with cancer progression and poor prognosis of BCa patients

who received cisplatin-based adjuvant chemotherapy.24 The

restoration of miR-203 expression enhanced the sensitivity

of BCa cells to cisplatin by promoting cell apoptosis by

targeting Bcl-w and survivin. miR-218 increased the sensi-

tivity of BCa to cisplatin by targeting Glut1 (glucose trans-

porter isoform 1).25 miR-193a-3p has been found to be more

highly expressed in resistant cell lines (H-bc and UM-UC-3)

than in chemosensitive cell lines (5637), and miR-193a-3p

was shown to not only mediate BCa chemoresistance at the

cellular level but was promote paclitaxel resistance by inhi-

biting the expression of SRSF2 and LOXL4 in nude mouse

BCa tumor xenografts.26 Similarly, it has been shown that

other BCa chemoresistance-related miRNAs include miR-

196a-5p, miR-203, miR-22-3p, miR-143, miR-193a-3b,

miR-222, miR-27a, miR-145, miR-294, and miR-193b-3p

(Table 1 and Figure 1).27–38 Based on these intracellular

and preclinical studies, clinical research on miRNA-

targeted therapeutic strategies will be the focus of cancer

treatment. We believe that gene-targeted therapy will open

a new chapter in cancer therapy.

miRNA-Mediated Pathways in the
Chemoresistance of BCa
In terms of mechanisms, accumulating studies have

revealed that miRNAs regulate the chemoresistance of

BCa through a variety of signaling pathways. Current

research indicates that the signaling pathways involving

miRNAs are related to the following aspects:

Regulation of Cell Apoptosis
Apoptosis is one of the most important mechanisms by

which multicellular organisms respond to environmental

changes and maintain tissue homeostasis.39–41 Recent

studies have shown that miRNAs play a key role in

regulating apoptosis and its relationship with chemoresis-

tance in BCa. miRNAs mediate chemoresistance in BCa

by regulating the expression of members of the Bcl-2

family. Zhan et al24 showed that overexpression of miR-

203 enhanced cisplatin sensitization by promoting apop-

tosis by directly targeting Bcl-w and survivin. Survivin is

a key member of the inhibitor of apoptosis protein (IAP)

family and exerts its antiapoptotic function by blocking

caspase activity in a complex with the X-linked inhibitor

of apoptosis protein (XIAP).42 In addition, studies have

demonstrated that miR-133b regulates the proliferation

and apoptosis of BCa cells (T24) by targeting Akt and

Bcl-w.43 In BCa cells, Bcl-2 is regulated by miR-21, miR-

192, miR-221, miR-9, miR-675, miR-29c, and Mcl-1 and

is regulated by miR-192 and miR-29c.44–49 These

miRNAs mediate the proliferation and apoptosis of BCa

cells by regulating the expression of members of the Bcl-

2 family. We speculate that the above miRNAs also play

an important role in the chemotherapy resistance of BCa.

The PTEN/PI3K/Akt/mTOR signaling pathway plays

a key role in the progression of BCa. The roles of Akt in

cells are diverse, but all of the roles lead to antiapoptosis

or cell proliferation. It is well known that the PI3K/Akt

oncogenic signaling pathway is activated in response to

various growth factors and extracellular matrix (ECM)

proteins.50,51 PTEN has been reported to act as a dual-

specific phosphatase, which, on the one hand, regulates

cell growth, apoptosis, invasion and differentiation by

negatively regulating the PI3K/Akt signaling pathway.

