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Purpose: Karyopherin alpha 2 (KPNA2) has been reported as an oncogenic protein in

numerous human cancers and is currently considered a potential therapeutic target. However,

the transcriptional regulation and physiological conditions underlying KPNA2 expression

remain unclear. The aim of the present study was to investigate the role and regulation of

interferon regulatory factor-1 (IRF1) in modulating KPNA2 expression in lung adenocarci-

noma (ADC).

Materials and methods: Bioinformatics tools and chromatin immunoprecipitation were

used to analyze the transcription factor (TF) binding sites in the KPNA2 promoter region. We

searched for a potential role of IRF1 in non-small-cell lung cancer (NSCLC) using

Oncomine and Kaplan-Meier Plotter datasets. qRT-PCR was applied to examine the role of

IRF1 and signaling involved in regulating KPNA2 transcription. Western blotting was used

to determine the effects of extracellular stimulation and intracellular signaling on the

modulation of KPNA2-related TF expression.

Results: IRF1 was identified as a novel TF that suppresses KPNA2 gene expression. We

observed that IRF1 expression was lower in cancerous tissues than in normal lung tissues and

that its low expression was correlated with poor prognosis in NSCLC. Notably, both ataxia

telangiectasia mutated (ATM) and mechanistic target of rapamycin (mTOR) inhibitors

reduced KPNA2 expression, which was accompanied by increased expression of IRF1 but

decreased expression of E2F1, a TF that promotes KPNA2 expression in lung ADC cells.

IRF1 knockdown restored the reduced levels of KPNA2 in ATM inhibitor-treated cells. We

further demonstrated that epidermal growth factor (EGF)-activated mTOR and hypoxia-

induced ATM suppressed IRF1 expression but promoted E2F1 expression, which in turn

upregulated KPNA2 expression in lung ADC cells.

Conclusion: IRF1 acts as a potential tumor suppressor in NSCLC. EGF and hypoxia

promote KPNA2 expression by simultaneously suppressing IRF1 expression and enhancing

E2F1 expression in lung ADC cells. Our study provides new insights into targeted therapy

for lung cancer.
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Introduction
Karyopherin alpha 2 (KPNA2, also known as importin α1) is a member of the

importin α family and transports cargo containing a canonical nuclear localiza-

tion signal by forming an importin α/β/cargo heterotrimer.1,2 Due to its function

in nucleocytoplasmic transport, KPNA2 is involved in many cellular processes,

including differentiation, development, viral infection, the immune response,
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transcriptional regulation and cellular maintenance.3

Recently, several studies have linked KPNA2 to cancer.

During the past decade, KPNA2 overexpression has been

reported in at least 18 human cancer types, such as lung,

breast, colon and bladder cancer. A high level of KPNA2

is positively associated with cancer invasiveness and

poor prognosis in patients, thus establishing KPNA2 as

a potentially relevant therapeutic target.3,4 We previously

identified KPNA2 as a potential biomarker for lung

ADC, and we observed that KPNA2 overexpression pro-

motes the proliferation and migration of lung ADC

cells.5 We applied proteomic approaches to search for

differentially expressed protein profiles and invasive-

ness-associated KPNA2−vimentin−pErk complexes in

lung ADC cells with siRNA-mediated knockdown of

KPNA2.6,7 Notably, KPNA2 transports the oncogenes

c-Myc and E2F1 and the tumor suppressor genes p53,

NBS1 and BRCA1 into the nucleus, suggesting that

spatiotemporal regulation of KPNA2 is crucial for its

role in tumorigenesis.6,8–10 Our recent study showed

that the mTOR pathway is involved in the regulation of

KPNA2 protein turnover and correlates with Dp1/E2F1-

mediated KPNA2 transcription.11 However, the upstream

signaling pathway and the transcription factor (TF)

responsible for regulating KPNA2 expression are still

unclear.

