Circulating Cell-Free DNA or Circulating Tumor DNA in the Management of Ovarian and Endometrial Cancer

Qian Chen
Zi-Han Zhang
Shu Wang
Jing-He Lang

Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China

Abstract: Ovarian cancer (OC) is the most lethal cancer of all gynecological malignancies, while endometrial cancer (EC) is the most common one. Current strategies for OC/EC diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a tissue biopsy is expensive and requires a highly skilled gynecological surgery to pinpoint accurately which cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating free DNA (cfDNA). These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Liquid biopsy is an emerging non-invasive, safe and effective method with considerable potential for clinical diagnosis and treatment management in patients with OC and EC. Analysis of cfDNA and ctDNA will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of OC/EC, the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers, and therapeutic response monitoring.

Keywords: ovarian cancer, endometrial cancer, liquid biopsy, circulating cell-free DNA, circulating tumor DNA

Introduction

In recent years, the continuous development in genomic detection and analysis technology has revealed a more complicated molecular picture of cancers. Such complexity may be caused by the inter/intra-tumoral heterogeneity and clonal evolution, which brings forward a higher demand on a precise and real-time monitoring system.1

Ovarian cancer (OC), endometrial cancer (EC) and cervical cancer (CC) are the three major cancers in gynecology. Established screening projects and the prevalence of vaccination have remarkably reduced the incidence and mortality of invasive CC,2 but the situation of OC and EC is still not optimistic.

Ovarian cancer is an aggressive disease with a high mortality rate, largely due to a lack of effective screening methods or biomarkers with high sensitivity and specificity.3
A recent review on the benefits and harms of OC screening among average-risk women included 4 randomized clinical trials involving transvaginal ultrasound (TVS), cancer antigen 125 (CA125) testing, or their combination. The review illustrated no significant difference on mortality between screened women and non-screened or irregular-screened ones. Furthermore, although the response rate of initial treatment is satisfactory, recurrence rate in advanced-stage OC patients remain high, partly because of insufficient understanding of drug resistance mechanisms. As a widely used biomarker during the treatment and the follow-up, CA125 does not perform well in clinical work.

Endometrial cancer is the most common cancer occurring in female reproductive tract. It can be diagnosed and treated at an early stage, due to its typical symptom of abnormal genital bleeding and the subsequent detailed examination. However, some patients present nonspecific symptoms and those with intermediate to high-risk factors are still very vulnerable to recurrence, resulting in a higher mortality rate. The sensitivity and specificity of TVS is too limited to be a screening method for EC, which can only provide a rough evaluation. Diagnostic dilatation and curettage is effective with high sensitivity and specificity for post-menopausal women, while the invasive process and possible complications may reduce the compliance of patients. More importantly, it could not be used in the treatment surveillance once the uterus is removed.

Histopathology examination has long been regarded as the gold standard for the final diagnosis and genotypic analysis of OC and EC. However, tissue biopsy is incompatible for clinical longitudinal monitoring due to its invasive nature.

Based on the above, a new strategy for these two types of gynecological malignancies is urgently needed. As a non-invasive and cost-effective method, liquid biopsy is expected to overcome the above shortcomings and has become a research hotspot. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating free RNAs, tumor-derived extracellular vesicles (TEVs) and tumor-educated platelets (TEPs) are the main components released by tumors from either primary or metastatic sites that can be used in a variety of analysis.

In 2017, Cheng et al briefly reviewed the role of circulating cell-free DNA (cfDNA) and CTC in OC, providing us with important information. In our review, we will focus on the potential value of cfDNA/ctDNA in OC and EC patients.

Origin and Detection of cfDNA/ctDNA

It took about 30 years from the first discovery of cfDNA in the blood of healthy people to the report of its relationship with cancer in 1977. Researchers found that higher levels of cfDNA appeared in cancer patients and those with metastatic disease compared to the healthy and non-metastatic ones, respectively. It was not until 1994 that somatic point mutations were identified in cfDNA. Since then, more studies have focused on this circulating molecular, especially its potential role in cancer management.

A great proportion of cfDNA comes from normal cells of the body, a small part of which is related to tumors, coming from primary tumors, metastatic sites or CTCs, and is called ctDNA. The mechanism of cfDNA being released by cells into circulation was still not fully understood. Mouliere et al investigated the sources of circulating DNA of three distinctive categories (normal extratumoral cells, tumor microenvironment cells and neoplastic tumor cells) in colorectal cancer patients, elucidating three sources of cfDNA: necrosis, apoptosis and active secretion. Apoptosis has been reported to be one of the sources of cfDNA, as ctDNA fragments are found to be similar in size to apoptotic DNA. Necrosis might be an important contributor to long ctDNA fragments (over 1000bp). Another hypothesis of cfDNA release was active secretion, with DNA included in the exosomes or DNA-lipoprotein complexes.

Analysis of ctDNA paves us the way for a comprehensive view of the tumor genomic landscape. The ctDNA fragments (~134-144 bp) were reported to be shorter than that of cfDNA (~166bp). The proportion of ctDNA in the total cfDNA may vary greatly in accordance with clinical-pathologic features of tumor as well as the tumor microenvironment. Relatively low ctDNA levels in standard blood samples and background cfDNA unrelated to tumor cells make detection a challenge. Therefore, the standard procedure for blood collection and DNA isolation should be finalized prior to analysis.