On the other hand, PTEN downregulates the level of the

lipid second messenger phosphoinositide-3,4,5-tripho-

sphate (PIP3) via dephosphorylation and subsequently

inhibits Akt phosphorylation.52 Studies have revealed

that miRNAs mediate chemoresistance in BCa by regulat-

ing the PTEN/PI3K/Akt/mTOR signaling pathway. miR-

21 can target PTEN and promote the proliferation and

chemotherapy resistance (doxorubicin) of BCa cells

(T24) through the PI3K-Akt pathway.53 miR-222 activates

the Akt/mTOR pathway and directly inhibits cisplatin-

induced autophagy in BCa cells by directly targeting the

protein phosphatase 2A subunit B (PPP2R2A).54 In sum-

mary, a variety of miRNAs, including miR-21, miR-130b-

3p, miR-495, miR-19a, miR-222, and the miR-130 family,

have been found to target PTEN.53–58 Interestingly, miR-

218 can indirectly regulate the expression of PTEN by

targeting BMI-1, which plays a carcinogenic role and is

related to tumor progression, inhibition of cell apoptosis

and so on.59 The insulin-like growth factor-1 receptor

(IGF-1R) and its ligand play an important role in regulat-

ing cell proliferation and apoptosis. The combination of

IGF-1R and its ligand triggers the downstream PI3K/Akt

signaling pathway (Figure 2). Wang et al showed that

miR-143 can target IGF-1R and promote the chemosensi-

tivity of BCa cells (5637) to gemcitabine.29

Regulation of the Cell Cycle
With advancements in our understanding of the basic mechan-

isms of tumor-related processes, cell cycle physiology, and

apoptosis mechanisms, it is becoming increasingly apparent

that the cell cycle plays a key role in chemosensitivity,
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especially sensitivity to combined chemotherapy.60 Recent

studies have shown that miRNAs participate in the processes

related to cell cycle-related chemoresistance in BCa.

Increased miR-34a expression levels have been found to

promote the chemosensitivity of BCa cell lines to cisplatin

treatment by targeting CDK6 and SIRT-1.61 However, the

inhibition of CDK6 and SIRT-1 was not as effective as the

inhibition of pre-miR-34a in mediating chemosensitization.

We speculate that this difference lies in the fact that miRNAs

can simultaneously regulate multiple target genes, indicating

that targeting these miRNAs may be more effective than

targeting a single chemoresistance-related gene. UCA1,

a class of lncRNAs, activates the transcription factor CREB,

which leads to the expression of miR-196a-5p by binding with

its promoter. miR-196a-5p is involved in the inhibition of

apoptosis by UCA1 that is induced by cisplatin/gemcitabine

by targeting p27.27 These data suggest that the mechanisms of

miRNA-mediated chemosensitivity involve a complex net-

work system, that the novel lncRNA/miRNA/target gene axis

plays an important role in tumor therapy and that any compo-

nent of the axis can serve as a tumor treatment target. In

addition, HOX gene family member-HOXC9 as an oncogene

and a novel miR-193a-3p target has also been found to exert

a promoting effect of miR-193a-3p in BCa chemoresistance.

HOXC9 has been reported to bind to and activate the expres-

sion of a large number of genes involved in the DNA damage

response, such as TP53 and E2F6.62 Therefore, the miR-193a-

3p/HOXC9/DNA damage response axis plays a key role in the

chemoresistance of BCa. We found that the role of miRNAs

depends on complex network axes and that an increasing

number of upstream regulatory genes as well as downstream

targets are involved.We hypothesize that the therapeutic effect

of targeting upstream genes is superior to that of targeting

downstream genes; however, complex network regulation

axes still require further investigation. Studies have demon-

strated that miRNAs mediate cell cycle-regulated chemoresis-

tance by targeting CDK and p27. We also summarized that

thesemiRNAs, includingmiR-29c,miR-124,miR-449a,miR-

320c,miR-106a,miR-20b, andmiR-195, can target CDK.63–69

In addition, miR-221 and miR-192 can target p27.70 The roles

of most miRNAs in the chemoresistance of BCa have not been

studied, although these miRNAs can regulate the biological

characteristics of BCa, which is one of the directions to be

explored in the future.

