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Abstract: Gastric cancer (GC) is one of the leading causes of tumor-related mortality. In

addition to surgery and endoscopic resection, systemic therapy remains the main treatment

option for GC, especially for advanced-stage disease and for cases not suitable for surgical

therapy. Hence, improving the efficacy of systemic therapy is still an urgent problem to

overcome. In the past decade, the essential roles of microRNAs (miRNAs) in tumor treat-

ment have been increasingly recognized. In particular, miRNAs were recently shown to

reverse the resistance to chemotherapy drugs such as 5-fluorouracil, cisplatin, and doxor-

ubicin. Synthesized nanoparticles loaded with mimics or inhibitors of miRNAs can directly

target tumor cells to suppress their growth. Moreover, exosomes may serve as promising safe

carriers for mimics or inhibitors of miRNAs to treat GC. Some miRNAs have also been

shown to play roles in the mechanism of action of other anti-tumor drugs. Therefore, in this

review, we highlight the research progress on microRNA-based therapy in GC and discuss

the challenges and prospects associated with this strategy. We believe that microRNA-based

therapy has the potential to offer a clinical benefit to GC patients, and this review would

contribute to and motivate further research to promote this field toward this ultimate goal.
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Introduction
Gastric cancer (GC) has an extremely high rate of mortality and is ranked as one of the

leading causes of cancer-related death worldwide.1,2 Besides adequate surgical resec-

tion and endoscopic resection, adjuvant and neoadjuvant therapies are generally used to

improve the disease-free survival and overall survival of patients with GC.3,4 However,

it remains an important challenge to develop more effective systematic treatments for

GC, especially for patients with inoperable disease at diagnosis or recurrent disease

after resection. The development of resistance to standard chemotherapy drugs such as

5-fluorouracil (5-FU), cisplatin, and doxorubicin has been the main cause of che-

motherapy failure. Moreover, first-line targeted therapies such as trastuzumab and

ramucirumab are not suitable for the majority of patients with GC.5,6 Hence, extensive

research effort has focused on solving this current treatment challenge by gaining

a better understanding of the underlying pathogenic mechanisms and conducting

preclinical studies for ultimate clinical application.

In the last decade, exploration of the roles of miRNAs in carcinogenesis,

treatment response, and as potential therapeutic targets has attracted widespread

attention, with substantial progress made in better understanding mechanisms.7 On

the basis of mechanism-related studies, there has been increasing effort made to
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further explore the practical applications of these funda-

mental findings, which have revealed the essential roles of

microRNAs in tumor therapy.8 For example, with respect

to drug resistance, over-expression of miR-939 was shown

to enhance 5-FU-induced chemosensitivity by suppressing

cellular growth and inducing apoptosis both in vitro and

in vivo.9 Moreover, caudally injected exosomes loaded

with the inhibitor of miR-214 (exo-anti-214) could reverse

the chemoresistance to cisplatin in a nude mouse model of

GC.10 In addition, synthetic carriers have been used to

deliver the confirmed anti-tumor miRNAs to the precise

tumor site so as to directly inhibit GC, such as “PPP”,

which was constructed by modifying phenylboronic acid

onto the surface of a polyamidoamine dendrimer and poly

(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-

PCL) nanoparticles coated with trastuzumab.11,12 Indeed,

these studies have led to a major advance in the clinical

application of miRNAs. Moreover, these findings sug-

gested that in addition to their function as biomarkers,

miRNAs can also play roles in the treatment of tumors.

Nevertheless, despite these many important findings, there

has been no study that summarizes these recent advances

in microRNA-based therapy for GC.

Therefore, in this review, we mainly focus on the

advances in microRNA-based therapies for GC, including

chemotherapy, targeted therapy, tumor immunotherapy,

and others. In particular, we highlight the key miRNAs

reported to affect the actions of commonly used che-

motherapy drugs, which will facilitate further research on

drug resistance. Moreover, the listed carriers that loaded

mimics or inhibitors of miRNAs can emphasize the pro-

mising applications of anti-tumor miRNAs in targeted

therapy and immunotherapy, which should promote their

valuable consideration for clinical practice.

microRNA-Based Chemotherapy
Fluorouracil Resistance
According to the National Comprehensive Cancer Network

clinical practice guidelines in GC, 5-FU is recommended as

the first-line anti-tumor drug. Several miRNAs have been

identified to participate in the anti-tumor mechanism of 5-FU

by decreasing the expression levels of various target genes.