Methodologies in Exploring cfDNA/ctDNA

For blood collection, the ratio of plasma germline cfDNA is lower than that of serum; thus, it is more suitable for ctDNA isolation. Plasma separation should be performed within a short time since the half-time of ctDNA is only about 2 hrs in standard EDTA tubes. Some other special blood
collection tubes with special preservatives, such as Streck, allow for delayed plasma separation. After centrifugation, the separated plasma should be stored at −80°C for later use.

The extraction of cfDNA/ctDNA is the key to the subsequent test. Available methods include phase isolation, silicon membrane-based spin column, and magnetic bead-based isolation. The extraction efficiency varies depending on the methods and the plasma volumes.

New techniques have emerged with high sensitivity and high specificity for the analysis of cfDNA or ctDNA from a quantitative and qualitative perspective, such as polymerase chain reaction (PCR) strategies and Next-Generation Sequencing (NGS) strategies.

There is a variety of PCR-based methods, each with its characteristics, including real-time PCR, co-amplification at lower denaturation temperature-PCR, methylation-specific PCR, digital PCR or droplet digital PCR (ddPCR), “Beads, Emulsion, Amplification, Magnetics digital PCR” (BEAMing) and so on. Designed to detect hotspot mutations, these PCR-based methods are relatively time-saving and economical.

Next-Generation Sequencing (NGS)-based methods such as tagged-amplicon deep sequencing (TamSeq), the Safe Sequencing System (SafeSeqS), CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) and targeted error correction sequencing (TEC-Seq) are available to assess genetic alterations with different detection capacities. Whole Genome Sequencing (WGS) and Whole Exome Sequencing (WES) technologies allow for the identification of novel alterations with no pre-existing knowledge. The ability of NGS-based methods to detect copy number variations (CNVs) is an advantage over PCR. Though efficient, these methods are relatively time-consuming and require professional bioinformatics analysis.

Application of cfDNA/ctDNA in Ovarian and Endometrial Cancer

As a promising effective tool in oncology, cfDNA/ctDNA is of essential value in clinical management of ovarian and endometrial cancer patients from the diagnostic, predictive and prognostic aspects (Table 1; Figure 1).

Early Detection and Differential Diagnosis

As previously mentioned, the diagnostic value of blood markers and imaging examinations for early detection and differential diagnosis of ovarian and endometrial tumors is limited. Plenty of studies have been carried out to evaluate the competency of cfDNA/ctDNA in cancer screening.

Quantification of cfDNA/ctDNA

Ovarian Cancer

Changes in levels of cfDNA/ctDNA can be a hint for the existence of malignance, which could be more accurate than CA125 or HE4 in some OC studies. Shao et al reported a significant increment of cfDNA levels in the OC group compared with the control group (P < 0.01). They also noticed a higher sensitivity and specificity (88.9% and 89.5%) of cfDNA than CA125 (75% and 52.6%) and HE4 (80.6% and 68.4%) in OC detection. Sensitivity and specificity were promoted (91.67% and 84.21%) when the above biomarkers were combined. Similarly, a cohort study of OC achieved a sensitivity and specificity of 87–91.5% and 85–87%, respectively. By comparison, they found a lower false-positive rate of cfDNA level than CA125. Another small sample study focusing on three endogenous loci (GAPDH, β-actin and β-globin) identified significantly higher cfDNA levels among OC patients compared to controls, with the greatest difference occurring at β-actin locus. Quantitative alterations of circulating cell-free nuclear DNA and circulating cell-free mitochondrial DNA were evaluated to confirm their values in diagnosing OC with moderate sensitivity and specificity. Dobrzycka et al found that the detection rate of ovarian serous carcinoma was higher than other types, suggesting the role of cfDNA in differential diagnosis.

Endometrial Cancer

The role of cfDNA levels for EC screening and classification appears to be controversial. Significantly elevated total cfDNA levels were detected in EC group compared with the controls, with higher levels in high-grade groups (G2 and G3). Another study reported a dramatic difference between the mean level of cfDNA in patients with type I and type II EC. Vizza et al observed a remarkably increased total cfDNA content in high-grade EC patients. They adopted a special calculation method applying Alu-quantitative real-time PCR (qPCR) technology to investigate the role of cfDNA. The serum DNA integrity index, defined as qPCR-Alu247 value/qPCR-Alu115 value of each sample, was significantly reduced in high-grade EC patients with hypertension and obesity. Unfortunately, this index presented a low predictive accuracy to differentiate high grade from low-grade EC patients. The study carried out by Tanaka et al showed no significant difference of cfDNA levels between EC and the controls, partly due to the small sample size or differences in methods.
Table 1: Studies with Analysis of cfDNA/ctDNA in OC or EC Patients