Interferon regulatory factor-1 (IRF1), a TF belonging

to the IRF family, regulates IFN-β and IFN-related gene

expression.12 Accumulating evidence supports the notion

that IRF1 has multiple functions in gene expression reg-

ulation during inflammation, immune responses, cell pro-

liferation, cell cycle progression, T cell differentiation,

and DNA damage.13–15 Notably, IRF1 is also involved

in cancer biology, but its role in cancer progression is

controversial. Gene alteration and/or low expression of

IRF1 are correlated with poorer clinical outcomes, high

cancer susceptibility and low immunotherapy response,

suggesting that IRF1 is a tumor suppressor in multiple

cancer types, such as leukemia, breast cancer, cervical

cancer and colorectal cancer.16–19 However, the onco-

genic ability of IRF1 in hepatocellular carcinoma and

esophageal cancer was recently reported.20–22 These stu-

dies suggest that the role of IRF1 in cancer is cancer-type

specific.

In the present study, we identified IRF1 as a novel

transcriptional suppressor of KPNA2 in lung ADC cells.

We further investigated the signaling pathways and

physiological conditions involved in IRF1-mediated

KPNA2 expression in lung ADC cells.

Materials and Methods
Reagents and Antibodies
Epidermal growth factor (EGF), rapamycin, ATM inhibitor

and β-actin antibody (MAB1501) were purchased from

Millipore (Bedford, MA, USA). KPNA2 (sc-55538),

E2F1 (sc-251), IRF1 (sc-497) and ATM (sc-23921) anti-

bodies were obtained from Santa Cruz (California, USA).

Phospho-ATM (Ser1981), p70S6K, phospho-p70S6K

(Thr389), mTOR, phospho-mTOR (Ser2448), IRF1 and

Slug antibodies were obtained from Cell Signaling

(Beverly, MA, USA). Hypoxia inducible factor 1α (HIF-

1α) and lactate dehydrogenase A (LDHA) antibodies were

purchased from GeneTex (Irvine, California, USA) and

Abcam (Cambridge, Massachusetts, USA), respectively.

Cell Culture
A549 ADC, NCI-H520 squamous cell carcinoma (SCC)

and NCI-H460 large-cell carcinoma (LCC) cell lines were

purchased from Food Industry Research and Development

Institute (Hsinchu, Taiwan). CL1-5 ADC cell line was

derived from one man with poorly differentiated lung

ADC23 and kindly provided by Professor P.C. Yang

(Department of Internal Medicine, National Taiwan

University Hospital, Taipei, Taiwan). A549 cells were

cultured in Dulbecco’s Modified Eagle Medium (DMEM,

Gibco, Invitrogen, Carlsbad, CA, USA), and CL1-5, NCI-

H520 and NCI-H460 cells were cultured in RPMI 1640

(Gibco). All media were supplemented with 10% fetal

bovine serum (Gibco), 100 units/mL penicillin-

streptomycin (Gibco), and 2 mM L-glutamine (Gibco).

The cells were incubated at 37°C in a humidified atmo-

sphere comprising 95% air/5% CO2.

Small Interfering RNA Transfection
Cells were transfected for 24 h with 10 nM negative control

(NC) small interfering RNA (siRNA), siRNA against IRF1

(GGGCUCAUCUGGAUUAAUA, GCUCAGCUGUGCG

AGUGUA, Dharmacon, Lafayette, USA) or siRNA against

KPNA2 (GAAAUGAGGCGUCGCAGAA, GAAGCUA

CGUGGACAAUGU,AAUCUUACCUGGACACUUU, GU

AAAUUGGUCUGUUGAUG, Dharmacon, Lafayette, USA)

with Lipofectamine RNAiMAX Transfection Reagent

(Invitrogen, Carlsbad, CA, USA).
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Quantitative Reverse Transcription

Polymerase Chain Reaction
Total RNA was extracted from cells using TRIzol

reagent (Invitrogen, Grand Island, NY, USA), and

cDNA was synthesized using a ToolsQuant II Fast RT

kit (TOOLS Biotechnology Co., Ltd. Taiwan).

Quantitative reverse transcription polymerase chain

reaction (qRT-PCR) was performed with Power SYBR

Green Master Mix (Applied Biosystems, Foster City,

CA, USA). The SYBR Green fluorescence intensity

was determined using a QuantStudio® 3 System

(Applied Biosystems), and the expression levels of

each mRNA were normalized to those of β-actin. The

sequences of the primers used are available upon

request.