For example, overexpression of miR-939, miR-623, miR-429,

miR-204, miR-124 or miR-31 was shown to enhance 5-FU-

induced chemosensitivity by compromising tumor cell growth

or inducing apoptosis.9,13–19 Among the above-mentioned

miRNAs, miR-939 and miR-204 were the only two miRNAs

with confirmed ability of reversing drug resistance both

in vitro and in vivo, providing more convening evidence

than others.9,15 A role of miR-31 in chemosensitivity was

reported by two separate research groups and may have

more obvious effects.17–19 Moreover, reduced miR-6785-5p,

miR-193-3p, or miR-147 expression could also increase the

chemosensitivity of GC to 5-FU.20–22 Interestingly, miR-193-

3p and miR-147 both target phosphatase and tensin homolog

(PTEN) to exert their functions in GC.21,22 In addition to miR-

193-3p and miR-147, PTEN was identified as the target gene

of numerous other miRNAs and to play a role in other drug

resistance and treatment mechanisms of GC, which will be

discussed in further detail below. The full list of miRNAs

reported to be involved in the 5-FU resistance in GC to date

is provided in Table 1.

Cisplatin Resistance
Cisplatin (DDP) is another first-line chemotherapy drug,

and the mechanism of cisplatin resistance has been the

most frequently studied according to our review of the

literature. As shown in Table 2, the majority of reported

miRNAs (34 at the time of writing this review) can reverse

DDP resistance, whereas some miRNAs (13 included in

this review) could induce DDP resistance. Overexpression

of miR-421, miR-320a, miR-192-5p, miR-181a, miR-

148a-3p, miR-145 and miR-let-7b, and reduced expression

of miR-135b-5p and miR-21-5p could enhance the chemo-

sensitivity to DDP, which was observed in both GC cell

lines and in animal tumor models.23–30 These miRNAs

could become more promising targets for further clinical

research after resolving some key technical problems, such

as selecting suitable carrier for mimics and inhibitors of

miRNAs. Moreover, although miR-218, miR-200c, miR-

198, miR34a, and miR-30a were only investigated in cell

lines, each of these microRNAs was reported to be

involved in DDP resistance in more than one separate

study,32–40 suggesting that they warrant further attention.

The miRNAs reported to be involved in the mechanism

of DDP resistance mainly influence the phosphatidylinositol

3-kinase (PI3K)/AKT, mitogen-activated protein kinase

(MAPK), and nuclear factor kappa B (NF-κB) signaling

pathway.29,30,38,39,41–49 However, different miRNAs may

have opposite effects on the same pathway. For example,

miR-206 targets MAPK to enhance the chemosensitivity to

DDP, and miR-135b-5p targets mammalian ste20-like kinase

1 (MST1) through the MAPK signaling pathway to induce

drug resistance.29,43 Thus, it may be necessary to consider the

antagonistic effects of different miRNAs in reversing drug
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resistance in future studies. In addition, some genes were

identified to be targets of more than one miRNA, such as

survivin (miR-218, miR-34a), PTEN (miR-106a, miR-21-

5p), P-glycoprotein (P-gp) (miR-129, miR-30a), and insulin-

like growth factor 1 receptor (IGF1R) (miR-1271,

miR-143).30,32,38,46,48,50–53 Thus, it will be worth considering

whether there is a synergistic effect between different

miRNAs in future research on DDP resistance.

Furthermore, some long non-coding RNAs (HOTAIR,

MALAtl, CASC2) and circular RNAs (hsa_circ0081143,

circAKT3) were found to function as competing endogenous

RNAs in the regulation of cisplatin resistance.36,39,45,54–56

These findings also provide more possibilities for

microRNA-based therapies in GC treatment.