<table>
<thead>
<tr>
<th>References</th>
<th>Country</th>
<th>Cancer Type</th>
<th>Sources</th>
<th>Cancer/Control</th>
<th>Abnormalities</th>
<th>Methodology</th>
<th>Clinical Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shao et al<sup>34</sup></td>
<td>China</td>
<td>OC</td>
<td>Serum</td>
<td>36/41</td>
<td>Level</td>
<td>bDNA technique</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Kamat et al<sup>35</sup></td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>164/124</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Kamat et al<sup>36</sup></td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>19/12</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Zachariah et al<sup>37</sup></td>
<td>Switzerland</td>
<td>OC</td>
<td>Serum/plasma</td>
<td>21/83</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Dobrzycka et al<sup>38</sup></td>
<td>Poland</td>
<td>OC</td>
<td>Plasma</td>
<td>126/NA</td>
<td>Level/KRAS mutation</td>
<td>PCR-RFLP</td>
<td>Diagnosis/ prognosis</td>
</tr>
<tr>
<td>Cicchillitti et al<sup>39</sup></td>
<td>Italy</td>
<td>EC</td>
<td>Serum</td>
<td>59/NA</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Dobrzycka et al<sup>40</sup></td>
<td>Poland</td>
<td>EC</td>
<td>Plasma</td>
<td>109/NA</td>
<td>Level</td>
<td>PCR-RFLP</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Vizza et al<sup>41</sup></td>
<td>Italy</td>
<td>EC</td>
<td>Serum</td>
<td>60/NA</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Tanaka et al<sup>42</sup></td>
<td>Japan</td>
<td>EC</td>
<td>Plasma</td>
<td>53/24</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Diagnosis/ prognosis</td>
</tr>
<tr>
<td>Hickey et al<sup>43</sup></td>
<td>United Kingdom</td>
<td>OC</td>
<td>Serum</td>
<td>20/NA</td>
<td>Mutations, LOH and MI</td>
<td>PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Otsuka et al<sup>46</sup></td>
<td>Japan</td>
<td>OC</td>
<td>Plasma</td>
<td>27/NA</td>
<td>p53 mutation</td>
<td>PCR</td>
<td>Diagnosis/ prognosis</td>
</tr>
<tr>
<td>Park et al<sup>47</sup></td>
<td>Korea</td>
<td>OC</td>
<td>Plasma</td>
<td>4/NA</td>
<td>TP53 mutation</td>
<td>Digital PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Cohen et al<sup>49</sup></td>
<td>Australia</td>
<td>OC</td>
<td>Plasma</td>
<td>32/32</td>
<td>Chromosomal instability</td>
<td>Whole genome</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Vanderstichele et al<sup>50</sup></td>
<td>Belgium</td>
<td>OC</td>
<td>Plasma</td>
<td>57/11</td>
<td>Chromosomal instability</td>
<td>NGS</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Phallen et al<sup>51</sup></td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>42/NA</td>
<td>Somatic mutations</td>
<td>TEC-Seq</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Farkkila et al<sup>52</sup></td>
<td>Finland</td>
<td>OC</td>
<td>Plasma</td>
<td>35/NA</td>
<td>FOXL2 mutation</td>
<td>ddPCR</td>
<td>Diagnosis/ prognosis</td>
</tr>
<tr>
<td>Sun et al<sup>53</sup></td>
<td>China</td>
<td>EC</td>
<td>PBLs</td>
<td>139/139</td>
<td>mtDNA copy number value</td>
<td>RT-PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Giannopoulou et al<sup>56</sup></td>
<td>Greece</td>
<td>OC</td>
<td>Plasma</td>
<td>59/NA</td>
<td>RASSF1A methylation</td>
<td>MSP technique</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Zhang et al<sup>57</sup></td>
<td>China</td>
<td>OC</td>
<td>Serum</td>
<td>87/115</td>
<td>(APC, RASSF1A, CDH1, RUNX3, TFP12, SFRP5, OPCML) methylation</td>
<td>MSP technique</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Liggett et al<sup>58</sup></td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>30/60</td>
<td>(RASSF1A, CALCA, EP300, BRCA1, CDKN1C, PGR-PROX) methylation</td>
<td>MethDet 56</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Melnikov et al<sup>59</sup></td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>33/33</td>
<td>(BRCA1, HIC1, PAX5, PGR, THBS1) methylation</td>
<td>MethDet 56</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Widschwendter et al<sup>60</sup></td>
<td>UK</td>
<td>OC</td>
<td>Serum</td>
<td>25/598</td>
<td>(COL23A1, C2CD4D, WNT76) methylation</td>
<td>NGS</td>
<td>Diagnosis/ prognosis</td>
</tr>
</tbody>
</table>

(Continued)
Table 1 (Continued).