Chromatin Immunoprecipitation Assay
Chromatin immunoprecipitation (ChIP) assays were per-

formed as described previously.11 Briefly, the crosslinked,

sonicated chromatin obtained from lung cancer cells was

precleared with Dynabeads Protein G (Invitrogen) before

the chromatin samples were incubated with E2F1 or IRF1

antibodies on a rotator at 4°C overnight. Dynabeads Protein

G were added for an additional 15 min. Mouse IgG antibody

(Santa Cruz Biotechnology) was used as the immunopreci-

pitation control. After extensive washes, the immunecom-

plexes were treated with proteinase K and decrosslinked at

65°C for 6 h. Bound DNA was extracted with a PCR pur-

ification kit (Qiagen, Chatsworth, CA, USA) and subjected to

PCR analysis using KPNA2 primers designed to span the

E2F1 and IRF1 binding sites. The sequences of primers are

listed as follows: IRF1 #1, sense 5ʹ-AGATAGCAAATT

GTAAGGAGGG-3ʹ and antisense 5ʹ-GTGCCAGGGCAA

TAAATTC-3ʹ; IRF1 #2, sense 5ʹ-GAGCCTCCTGAGGAT

CT-3ʹ and antisense 5ʹ-CCAAATAGTATTTCAACGTGT

TATCA-3ʹ; IRF1 #3, sense 5ʹ-CTCCAGGAAGTCTCAGC

-3ʹ and antisense 5ʹ-TATGAGACAAAGGGAGAAAGC

TAA-3ʹ; and E2F1, sense 5ʹ-ATGGGCACACAGCTTAG-3ʹ

and antisense 5ʹ-CTGAGTCTGTACCTGCGAA-3ʹ.

Cell Viability Assay
Cells (5×103 cells/well) were plated in 24-well plates and

cultured for the indicated time intervals. After culture, cell

viability was evaluated with the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenytetrazolium bromide (MTT) colorimetric

growth assay as described previously.5

Western Blotting Assay
Protein extracts were resolved by SDS-PAGE and transferred

to PVDFmembranes using a Tris-glycine buffer system. The

membranes were incubated with primary antibodies fol-

lowed by horseradish peroxidase-conjugated secondary anti-

bodies and developed using a chemiluminescent HRP

substrate (Merck Millipore, Darmstadt, Germany).

Hypoxia Treatment
Cells were seeded in 6-well plates, incubated under nor-

moxic conditions overnight and then transferred to

hypoxia chambers (SCI-tive; Baker Ruskinn, Sanford

MA) containing 1% O2 for the indicated times. Oxygen

dissolved in the media was removed for 4 h before it was

replaced under hypoxic conditions. Cells were collected

and lysed for Western blotting.

Statistics
All quantitative data are shown as the mean ± standard

deviation (SD). Significant differences in mRNA expres-

sion between the two groups were assessed by the Mann–

Whitney test. Significant differences in protein expression

in response to different inhibitor treatments were assessed

by unpaired t-test analysis. For cell viability assay, two-way

ANOVAwas used. All data were processed using GraphPad

Prism 5.01 software. A p value of less than 0.05 was

considered statistically significant.

Results
IRF1 Is a Potentially Suppressive TF

Regulating KPNA2 Expression in Lung

Adenocarcinoma Cells
To the best of our knowledge, E2F1/Dp1 and E2F7 are the

best-known TFs involved in KPNA2 gene expression.11,24,25

To identify the TF responsible for KPNA2 transcription, we

applied the available online software programs PROMO26

and TFBIND27 to analyze putative TF binding sites in the

KPNA2 promoter region (NC_000017.11., range from

68,035,602 to 68,046,859). Accordingly, 64 and 138 TF

candidates were predicted via PROMO and TFBIND,

respectively, to bind to the KPNA2 promoter sequences.

Among these candidates, 20 TFs overlapped between these

two programs: AP-1, ATF, C/EBPalpha, CREB, c-Jun, Elk-1,

GATA-1/2/3, GR, HNF-1A, IRF-1, IRF-2, NF-1, NF-Y, p53,

Pax-5, SRY, XBP-1 and YY1. Specifically, eleven canonical

IRF1-binding elements on the KPNA2 promoter region were

predicted; the region −854~-4 was predicted as the IRF1
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binding region by both PROMO and TFBIND (Figure 1A).