Other Single-Drug Resistance
Some studies have also indicated roles of miRNAs in the

resistance of other clinically used chemotherapy drugs,

including doxorubicin (DOX; also named adriamycin,

ADR), paclitaxel (PTX), oxaliplatin (OXA), vincristine

(VCR), taxol, and docetaxel (Table 3). DOX, as an anthra-

cycline-based anti-tumor agent, is widely used for the

treatment of various solid tumors such as GC. Increased

expression levels of miR-494, miR-422a, miR-140, miR-

103/107, and miR-16-1, and reduced levels of miR-501-5p

and miR-21-5p promoted the chemosensitivity to DOX

(for more details, refer to Table 3).57–64 Among these,

miR-103 and miR-107 were the only miRNAs demon-

strated to have effects on resistance both in vitro and

in vivo.60 Another important miRNA that is taking the

spotlight in chemotherapy resistance research is miR-21.

miR-21-5p targets PTEN to induce both DOX and DDP

resistance.30,48,64 Other studies showed that miR-21 targets

P-gp to induce PTX resistance.65 Notably, PTEN is not

only a target gene of miR-21-5p but is also a target of

miR-193-3p, miR-147, and miR-106a.21,22,46 Through tar-

geting PTEN, miRNAs regulate 5-FU, DDP, and DOX

resistance in GC.21,22,30,46,48,64 Hence, we speculated that

miR-21-5p and its target gene PTEN may play essential

and broad roles in regulating drug resistance in GC.

As shown in Table 3, limited studies have been con-

ducted to investigate the roles of miRNAs in the resistance

mechanisms to other chemotherapy drugs. MiR-155-5p,

miR-34c-5p, and miR-21 were found to be related to

PTX resistance;65–67 miR-361-3p, miR-135a, and miR-

27a affect OXA resistance;68–70 miR-1284 and miR-647

regulated VCR resistance;71,72 and miR-200a inhibited

taxol resistance, while miR-361-5p suppressed docetaxel

Table 1 miRNAs Involved in the 5-Fluorouracil (5-FU) Resistance in Gastric Cancer

miRNA Target(s)* Expression

Level**

Mechanism Object*** Reference

miR-6785-5p FOX4 ↓ Apoptosis Cell lines (SGC-7901/5-Fu) [20]

miR-939 SLC34A2 ↑ Enhance cell growth and apoptosis

via Raf/EMK/EPK pathway

Cell lines (SGC7901, MNK45 and

AGS) and in vivo (SGC7901)

[9]

miR-623 CCND1 ↑ Apoptosis Cell lines (SGC7901 and BGC823) [13]

miR-429 Bcl-2 ↑ Apoptosis Cell lines (AGS) [14]

miR-204 TGFBR2 ↑ Suppressed TGFBR2-mediated EMT

via TGFβ pathway

Cell lines (AGS and SGC7901) and

in vivo (AGS)

[15]

miR-193-3p PTEN ↓ Not investigated Cell lines (AGS and MKN45) [21]

miR-147 PTEN ↓ PI3K/AKT signaling pathway/

apoptosis

Cell lines (AGS and BGC823) [22]

miR-124 EZH2 ↑ Apoptosis Cell line (AGS) [16]

miR-31 ZH2 ↑ G2/M cell cycle arrest Cell lines (AGS) [17]

RhoA ↑ Not investigated Cell line (MKN45) [18]

E2F6/SMUG1 ↑ Not investigated Cell line (MKN45) [19]

Notes: *Targets genes were confirmed by Western blotting, RT-qPCR or dual-luciferase. **Upregulation (↑) or downregulation (↓) of miRNAs enhance chemosensitivity.

***The drug resistance properties of microRNAs were investigated in cell lines or in vivo.
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Table 2 miRNAs Involved in the Cisplatin (DDP) Resistance in Gastric Cancer

miRNA Target(s)* Expression

Level**

Mechanism Object*** Reference

miR-4295 LRIG1 ↓ LRIG1-mediated EGFR/PI3K/

Akt signaling pathway

Cell lines (MKN28 and MKN45) [41]

miR-1271 IGF1R, IRS1,

mROR, BCL2

↑ Apoptosis Cell lines (SGC7901/DDP) [52]

miR-646 CDK6 ↑ hsa_circ_0081143/miR-646/

CDK6

Cell lines (SGC7901 and MGC803) [54]

miR-524-5p SOX9 ↑ Modulate proliferation and

metastasis

Cell lines (SC-M1 and AZ521) [116]

miR-421 E-cadherin,

caspase-3

↑ HIF-1α/miR-421/E-cadherin

and caspase

Cell lines (SGC7901 and AGS) and in vivo

(SGC7901)