Figure 1 In BCa, these miRNAs are associated with chemoresistance.
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Tumor Stem Cells
Stem cells are undifferentiated cells that have the ability to

self-renew while producing differentiated tissues or organ-

specific cells by asymmetric cell division. Knowledge of the

importance of stem cells in normal tissue biology has led to

the belief that cancer may also come from a pool of pro-

genitor cells (the cancer stem cell (CSC) hypothesis). CSCs

are a subpopulation of cancer cells responsible for tumor

initiation, differentiation, recurrence, metastasis and drug

resistance.71–73 CSCs can be isolated from a large number

of tumor cells based on characteristic cell surface markers,

such as CD44 and CD133. CD44 is also described as

a marker for bladder CSCs that are resistant to therapeutic

drugs.74,75 CD44 is targeted by miR-34a in MIBC cells

after cisplatin treatment, and increased expression of

CD44 could effectively reverse the effects of miR-34a on

the proliferation, cloning potential and chemosensitivity of

MIBC cells.76 The mechanism by which CSCs are involved

in chemoresistance may be related to the fact that they

produce drug-resistant daughter cells under the pressure

of drug action. However, the exact mechanism remains

unclear.

Epithelial-Mesenchymal Transition
Epithelial-mesenchymal transition (EMT) is a process that

plays major roles in development and wound healing and is

characterized by the loss of homotypic adhesion and cell

polarity and increased invasion and migration. At the molecu-

lar level, EMT is characterized by the loss of E-cadherin and

the increased expression of several transcriptional repressors of

E-cadherin expression (ZEB1, ZEB2, Twist, Snail, and

Slug).77,78 Studies have shown that EMT is involved in the

resistance of a variety of cancer drug treatments79–82 and is

regulated by multiple signaling pathways.83,84 In BCa, the

Figure 2 PI3K/PIP3 signaling activates Akt signaling via Akt/PDK-1 activation, which results in the downregulation of apoptosis. However, the conversion of PIP2 to PIP3 is

reversed by PTEN. In addition, insulin-like growth factor-1 receptor (IGF-1R) and its ligand play an essential role in regulating cellular proliferation and apoptosis. The binding

of the ligand to IGF-1R triggers various downstream signaling pathways, including the PI3K/Akt pathway, which is essential for cell survival. In BCa, these miRNAs regulate

the PTEN/PI3K/Akt/mTOR signaling pathway.
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stable expression of miR-200 in mesenchymal UMUC3 cells

increases E-cadherin levels; decreases the expression of ZEB1,

ZEB2 and the tumor suppressor gene ERRFI-1 and cell migra-

tion; and increases EGFR blocker sensitivity.22 In addition, it

has been shown that ERRFI-1 can be targeted by miR-200.22

The differential expression of the followingmiRNAs in BCa is

associated with the EMT process: miR-433, miR-323a-3p,

miR-22, miR-92, miR-96, miR-199a-5p, miR-301b, miR-

613, miR-370-3p and miR-451.85–94 These miRNAs are asso-

ciated with BCa cell proliferation, migration, invasion and

EMT. For instance, miR-433 targets c-Met and CREB1 and

inhibits EMT in BCa cells bymodulating the c-Met/Akt/GSK-

3β/Snail signaling pathway.85miR-323a-3p regulates the EMT

progression of BCa by targeting c-Met and SMAD3 and by

negatively regulating their expression by modulating the

c-Met/SMAD3/Snail pathway.86 In addition, the overexpres-

sion of miR-613 enhanced the expression of the epithelial

biomarker E-cadherin and inhibited the expression of mese-

nchymal biomarkers (vimentin, Snail and N-cadherin).92

Moreover, sphingosine kinase 1 (Sphk1), as an oncogene,

promotes tumor cell survival by converting ceramide to

sphingosine and has been identified as a direct target gene of

miR-613 in BCa cells.92 The recovery of Sphk1 partially

reversed the inhibition of the proliferation, invasion and

EMT of BCa cells induced by miR-613. Therefore, miR-613

exerts a tumor suppressive effect in BCa by targeting Sphk1.

The Notch pathway has a negative regulatory effect on EMT,

and DNAmethylation in BCa regulates the high expression of

mir-193a-3p, thus inhibiting the Notch pathway to promote

EMT-induced multidrug resistance.18,95 Figure 3 shows the

miRNAs associated with BCa EMT as well as their target

genes and the EMT regulatory pathways.