We then performed a ChIP assay with an IRF1 antibody and

primers that spanned three putative IRF1 binding sites

located in −854~-4 of the KPNA2 promoter region.

Figure 1B and C demonstrate the positive amplification of

two pairs of IRF1 primers in the A549 and CL1-5 cell lines,

confirming the associations between IRF1 binding sites in the

KPNA2 promoter. The positive binding of E2F1 to the

KPNA2 promoter was included as a positive control. Next,

RT-qPCR analysis of cells with IRF1 knockdown revealed

that the transcriptional activity of KPNA2 increased by 50%

and 13% in IRF1-knockdown A549 and CL1-5 cells, respec-

tively (Figure 1D and E). These results support a potential

role of IRF1 in negatively regulating KPNA2 transcription in

lung ADC cells. Our previous study showed that KPNA2

knockdown significantly reduced the viability of CL1-5 cells.

Therefore, we performed a cell viability assay to examine the

potentially suppressive role of IRF1 in cell proliferation and

observed that IRF1 knockdown enhanced cell viability,

whereas KPNA2 knockdown significantly diminished the

increased viability induced by IRF1 knockdown (Figure

1F). This result suggests that IRF1 may inhibit lung cancer

cell proliferation through suppression of KPNA2 expression.

IRF1 Is Downregulated in Cancerous

Tissues, and Its Low Expression

Correlates with Poor Survival in Lung

Cancer Patients
Both the diagnostic and prognostic values of IRF1 in lung

cancer are unclear. We therefore determined the clinical

significance of IRF1 in lung cancer using Oncomine

(www.oncomine.org), a cancer microarray database with

web-based data mining characteristics, and Kaplan-Meier

Plotter (http://kmplot.com), a database that integrates

mRNA expression and clinical data from five types of

human cancers. NSCLC, which includes ADC, SCC,

LCC, and some rare subtypes, is the most common type of

lung cancer, comprising approximately 85% of all

cases.28,29 ADC is the most common subtype of lung cancer

worldwide and is the predominant histological type of

NSCLC. SCC accounts for approximately 20–30% of all

lung cancers, representing the second most common type of

NSCLC. LCC accounts for approximately 3–10% of

NSCLC.29,30 Based on the Oncomine 4.5 database, we

found that the IRF1 mRNA expression level was signifi-

cantly lower (1.5-fold decreased, p<0.05) in NSCLC tissues

than in normal lung tissues in six ADC, four SCC, and one

LCC microarray datasets. These lung datasets were initially

published by Bhattacharjee,31 Su,32 Stearman,33 Beer,34

Selamat,35 Hou,36 Wachi37 and Garber38 (Figure 2A).

Furthermore, the Kaplan-Meier Plotter showed that lower

IRF1 mRNA expression was correlated with poor overall

survival (OS) in 673 ADC patients and first progression

survival (FPS) in 443 ADC patients (Figure 2B). This low

expression of IRF1 in cancer tissues was also significantly

correlated with worse FPS in 141 SCC patients but was not

associated with OS in 271 SCC patients (Figure 2C). We

also confirmed the IRF1 gene expression and outcome

association based on TCGA RNA-seq data, which contains

979 NSCLC cancer tissues (483 ADC and 486 SCC) and

109 normal lung samples. We found that IRF1 gene expres-

sion levels in these NSCLC cancer tissues were signifi-

cantly lower than those detected in normal tissues. The

Kaplan-Meier Plotter analysis also demonstrated that low

IRF1 expression was associated with a worse prognosis,

including shorter OS (log-rank p=0.025) and disease-free

survival (log-rank p=0.092), in 482 ADC and SCC patients.

These results collectively support the suppressive role of

IRF1 in lung cancer progression.