[23]

miR-375 ERBB2 ↑ ERBB2/PI3K/Akt pathway Cell lines (SGC7901 and SGC7901/DDP) [42]

miR-320a ADAM10 ↑ Not investigated Cell lines (SGC7901 and BGC823) and

in vivo (SGC7901)

[24]

miR-218 survivin ↑ Not investigated Cell lines (SGC7901 and SGC7901/DDP) [32]

Not investigated ↑ Not investigated Cell lines (SGC7901) [33]

miR-214 PARP9, XRCC,

LIN28B, CD81

↓ Not investigated Cell lines (SGC7901 and SGC7901/DDP) [10]

miR-206 MAPK ↑ MAPK signaling pathway Cell lines (SGC7901, SGC7901/DDP,

BGC823 and BGC823/DDP)

[43]

miR-200c ZEB2 ↑ Not investigated Cell lines (SGC7901/DDP) [34]

VEGFR, MMP9,

RhoE

↑ Apoptosis Cell line (KATOIII) [35]

miR-198 PIK3R1 ↑ circAKT3/miR-198/PIK3R1 Cell lines (BGC823/CDDP, SGC7901/

CDDP)

[36]

FGFR1 ↑ Apoptosis Cell line (SGC7901) [37]

miR-193a-3p SRSF2 ↓ Mitochondrial apoptosis

pathway

Cell lines (CD44+ MKN45 and CD44-

MKN45)

[117]

miR-192-5p ERCC3, ERCC4 ↑ NER pathway Cell lines (SGC7901 and SGC7901/DDP)

and in vivo (SGC7901/DDP)

[25]

miR-181a ATG5 ↑ Autophagy Cell lines (SGC7901/DDP) and in vivo

(SGC7901/DDP)

[26]

miR-149 FoxM1 ↑ Not investigated Cell lines (SGC7901/DDP) [118]

miR-148a-3p AKAP1, RAB12 ↑ Autophagy Cell lines (BGC823/DDP and SGC7901/

DDP) and in vivo (BGC823 and BGC823/

CDDP)

[27]

miR-145 APRIL ↑ NF-κB signaling pathway Cell lines (SGC7901 and AGS) and in vivo

(AGS)

[31]

miR-143 IGF1R, BCL2 ↑ Apoptosis Cell lines (SGC7901/DDP) [53]

(Continued)
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Table 2 (Continued).

miRNA Target(s)* Expression

Level**

Mechanism Object*** Reference

miR-138-5p ERCC1, ERCC4 ↑ Not investigated Cell lines (SGC7901/DDP) [119]

miR-136 AEG-1, BCL2 ↑ Apoptosis Cell line (AGS) [120]

miR-135b-5p KLF4 ↓ NF-κB signaling pathway Cell lines (SNU1 and MKN45) [44]

MST1 ↓ MAPK signaling pathway Cell lines (MKN28 and MKN45) and

in vivo (Not Mentioned)

[29]

miR-129 P-gp ↑ Apoptosis Cell lines (BGC823/DDP and MKN45/

DDP)

[50]

miR-126 EGFA, PIK3R2 ↑ HOTAIR/miR-126/VEGFA and

PIK3R2→PI3K/AKT/MRP1

pathway

Cell lines (SGC7901 and SGC7901/DDP) [45]

miR-125b HER2 ↑ Not investigated Cell lines (HGC27 and MGC803) [121]

miR-106a PTEN ↓ PTEN/Akt pathway Cell line (SGC7901 and SGC7901/DDP) [46]

miR-99a and

miR-491

CAPNS1 ↓ Not investigated Cell lines (BGC823, BGC823/DDP,

SGC7901 and SGC7901/DDP)

[122]

miR-34a survivin ↑ PI3K/AKT/surviving signaling

pathway

Cell lines (SGC7901 and SGC7901/DDP) [38]

ABCB1, ABCC,

ABCG2

↑ HOTAIR/miR-34a→PI3K/Akt

and Wnt/β-catenin signaling

pathway

Cell lines (BGC823/DDP, and SGC7901/

DDP)

[39]

MET ↑ Proliferation and apoptosis Cell lines (SGC7901 and SGC7901/DDP) [40]

miR-30b ATG5 ↑ MALAt1/miR-30b/ATG5 Cell lines (AGS/DDP and HGC27/DDP) [55]

miR-30a Snail, Vimentin ↑ EMT Cell lines (SGC7901 and SGC7901/DDP) [123]