<table>
<thead>
<tr>
<th>References</th>
<th>Country</th>
<th>Cancer Type</th>
<th>Sources</th>
<th>Cancer/Control</th>
<th>Abnormalities</th>
<th>Methodology</th>
<th>Clinical Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et al61</td>
<td>China</td>
<td>OC</td>
<td>Peripheral blood</td>
<td>206/205</td>
<td>Methylation at multiple sites</td>
<td>NGS</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Wu et al62</td>
<td>China</td>
<td>OC</td>
<td>Plasma</td>
<td>47/24</td>
<td>RASSF2A methylation</td>
<td>MSP technique</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Ibanez et al63</td>
<td>USA</td>
<td>OC</td>
<td>Serum/plasma</td>
<td>50/NA</td>
<td>(BRCA1, RASSF1A) methylation</td>
<td>MSP technique</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Margolin et al67</td>
<td>USA</td>
<td>EC</td>
<td>A computational simulation</td>
<td>42/8</td>
<td>ZNF154 methylation</td>
<td>NGS</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Wimberger et al71</td>
<td>Germany</td>
<td>OC</td>
<td>Plasma</td>
<td>62/28</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Perkins et al72</td>
<td>United Kingdom</td>
<td>OC</td>
<td>Plasma</td>
<td>105/20</td>
<td>Level/mutations in 19 genes</td>
<td>NGS</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Steffensen et al72</td>
<td>Denmark</td>
<td>OC</td>
<td>Plasma</td>
<td>144/NA</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Prognosis</td>
</tr>
<tr>
<td>No et al74</td>
<td>Korea</td>
<td>OC</td>
<td>Plasma</td>
<td>36/16</td>
<td>(B2M, RAB25, CLDN4, ABCF2) mutation</td>
<td>RT-PCR</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Kuhlmann et al73</td>
<td>Germany</td>
<td>OC</td>
<td>Serum</td>
<td>63/20</td>
<td>Level/LOH</td>
<td>Fluorescence-labeled PCR</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Swisher et al78</td>
<td>USA</td>
<td>OC</td>
<td>Plasma/serum</td>
<td>137/NA</td>
<td>p53 mutation</td>
<td>DNA sequencing</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Giannopoulou et al76</td>
<td>Greece</td>
<td>OC</td>
<td>Plasma</td>
<td>129/NA</td>
<td>ESR1 methylation</td>
<td>MSP technique</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Bolivar et al79</td>
<td>USA</td>
<td>EC</td>
<td>Plasma</td>
<td>48/NA</td>
<td>(CTNNB1, KRAS, PTEN, PIK3CA) mutation</td>
<td>NGS</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Harris et al77</td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>8/NA</td>
<td>Chromosomal junctions</td>
<td>Quantitative PCR</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Pereira et al78</td>
<td>USA</td>
<td>OC and EC</td>
<td>Serum</td>
<td>22OC, 1TEC/NA</td>
<td>Level</td>
<td>Digital PCR</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Du et al79</td>
<td>China</td>
<td>OC</td>
<td>Plasma</td>
<td>21/NA</td>
<td>Mutations/CNV</td>
<td>NGS</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Martignetti et al80</td>
<td>USA</td>
<td>OC</td>
<td>Plasma/serum</td>
<td>1/NA</td>
<td>FGFR fusions</td>
<td>NGS/RT-PCR</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Choudhuri et al82</td>
<td>India</td>
<td>OC</td>
<td>Plasma</td>
<td>100/NA</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Capizzi et al83</td>
<td>Italy</td>
<td>OC</td>
<td>Plasma</td>
<td>22/NA</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Arend et al84</td>
<td>USA</td>
<td>OC</td>
<td>plasma</td>
<td>14/NA</td>
<td>level</td>
<td>NGS</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Kamat et al89</td>
<td>USA</td>
<td>OC in mice</td>
<td>Plasma</td>
<td>–</td>
<td>Level</td>
<td>RT-PCR</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Parkinson et al88</td>
<td>United Kingdom</td>
<td>OC</td>
<td>Plasma</td>
<td>40/NA</td>
<td>TP53 mutation</td>
<td>Digital PCR</td>
<td>Treatment response</td>
</tr>
</tbody>
</table>
Genomic Alterations of cfDNA/ctDNA

Ovarian Cancer

Detection of molecular alterations in cfDNA/ctDNA dates back to 1999, when Hickey et al used PCR to detect loss of heterozygosity (LOH) and microsatellite instability in 20 OC patients.\(^43\) TP53 mutations were reported as the most common in OC, accounting for approximately 96% of the somatic mutations.\(^44,45\) Articles targeting TP53 mutations in cfDNA/ctDNA with different detection techniques have been published, implying their roles in OC management.\(^46–48\)

Researches centered on other genetic alterations or gene panels with several selected genes of cfDNA/ctDNA were also carried out. Cohen et al conducted a proof-of-concept study for subchromosomal with a low coverage sequencing approach called non-invasive prenatal testing platform, observing a relatively low sensitivity of 40.6%, but a high specificity of 93.8%.\(^49\) A recent study focused on the chromosomal instability of cfDNA included 68 patients presenting adnexal masses. In terms of the area under the curve (AUC), a much higher sensitivity over CA125 appeared, when the specificity was set to 99.6%.\(^50\) An ultrasensitive approach called TEC-Seq was applied to detect ctDNA alterations in different kinds of tumors based on a well-designed combination of genes. Of the 42 enrolled OC patients, 71% were found with ctDNA alterations, and the fraction turned into 68% when researchers focused on early-stage patients.\(^51\) Farkkila et al developed a study to detect the FOXL2 mutation in ctDNA of adult granulosa cell tumor (AGCT) patients with ddPCR assay, revealing a sensitivity and specificity of 23% and 90%, respectively.\(^52\)

Endometrial Cancer

With regard to EC patients, Sun et al conducted a special research on mitochondrial DNA (mtDNA) copy number detection in peripheral blood leukocytes (PBLs) rather than serum or plasma.\(^53\) Alterations in mtDNA may lead to mitochondrial dysfunction, thus contributing to tumorigenesis.\(^54\)

Table 1 (Continued).