Both the mTOR and ATM Pathways are

Involved in Regulating KPNA2

Transcription by Modulating E2F1 and

IRF1 Expression in Lung Cancer Cells
Our quantitative proteomics analysis revealed that KPNA2

is involved in the DNA damage stimulation response,

DNA metabolic processes, DNA repair, cell cycle and

cell migration.6 The serine/threonine kinase ATM is an

important cell cycle checkpoint kinase and a sensor to

DNA damage and oxidative stress.39–41 Our previous

study also indicated that the mTOR pathway contributes

to E2F1/Dp1-mediated KPNA2 transcription in lung can-

cer cells.11 In this study, we treated cells with the mTOR

inhibitor rapamycin (Rap) and an ATM inhibitor (ATMi)

to test whether the mTOR and ATM pathways play a role

in regulating E2F1/Dp1- and/or IRF1-mediated KPNA2

transcription. Figure 3A shows that these two inhibitors

significantly reduced KPNA2 mRNA levels in two lung

ADC cell lines. However, NCI-H520 SCC and NCI-H460

LLC cells showed only minor changes in the modulation

of KPNA2 gene expression in response to both mTOR and

ATM inhibitors. Importantly, the protein level of IRF1 was

dramatically increased, but E2F1 expression was

decreased in two lung ADC cell lines after Rap and
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Figure 1 IRF1 binds to the promoter region of KPNA2 and negatively modulates KPNA2 transcription. (A) Diagram depicting the regions of predicted IRF1 binding sites (highlighted

with blue and green boxes) within the KPNA2 promoter region (NC_000017.11, ranging from 68,035,602 to 68,046,859) based on two software packages, PROMO and TFBIND. The

red boxes indicate the location of primer pairs used in the ChIP assay. (B–C) The ChIP assay detected positive binding of IRF1 to the KPNA2 promoter sequence. Fragmented

chromatin prepared from A549 (B) and CL1-5 cells (C) was immunoprecipitated with IgG, IRF1 or E2F1 antibodies, as indicated. An anti-E2F1 antibody was used as a positive control.

DNA isolated from the immunoprecipitated material was amplified by PCR, and the resulting fragments were analyzed by agarose gel electrophoresis. (D–E) IRF1 knockdown

increased the mRNA level of KPNA2 in lung ADC cells. A549 or CL1-5 cells were transfected with negative control (NC) or IRF1 siRNA for 24 h, and total RNA was purified and

subjected to qRT-PCR using IRF1 and KPNA2 primers. mRNA levels were calculated as a ratio relative to the control treatment. The data are presented as the mean ± SD from three

independent experiments. *p<0.05, ***p<0.0001. (F) KPNA2 knockdown suppressed the enhanced cell viability induced by IRF1 knockdown. CL1-5 cells were transfected with NC,

IRF1 siRNA or KPNA2 siRNA as indicated. The cell viability was determined via the MTT colorimetric growth assay at the indicated time intervals. **p<0.01 and ***p<0.001.
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Figure 2 Low expression of IRF1 correlates with poor prognosis in NSCLC patients. (A) IRF1 gene expression levels in NSCLC tissues (ADC, SCC and LCC) were significantly

lower than those detected in normal tissues. Box plots were derived from themRNA expression datasets fromOncomine that compared IRF1mRNAexpression inNSCLC tissues

and normal lung tissues. The numbers shown in the parentheses indicate the case number used in the microarray analysis. (B–C) Low expression of IRF1 was positively associated
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ATMi treatment (p<0.05, unpaired t-test) (Figure 3B and

C). Similar results were observed in NCI-H520 cells trea-

ted with mTOR inhibitor. Unexpectedly, Rap increased

E2F1 expression in NCI-H460 cells (Figure 3B and C).

IRF1 knockdown restored the reduced level of KPNA2 in

ATMi-treated A549 cells, further supporting the suppres-

sive role of IRF1 in regulating KPNA2 expression in ADC

cells (Figure 3D). These results collectively suggest that

the mTOR and ATM pathways modulate E2F1 and IRF1

expression in NSCLC cells. However, IRF1 and E2F1 may

play a specific and potent role in the regulation of KPNA2

gene transcription in lung ADC cells. We therefore pro-

pose that mTOR and ATM activation contribute to KPNA2

overexpression by suppressing IRF1 expression and

enhancing E2F1 expression in lung ADC cells

(Figure 4E).
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Figure 3 Both the mTOR and ATM pathways are involved in regulating KPNA2 transcription by modulating E2F1 and IRF1 expression in lung ADC cancer cells. (A) mTOR and

ATM inhibitors significantly reduced KPNA2 mRNA levels in lung ADC and SCC cells. NSCLC cells were treated with rapamycin (Rap) or an ATM inhibitor (ATMi) for 24 h. Total

RNAwas purified from the cells and processed for qRT-PCR with KPNA2 primers. The KPNA2 mRNA level was calculated as a ratio relative to the level in the control treatment.