P-gp ↑ Autophagy Cell lines (SGC7901 and SGC7901/DDP) [51]

miR-26a NRAS, E2F2 ↑ Not investigated Cell lines (SGC7901 and SGC7901/DDP) [124]

miR-25 FOXO3a ↓ Not investigated Cell lines (SGC7901 and SGC7901/DDP) [125]

miR-22 ENO1 ↑ miR-22↑/ENO1↓/

glycolysis↓→reverse cisplatin-

resistance

Cell lines (BGC823/DDP and MGC803) [126]

miR-21-5p Caspase-8 ↓ NF-λB/miR-21/caspase-8/P-gp Cell lines(BGC823, BGC823/DDP,

SGC7901 and SGC7901/DDP)

[47]

PTEN ↓ PTEN/PI3K/Akt pathway Cell lines (SGC7901 and SGC7901/DDP) [48]

PTEN ↓ PTEN/PI3K/Akt pathway Cell lines (MFC and MGC803) and in vivo

(MFC)

[30]

miR-20a CYLD ↓ NF-κB signaling pathway Cell lines (SGC7901 and SGC7901/DDP) [49]

miR-19a Not investigated ↓ CASC2(lncRNA)/miR-19a Cell lines (BGC823, BGC823/DDP,

SGC7901 and SGC7901/DDP)

[56]

miR-7 mTOR ↑ Not investigated Cell line (SGC7901) [127]

(Continued)
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resistance.73,74 Among the above-mentioned miRNAs,

only miR-135a, miR-1284, and miR-647 were studied

both in vitro and in vivo.69,71,72 Interestingly, miR-361-

3p and miR-361-5p were reported to regulate the resis-

tance of different drugs.68,74 This indicates that to best

exploit the potential of microRNA-based tumor therapies,

we need to pay attention to both the 3p- and 5p-arms of the

same miRNA in addition to considering the functions of

different miRNAs.

Multidrug Resistance
Although chemotherapy resistance is a challenge for all cancer

treatments, it is considered to be a particularly more complex

problem in the clinical treatment of GC. In addition to single-

drug resistance, multidrug resistance (MDR) may be even

more common in clinical practice. Some studies have focused

specifically on the roles of miRNAs in MDR (Table 4). Both

in vitro and in vivo studies confirmed that miR-508-5p, miR-

23b-3p, andmiR-590-5p strongly regulateMDR.75–79 Shang’s

group revealed that the restoration of miR-508-5p reversed the

5-FU, DDP, DOX, and VCR resistance of a xenograft in an

animal model by targeting ATP binding cassette subfamily

B member 1 (ABCB1) and zinc ribbon domain-containing 1

(ZNRD1).75 The same group further identified that the miR-

27b-CCNG1-P53-miR-508-5p axis regulated the MDR of

GC.76 They transplanted SGC7901/VCR cells into the right

flanks of mice, which were then treated with an agomir for

miR-27b or control oligonucleotides before 5-FU or DDP

therapy, demonstrating that miR-27b overexpression reversed

drug resistance. An et al77 found that miR-23b-3p sensitized

GC cells to 5-FU, DDP, and VCR by targeting autophagy-

related gene 12 (ATG12) and high-mobility group box 2

(HMGB2). Subsequently, another study showed that the long

non-coding RNA MALAT1 regulates autophagy-associated

chemoresistance via the miR-23b-3p/ATG12 pathway.78

Shen et al79 found that miR-590-5p reduces the sensitivity of

GC cells to DDP and PTX. To further verify the effect of miR-

590-5p, stable miR-590-5p-expressing SGC7901 cells were

inoculated into nude mice and the tumor-bearing mice were

treated with DDP, demonstrating that miR-590-5p reduced

chemosensitivity. Compared with other reported miRNAs

related to MDR (see Table 4 for the full list), there is more

sufficient and reliable preclinical evidence for these three

above-mentioned miRNAs, demonstrating their suitability

for further research toward their potential clinical application.

Figure 1 schematically illustrates the proposed relationship

between chemotherapy drugs and relevant miRNAs based on

the results of studies of single-drug resistance and MDR.