Other Pathways
Generally, the chemoresistance of tumors involves complex

networks. Mechanisms of multidrug resistance have been the

subject of a great amount of research. In addition to the above-

mentioned signaling pathways, miRNAs can also regulate

chemoresistance through other novel signaling pathways.

Low expression of miR-101 induced cell survival

and cisplatin resistance by negatively regulating COX-2

expression.21 In addition, COX-2 was also shown to be

Figure 3 In BCa, these miRNAs regulate the EMT process.
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a direct target of miR-101.21 COX-2 plays an important role in

a variety of tumor drug resistances; therefore, strategies target-

ing the miR-101/COX-2 axis may be increasingly effective. Li

et al found that miR-218 increased the sensitivity of BCa cells

to cisplatin by targeting Glut1.25 Glut1 is a key rate-limiting

enzyme that controls glycolysis flux in cells and plays a crucial

role in tumorigenesis and progression.96,97 Overexpression of

Glut1 enhances glycolysis activity, increases cancer cell pro-

liferation, promotes tumor invasion and metastasis and is

associated with poor prognosis of various malignancies,

including BCa.98–100 In addition, miR-22-3p has been shown

to promote chemotherapy resistance in BCa by targeting

NET1. NET1 is a member of the transmembrane 4 super-

family (TM4SF)101 and is a novel tumor-associated gene

associated with many malignancies through multiple regula-

tory mechanisms.102–105 Finally, overexpression of miRNA-

27a has been reported to be associated with reduced levels of

SLC7A11 and the intracellular levels of glutathione and to

cause resistant cells to become resensitized to cisplatin.34

Notably, the tumor microenvironment, including the

extracellular matrix and stromal cells, is closely related

to the increase in drug resistance.106 Stromal cells, such as

macrophages and fibroblasts, can produce growth factors

to change the characteristics of tumor cells and increase

drug resistance.106 Interactions between the tumor micro-

environment and tumor, as well as the interior of the

microenvironment, are mediated by important signal mole-

cules. As an important signal molecule, miRNA levels are

closely related to the tumor microenvironment. In BCa, it

has been shown that tumor-related macrophages can pro-

mote EMT by increasing miR-30a levels,107 and EMT is

one of the important mechanisms of drug resistance in

BCa. Although there is limited evidence of the relationship

between the tumor microenvironment and miRNA levels

in BCa, this is an important direction and deserves further

study.

Conclusions
Tumor-related research has evolved from studying a single

oncogene or tumor suppressor gene to developing the current

network regulation axis model. Changes in various biological

properties of tumors, including the development of chemore-

sistance, are closely related to the dysregulation of miRNAs.

lncRNAs, circRNAs and RNA-binding proteins are involved

in the regulation of miRNA expression. The lncRNA/

miRNA/target gene axis, the circRNA/miRNA/target gene

axis, the RBP/miRNA/target gene axis, etc., constitute

a complex tumor regulatory network. miRNAs may be the

core factor, and the therapeutic effect of targeting miRNAs

may be more effective than the effect of targeting a single

oncogene. In tumors, miRNAs are involved in a variety of

chemoresistance-related signaling pathways to regulate

tumor resistance. Currently, miRNA-based therapeutic stra-

tegies include the use of agomir-miRNA, miR-101 mimic,

and miRNA inhibitors. Extensive cell experiments have

demonstrated the potential of these strategies to reverse

chemoresistance in chemotherapy. miRNAs also have poten-

tial value in the treatment of chemotherapy resistance in BCa.

In addition, the bladder is a smooth-muscle organ with an

independent cavity that can be treated by perfusion adminis-

tration, which greatly reduces targeting and safety problems.

Therefore, miRNA-targeted therapy strategies to treat BCa

chemotherapy resistance are a very promising treatment

direction. Unfortunately, there are still many components of

miRNA-targeted therapy strategies that need to be further

elucidated. For example, how many miRNAs are associated

with BCa resistance? Which miRNA is the most important?

What duration of miRNA targeting is required to regulate

drug resistance? Research on these issues will demonstrate

the utility of miRNA-targeted therapeutic strategies and lay

the foundation for further clinical trials.
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