(B–C) mTOR and ATM inhibitors significantly increased IRF1 protein levels but reduced E2F1 protein levels in lung ADC cells. (B) NSCLC cells were treated with Rap or ATMi.

After 24 h, the cell lysates were prepared for Western blotting using anti-E2F1 and anti-IRF1 antibodies, as indicated. (C) Quantification of the IRF1 and E2F1 expression levels

derived from panel B. (D) IRF1 knockdown restored the reduced levels of KPNA2 in ATM inhibitor-treated cells. A549 cells were transfected with NCor IRF1 siRNA. After 24 h of

transfection, cells were treated with ATMi (10 μM) for an additional 24 h, followed byWestern blotting with anti-IRF1 and anti-KPNA2 antibodies. β-actin was used as an internal
control. The data are presented as the mean ± SD from three independent experiments. *p<0.05, **p<0.01 and ***p<0.0001.
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EGF Stimulation and Hypoxia Contribute

to the Transcriptional Regulation of

KPNA2 by Suppressing IRF1 Expression

and Promoting E2F1 Expression
EGF and hypoxia are common in microenvironments that

contribute to lung cancer progression. We tested whether

these two factors promote KPNA2 expression by modulating

IRF1 and E2F1 expression. We observed that EGF treatment

enhanced KPNA2 and E2F1 but suppressed IRF1 protein

expression in A549 ADC cells (Figure 4A). In contrast, EGF

treatment significantly increased IRF1 levels in NCI-H460

LCC cells (Figure 4B). Western blotting revealed that the

mTOR but not the ATM pathway was upregulated upon EGF

treatment. We also found that hypoxia induced KPNA2 and

E2F1 expression but reduced IRF1 expression in A549 ADC

cells but not in NCI-H460 LCC cells (Figure 4C and D). The

reduction in phospho-p70S6K levels and elevation of HIF-

1α, Slug and LDHA levels represent the molecular changes

induced by hypoxic stress.42–45 Accordingly, we propose that

both EGF-activated mTOR and hypoxia-induced ATM sig-

naling promote KPNA2 transcription by enhancing E2F1

expression and suppressing IRF1 expression in lung ADC

cells (Figure 4E).

Discussion
IRF1 is one of the best-known IRF genes involved in cancer

biology. Both oncogenic and antioncogenic roles of IRF1

have been documented.16,18 Specifically, IRF1 activates sev-

eral target genes associated with cell cycle regulation, growth

suppression, apoptosis induction and immune responses, and

these genes are responsible for the antitumor activity of

IRF1. KPNA2 is a common oncogenic protein in numerous

cancers, and KPNA2 overexpression is involved in the

malignant transformation of cancer cells.3,4,46 Herein, we

identified IRF1 as a novel and negative regulator of

KPNA2 transcription, which supports the theory that IRF1

plays an antioncogenic role by modulating the susceptibility

of cells to transformation via oncogenes such as KPNA2.

As a tumor suppressor, IRF-1 can be inactivated by a loss

of heterozygosity at the DNA level, exon skipping at the

mRNA level, and SUMOylation or oncoprotein interaction at

the protein level.18 We show that activation of both mTOR

and ATMwas involved in negatively regulating IRF1 expres-

sion. The knowledge regarding the regulation between ATM

and IRF1 is limited. In human fibroblasts and malignant

melanoma cells, IRF1 is upregulated and stabilized through

an ATM-dependent pathway in response to irradiation or

genotoxic stress.18,47 In addition, mTOR signaling has been

reported to be suppressed by ATM-induced LBK1/AMPK/

TSC2 under oxidative stress independent of DNA damage.48

These studies and ours suggest that the regulation of IRF1 is

dependent on the cell type. The molecular mechanisms of

mTOR- and/or ATM-mediated suppression of IRF1 in cancer

cells require further exploration in the future.