<table>
<thead>
<tr>
<th>References</th>
<th>Country</th>
<th>Cancer Type</th>
<th>Sources</th>
<th>Cancer/Control</th>
<th>Abnormalities</th>
<th>Methodology</th>
<th>Clinical Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gifford et al(^85)</td>
<td>United Kingdom</td>
<td>OC</td>
<td>Plasma</td>
<td>138/NA</td>
<td>hMLH1 methylation</td>
<td>Microsatellite PCR</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Flanagan et al(^86)</td>
<td>United Kingdom</td>
<td>OC</td>
<td>Peripheral blood</td>
<td>247/NA</td>
<td>Methylation at CpG sites</td>
<td>NGS</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Matulonis et al(^90)</td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>67/NA</td>
<td>Mutations in components/modulators of the PI3K pathway</td>
<td>NGS/Sanger sequencing</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Weigelt et al(^87)</td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>19/NA</td>
<td>BRCA reversion mutation</td>
<td>NGS</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Christie et al(^88)</td>
<td>Australia</td>
<td>OC</td>
<td>Plasma</td>
<td>30/NA</td>
<td>BRCA reversion mutation</td>
<td>NGS</td>
<td>Treatment response</td>
</tr>
<tr>
<td>Lin et al(^89)</td>
<td>USA</td>
<td>OC</td>
<td>Plasma</td>
<td>209/NA</td>
<td>BRCA reversion mutation</td>
<td>NGS</td>
<td>Treatment response</td>
</tr>
</tbody>
</table>

Abbreviations: OC, ovarian cancer; EC, endometrial cancer; bDNA, branched DNA; PCR-RFLP, PCR-restriction fragment length polymorphism; LOH, loss of heterozygosity; MI, microsatellite instability; NGS, next-generation sequencing; mtDNA, mitochondrial DNA; ddPCR, digital droplet PCR; PBLs, peripheral blood leukocytes; MSP, methylation-specific PCR; CNV, copy number variation; NK, do not know.

Figure 1 Applications of cfDNA/ctDNA in ovarian or endometrial cancer patients.
They reported that low mtDNA copy number indicated a more than five-fold increase in the risk of EC.53

Epigenetic Changes of cfDNA/ctDNA
Alteration of DNA methylation has been proven to be an early event of tumorigenesis, making the analysis of circulating DNA methylation patterns a potential method to detect OC and EC.55

Ovarian Cancer
Published studies applied similar research methods for OC, while focused on different genes.56–62 Ibanez et al developed a promoter hypermethylation analysis of 6-gene panel in the serum of OC patients (ranging from early to advanced-stage patients), observing a sensitivity of 82% and a specificity of 100%.63 A 7-gene panel study showed higher sensitivity and specificity (85.3% and 90.5%, respectively) of cfDNA than CA125 (56.1% and 64.15%, respectively) in stage I OC.57 There are similar studies published with different results of sensitivities and specificities, which may attribute to different markers they adopted.58,59 Although Widschwendter’s group observed sensitivities of 41.4% and 82.8%, and specificities of 90.7% and 87.1%, respectively, for a three-DNA-methylation-serum-marker panel and CA125, they noticed that cfDNA can detect OC much earlier than the exact diagnosis.60 In addition, Li et al obtained a prediction accuracy of 77.3% in the included OC population for the six validated CPG sites.61 It is worth noticing that four of the studies mentioned above selected RASSF1A gene as one of the biomarkers.56,57,59,63 Wu et al evaluated the methylation status of RASSF2A, observing an aberrant rate of 51.1% in tissues and 36.2% in corresponding plasma samples.62 The RASSF gene family has been reported to play vital roles in tumorigenesis of various malignancies.64–66 Epigenetic alterations of RASSF gene family, especially RASSF1A and RASSF2A may be promising as a marker that warrants further investigations.

Endometrial Cancer
Margolin et al developed a study to detect the hypermethylation of the ZNF134 Cpg island in five types of tumor, including 42 EC patients. Apart from the tissue samples, a computational simulation of ctDNA (1% tumor DNA in 99% normal DNA) was also applied in their study, and an AUC of 0.79 was proved to show the best performance in endometrial tumors.67

Tumor Burden Evaluation and Prognosis Assessment
Analysis of cfDNA/ctDNA allows doctors to gain insight into tumor burden, thus providing references for subsequent treatment. Information on survival outcomes predicted by cfDNA/ctDNA could assist us in developing therapeutic projects and personal follow-up plans for cancer patients.