Hypoxic stress triggers alterations of the microenviron-

ment surrounding the tumor tissue via different adaptive

mechanisms that promote cancer progression, including cell

proliferation, glucose metabolism, inflammation, angiogen-

esis, and epithelial-mesenchymal transition.49,50 Specifically,

HIF is the master TF in response to hypoxia, and hundreds of

genes have been reported as HIF targets in different cell types.

HIF-1 overexpression enhances the expression of Slug,

LDHA, GLUT, TWIST, c-Myc, and VEGF in tumorigenesis,

which has been well documented.42–45 Hypoxia also induces

ATM activation in the absence of DNA damage, but severe

hypoxia activates ATM signaling by inducingDNAdamage.51

A recent study showed that ATM can phosphorylate S696 on

the inhibitory domain of HIF-1α, which enhances HIF-1α
activity under hypoxic conditions.52 Furthermore, this media-

tion is mTORC1-dependent, in which phosphorylation

and activation of HIF-1α by ATM require mTORC1

suppression.53 In addition, Guerra et al reported that Myc is

required for the activation of the ATM-dependent checkpoints

in response to DNA damage.43 The interplay between onco-

genic c-Myc and HIF-1α enhances the metabolic needs of the

tumor, which in turn contribute to cancer cell adaptation and

survival under hypoxic stress.54,55 In the current study, we

found that hypoxia might induce KPNA2 expression by reg-

ulating the mTOR and ATM pathways, which is consistent

with our previous finding that KPNA2 is involved in cell cycle

progression, DNA metabolism, DNA repair, transport of cel-

lular components and cell migration.6

The genetic background of cancer cells is heterogeneous,

and defective tumor suppressors or mutated oncogenes pro-

mote lung cancer formation and progression. Constitutive

activation of the epidermal growth factor receptor (EGFR)

caused by EGFR gene mutations was observed in over 60%

of cases of lung ADC in Eastern Asia.56,57 Several lines of

evidence support the hypothesis that ATM kinase is a tumor

suppressor gene.40,58,59 Recently, Petersen et al reported that

loss of tumor-specific ATM protein expression is an indepen-

dent prognostic factor in early resected lung cancer.59 ATM

polymorphisms associated with increased lung cancer risk and

ATM gene mutations with a concomitant increase in tumor

tendency were also described.58 However, we observed that
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Figure 4 EGF stimulation and hypoxia contribute to the transcriptional regulation of KPNA2 by suppressing IRF1 expression and promoting E2F1 expression. (A–B) EGF
induced KPNA2 and E2F1 expression but suppressed IRF1 protein expression in lung ADC cells. A549 (A) and NCI-H460 (B) cells were cultured in the presence or

absence of EGF (25 µg/mL) for the indicated times. Cell lysates were prepared and subjected to Western blotting using antibodies for the indicated proteins. β-actin was

used as an internal control, and phospho-p70S6K was used as a positive control for mTOR activation. The data are presented as the mean ± SD from three independent

experiments. *p<0.05, **p<0.01 and ***p<0.0001. (C–D) Hypoxia induced KPNA2 and E2F1 protein expression but suppressed IRF1 protein expression in lung ADC cells.

A549 (C) and NCI-H460 (D) cells were cultured in normoxic or hypoxic conditions for the indicated times. Cell lysates were prepared and subjected to Western blotting

as described above. The reduction in phospho-p70S6K levels and the increases in HIF-1α, Slug and LDHA levels represent molecular changes in response to hypoxia. (E)
Proposed working model of the mTOR and ATM signaling pathways in regulating KPNA2 transcription in lung ADC cells. Both EGF-activated mTOR and hypoxia-induced

ATM signaling promote KPNA2 transcription by simultaneously enhancing E2F1 expression and suppressing IRF1 expression in lung ADC cells.
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hypoxia induced ATM activation, which in turn suppressed

IRF1, suggesting that the microenvironment plays a critical

role in modulating KPNA2 transcription. Although the

detailed regulation between EGFR and ATM signaling

requires further investigation, the present study reveals that

growth stimulation and hypoxia can modulate oncogenic

KPNA2 transcription by simultaneously enhancing the

expression of its positive regulator E2F1 and suppressing the

expression of its negative regulator IRF1 in lung ADC cells.
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