Tumor Burden Evaluation
Ovarian Cancer
A significant discrepancy of cfDNA levels between stage I-II and stage III-IV (P<0.01) was reported based on an analysis of 36 OC cases,34 and a strong relationship between ctDNA level and tumor volume was also documented in a group of high-grade serous ovarian carcinoma patients,68 suggesting the potential value of cfDNA/ctDNA in evaluating tumor burden. A study in mice confirmed that elevated ctDNA levels indicated elevated tumor burden.69 In addition to quantification, specific genetic mutations can also reflect tumor burden. Larger median tumor size was observed in AGCT patients with FOXL2 ctDNA mutations by a research group.52

Endometrial Cancer
Relative researches about EC are rarely seen, but one has found that the appearance of plasma DNA mutations was remarkably correlated with primary tumor size.70

Prognosis Assessment
Ovarian Cancer
Several studies drew similar conclusions on the prognostic role of cfDNA levels, that is, an increased cfDNA levels indicate a significant reduction in overall survival (OS) in OC patients.35,38,71–73 From the perspective of genetic changes, certain genes were verified to be useful to assess prognosis. No et al reported that RAB25 levels in serum cfDNA were remarkably related to disease-free survival (HR=18.2, 95% CI=2.0–170.0) and OS (HR=33.6, 95% CI=1.8–634.8) of advanced-stage OC patients.74 LOH proximal to M6P/IGF2R locus (D6S1581) was found to be associated with OS (P=0.030) in another study.75 The level of cfDNA72 or presence of specific ctDNA mutation86 was even identified as an independent predictor of OS for OC patients. In addition, the presence of ESRI methylation in primary tumor samples was significantly correlated with better survival outcomes, though the correlation was not significant in plasma samples.76
Endometrial Cancer
Plasma DNA mutations in EC patients were found to be significantly related to deep myometrial invasion and lymphatic/vascular invasion, suggesting a possibly poorer survival outcome than those with only wildtype DNA. 70

Minimal Residual Disease (MRD) Detection and Recurrence Prediction
Postoperative residual disease may occur in advanced OC and EC patients even under standard surgical procedures. As a potential source of relapse, it poses a serious threat to the patient’s survival outcome. As aforementioned, despite emerging new treatment strategies, recurrences of OC and EC remain as urgent problems to be resolved. The evaluation of residual tumor burden and recurrence is thus important, and cfDNA/ctDNA may offer assistance.

Ovarian Cancer
Wimberger et al demonstrated that serum DNA levels of OC patients were significantly correlated with postoperative residual tumor load of >1 cm (p=0.0001) and a higher risk of relapse (p=0.002). 71 Similar relationship between preoperative cfDNA levels and residual tumor load (p=0.017) was mentioned in another study. 75 A research focusing on selected chromosomal junctions reported presence of ctDNA after surgery in patients with detectable disease, while no ctDNA in those without the disease. 77

cfDNA may provide opportunities of timely treatment of recurrent lesions that were not detectable through imaging. One research revealed that cfDNA could make a diagnosis for relapsed OC cases 7 months earlier than CT scanning. 78 In patients with recurrent OC, the coincidence rates of TP53 and BRCA1 in cfDNA and tumor tissue DNA were 76.2% and 95.24%, respectively, which means that cfDNA can assist the monitoring of disease progression. 79 Otsuka et al noticed in a follow-up survey that one patient with re-emerging p53 mutation after surgery died shortly after, while the other one with no p53 mutation survived. 46 An American study revealed a more sensitive and specific biomarker, the fibroblast growth factor receptor 2 (FGFR2) fusion ctDNA biomarker, to detect OC. In a series of 28 measurements during a 4-year follow-up of a specific patient, FGFR2 fusion better reflected the evolvement of the disease than CA125, especially the tumor recurrences. 80

Endometrial Cancer
Levels of cfDNA were evaluated in a cohort of 25 EC patients before and after operation, and 3 cases whose postoperative cfDNA levels did not decrease as expected relapsed during the follow up. 41

Therapy Responses Monitoring
As the molecular mechanisms of tumors continue to unlock, different types of targeted drugs have been validated in clinical trials. Treatment resistance occurs commonly, possibly because of the genomic heterogeneity or tumor subclonal evolution under selection pressure. 81 Real-time monitoring of therapeutic response is pivotal as it helps to understand the dynamic development of the disease. Detection of cfDNA/ctDNA may achieve the goal of screening out potential drug-resistant patients and instituting candidate-tailored therapeutic project to reduce the recurrence rate and improving survival rate.

Ovarian Cancer
Several studies, including a study of the OC mouse model, reported a decrease in cfDNA levels after ovarian cancer treatment, and some studies have shown that it is associated with post-therapy survival. 69,82,83 On the other hand, significant changes in genetic variants of cfDNA were noticed after chemotherapy. 84 In relapsed patients, a >60% reduction in TP53 mutant allele fraction was reported as an independent predictor of time to progression after one cycle of chemotherapy. 68 In one study, methylation changes of the hMLH1 gene in plasma DNA were detected (before chemotherapy and at relapse) in 138 patients with stage IC–IV OC who experienced a relapse. A significant (P<0.001) increase of the positive rate (from 12% to 33%) in hMLH1 methylation was observed, together with a poor OS. This study provided evidence to support the idea that the loss of DNA mismatch repair (MMR) might involve in the process of acquired drug resistance. 35 Another study also documented changes in plasma DNA methylation in patients with OC who relapsed after platinum-based chemotherapy. 86 The identification of chemotherapy responders and non-responders was essential for the subsequent treatment plan, and the analysis of DNA-methylation-serum-marker panel will be useful. 58

Recently, a couple of studies have been developed to explore the acquisition of BRCA reversion mutations and their roles in drug resistance by analyzing cfDNA/ctDNA in OC patients who received platinum-based chemotherapies or PARP inhibitors. 87–89 Detection of BRCA reversion mutations in cfDNA/ctDNA has been proven to be useful to predict possible drug resistance and guide treatment strategies.
Endometrial Cancer
Matulonis et al conducted a study to assess treatment response of PI3K inhibitor pilaralisib in advanced or recurrent EC cases. Different degrees of consistency were noticed between cfDNA and paired tumor tissue on the status of PIK3CA, KRAS, and BRAF genes. 90

Possible Applications of cfDNA/ctDNA in Specific Situations
Utility of cfDNA/ctDNA in Fertility-Sparing Treatment
Advanced techniques, including detection techniques of cfDNA/ctDNA, have improved the detection rate of early-stage disease. Choices of fertility-sparing approaches for gynecological cancer patients are receiving greater attention, since an increasing number of patients are diagnosed at productive age and desire to have children. Gynecological cancers have a negative impact on the sexuality and fertility of patients, increasing their stress level and reducing personal identity, which may pose a threat to the quality of their lives. 91

Most OC cases are diagnosed at an advanced stage, for whom cytoreduction remains optimal. However, fertility-sparing surgery is still recommended for selected patients by several society recommendations, with the premise of a comprehensive surgical staging. 92, 93

As for EC patients, total hysterectomy and bilateral salpingo-oophorectomy with or without surgical staging are regarded as the standard treatment. Fertility-sparing surgery is a choice for reproductive-aged patients with stage IA type I and G2 EC. 94 Furthermore, previous studies have evaluated the accuracy of preoperative methods, such as magnetic resonance imaging (MRI), TVS and hysteroscopically directed biopsies, for predicting the nodal-spread risk of EC. 95, 96 They concluded that these preoperative mapping methods worked well with high accuracy, avoiding over- or under-treatment of EC patients, while more evidence in this field is still needed. Conservative treatment such as progesterational agents has attracted widespread attention among premenopausal women who are eager to give birth and have achieved favorable outcomes in early-stage patients. 97–100

Given the risk of recurrences, monitoring must be strengthened for patients receiving conservative treatment. Non-invasive detection of cfDNA/ctDNA provides a more convenient tool for tracking disease progression, which helps to assess treatment response. Nevertheless, no relative data have been published by now, and the application of cfDNA/ctDNA analysis in this field needs further investigations.

Utility of cfDNA/ctDNA in the Management of Elderly Patients
The incidence of cancer in elderly population is much higher than the young group. However, the management of elderly patients remains a challenge. In the clinical setting, treatment patterns of elderly patients with OC and EC often differ from younger patients, and are less aggressive, due to their seemingly fragile bodies. 101, 102 Studies supported that age itself was not a prognostic factor for survival outcome, and elderly patients could also receive standard treatments. 102 The management of elderly OC or EC patients should be personalized according to the performance status of the patients, the extent of the disease and their life goals. 102 The detection of cfDNA/ctDNA may act as an assistant examination during the whole course of the management, given its non-invasive nature.

Detection of cfDNA/ctDNA in Non-Blood Fluids
In addition to blood, cfDNA/ctDNA is also detectable in other body fluids, among which urine, peritoneal fluid and uterine lavage fluid were reported to be utilized in the management of OC or EC patients (Table 2). Compared to bloodstream, the concentration of ctDNA shed in non-blood fluids can be higher in some certain cancer types. 103 However, a lack of relative researches and protocols, as well as rare experience in the exploration of these tests remain problems for non-blood-based liquid biopsy.

Several studies focused on tumor-specific genetic alterations of DNA extracted from peritoneal fluid samples of OC patients, receiving relatively high sensitivities in detection. 43, 48, 104–106 In 2004, methylation of peritoneal DNA was first reported as an independent factor in OC survival. 107 Shortly after, hypermethylation was detected in peritoneal fluid DNA with relatively high sensitivity and specificity, including 3 cytologically negative patients. 63 Du and his colleagues included urine samples into their study for genetic mutation analysis, identifying a detection rate of 86%. 79 Nair et al conducted a study to detect endometrial driver mutations in uterine lavage in seven EC patients, of whom six were at early stage. 108 In another similar study, specific mutations were identified in 80% (24/30) OC and 100% (5/5) EC patients. 109 It has been confirmed that tumor
DNA is detectable in detached cells from ovarian and endometrial malignancies collected at the cervix. Recently, genetic analysis of Papanicolaou (Pap) test using liquid-based methods rather than traditional Pap smear revealed potential advantages in early detection of OC and EC patients.

Conclusion

On June 1, 2016, cobas EGFR Mutation Test v2 was approved by the U. S. Food and Drug Administration (FDA) to identify patients with metastatic non-small cell lung cancer (NSCLC) appropriate for treatment with Tarceva® (erlotinib). This test, focusing on the mutation of the epidermal growth factor receptor (EGFR) gene in the cfDNA isolated from the blood samples of patients, is the first cfDNA/ctDNA test officially applied to clinical work. Currently, no cfDNA/ctDNA-related test has been approved by FDA in the field of OC and EC. Encouragingly, as mentioned above, published studies supported the feasibility of cfDNA/ctDNA’s application in the interrogation of tumor genome profiles and real-time tracing of the tumor conditions in OC and EC patients. The analysis of levels, genetic changes and epigenetic alterations of cfDNA/ctDNA hold tremendous promise in a wide range of applications: cancer screening, tumor burden evaluation, prognosis assessment, MRD detection, recurrence surveillance and treatment monitoring. In addition, a large number of clinical trials exploring the role of cfDNA/ctDNA in the management of OC and EC are underway (for example, NCT03691012), which may provide us with strong evidence.

Table 2: Studies with Analysis of cfDNA/ctDNA in Other Body Fluids of OC or EC Patients

<table>
<thead>
<tr>
<th>References</th>
<th>Country</th>
<th>Cancer Type</th>
<th>Fluid Type</th>
<th>Number of Samples</th>
<th>Abnormalities</th>
<th>Methodology</th>
<th>Clinical Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hickey et al</td>
<td>United Kingdom</td>
<td>OC</td>
<td>Peritoneal fluid</td>
<td>20</td>
<td>Mutations, LOH and MI</td>
<td>PCR</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Swisher et al</td>
<td>USA</td>
<td>OC</td>
<td>Peritoneal fluid</td>
<td>30</td>
<td>p53 mutation</td>
<td>DNA sequencing</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Krimmel et al</td>
<td>USA</td>
<td>OC</td>
<td>Peritoneal fluid</td>
<td>37</td>
<td>TP53 mutation</td>
<td>Duplex sequencing</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Parrella et al</td>
<td>Italy</td>
<td>OC</td>
<td>Peritoneal fluid</td>
<td>15</td>
<td>(p53, KRAS) mutation/LOH</td>
<td>DNA sequencing</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Barquin et al</td>
<td>Spain</td>
<td>OC</td>
<td>Peritoneal fluid</td>
<td>10</td>
<td>BRCA mutation</td>
<td>DNA sequencing</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Muller et al</td>
<td>Austria</td>
<td>OC</td>
<td>Peritoneal fluid</td>
<td>61</td>
<td>methylation of 15 selected genes</td>
<td>MethyLight</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Ibanez et al</td>
<td>USA</td>
<td>OC</td>
<td>Peritoneal fluid</td>
<td>42</td>
<td>(BRCA1, RASSF1A) methylation</td>
<td>MSP technique</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Du et al</td>
<td>China</td>
<td>OC</td>
<td>Urine and ascites</td>
<td>21 and 13</td>
<td>Mutations/CNV</td>
<td>NGS</td>
<td>Prognosis</td>
</tr>
<tr>
<td>Nair et al</td>
<td>USA</td>
<td>EC</td>
<td>Uterine lavage fluid</td>
<td>107</td>
<td>Mutations of selected genes</td>
<td>NGS</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Maritschnegg et al</td>
<td>Austria</td>
<td>OC and EC</td>
<td>Uterine lavage fluid</td>
<td>30 and 5</td>
<td>Somatic mutations</td>
<td>NGS</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Kinde et al</td>
<td>USA</td>
<td>OC and EC</td>
<td>Liquid-based Pap smear</td>
<td>22 and 24</td>
<td>Somatic mutations</td>
<td>NGS</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>Wang et al</td>
<td>USA</td>
<td>OC and EC</td>
<td>Pap brush samples</td>
<td>245 and 382</td>
<td>Somatic mutation</td>
<td>Safe-sequencing system</td>
<td>Diagnosis</td>
</tr>
</tbody>
</table>

Abbreviations: OC, ovarian cancer; EC, endometrial cancer; LOH, loss of heterozygosity; MI, microsatellite instability; MSP, methylation-specific PCR; CNV, copy number variation; NGS, next-generation sequencing; Pap, Papanicolaou.
It should be noted that well-defined preanalytical, analytical and postanalytical protocols are the prerequisites to obtain convincing results from large-scale clinical trials. Efforts are still needed to overcome challenges in detection techniques such as low amounts of cfDNA/ctDNA and high background signals. Combination of this new liquid biopsy method with other traditional methods may yield more satisfactory results. Accumulated evidence for survival benefits is required to integrate this novel diagnostic approach into the clinical scenario in the foreseeable future.

Acknowledgments
This study was funded by CAMS Youth Talent Award Project (No. 2018RC320006) and CAMS Innovation Fund for Medical Sciences (CIFMS; No. 2016-I2M-1-002).

Disclosure
The authors report no conflicts of interest in this work.

References