Figure 2 shows the relationship between miRNAs that have

an effect on drug resistance and their target genes. It is now

clear that some miRNAs can regulate the resistance of differ-

ent drugs simultaneously. Therefore, this review should be

beneficial for the design of future drug resistance studies to

select themost suitablemiRNAs according to different clinical

application purposes. Given the pace of this field along with

continuous advances in sequencing technologies, we also

believe that more miRNAs that participate in the drug resis-

tance mechanisms will be discovered with further research.

microRNA-Based Targeted Therapy
Thus far, the majority of research focused on microRNA-

based targeted therapy has focused on miRNAs that affect

the resistance to targeted drugs (trastuzumab and lapatinib)

and development of new types of transport carriers (syn-

thetic nanoparticles/compounds and exosomes).

Trastuzumab and Lapatinib
Trastuzumab as a HER2-targeting antibody has been suc-

cessfully used in combination with chemotherapy for the

treatment of HER2-neu overexpressing GC. Trastuzumab

resistance is considered to be a difficult problem in clinical

application. Increased miR-223, miR-200c, and reduced

miR-21 were reported to reverse trastuzumab resistance via

different mechanisms.80,81 MiR-223 could modulate apopto-

sis to enhance the sensitivity of a HER2-positive GC cell line

to trastuzumab through targeting F-box and WD repeat

domain-containing 7 (FBXW7),80 whereas miR-200c inhibits

TGF-β-induced epithelial–mesenchymal transition to restore

Table 2 (Continued).

miRNA Target(s)* Expression

Level**

Mechanism Object*** Reference

miR-let-7b AURKB ↑ Not investigated Cell lines (SGC7901/DDP) and in vivo

(SGC7901/DDP)

[28]

Notes: *Targets genes were confirmed by Western blotting, RT-qPCR or dual-luciferase. **Upregulation (↑) or downregulation (↓) of miRNAs enhance chemosensitivity.

***The drug resistance properties of microRNAs were investigated in cell lines or in vivo.
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trastuzumab sensitivity through inhibiting zinc finger E-box

binding homeobox 1 (ZEB1) and ZEB2,81 and miR-21 sig-

nificantly suppressed trastuzumab-induced apoptosis and

decreased the sensitivity of GC cells to trastuzumab through

regulating PTEN expression.82 In addition to the above three

miRNAs, Sun et al83 reported a correlation between miR-

125b and trastuzumab resistance according to the clinico-

pathologic characteristics of patients with GC. Nishida et al84

reported that the inhibitory effect of miR-125a-5p on GC

proliferation was enhanced in combination with trastuzumab.

As an alternative strategy, nanoparticles coated with trastu-

zumab were used as carriers to transfer miRNAs or

Table 3 miRNAs Involved in Other Drug Resistance in Gastric Cancer

miRNA Drug Target(s)* Expression

Level**

Mechanism Object*** Ref.

miR-1284 VCR EIF4A1 ↑ Not investigated Cell lines (SGC7901/VCR) and in vivo (SGC7901/

VCR)

[71]

miR-647 VCR ANK2 ↑ Apoptosis Cell lines (SGC7901/VCR) and in vivo (SGC7901/

VCR)

[72]

miR-501-5p DOX BLID ↓ Akt signaling

pathway

Cell lines (SGC7901 and SGC7901/ADR) [62,63]

miR-494 DOX PDE4D ↑ Not investigated Cell line (AGS/DOX) [57]

miR-422a DOX MEF2D ↑ lncR-D63785

/miR-422a/

MEF2D

Cell line (BGC823) [58]

miR-361-3p OXA ABCB1 ↑ lncR-BLACAT1

/miR-361/

ABCB1

Cell lines (BGC823/OXA and SGC7901/OXA) [68]

miR-361-5p Docetaxel FOXM1 ↑ PI3K/Akt/

mTOR pathway

Cell lines (SGC7901 and MKN28) [74]

miR-200a Taxol β-catenin ↑ Wnt/β-catenin

signaling

pathway

Cell lines (SGC7901 and BGC823) [73]

miR-155-5p PTX GATA3,

TP53INP1

↓ Not investigated Cell lines (MGC803 and MGC803/PTX) [66]

miR-140 DOX SOX4 ↑ Not investigated Cell line (HGC27) [59]

miR-135a OXA E2F1 ↓ Sp1/DAPK

signaling

pathway

Cell lines (SGC7901/OXA and MGC803/OXA) and

in vivo(SGC7901/OXA and MGC803/OXA)

[69]

miR-103/107 DOX Cav-1 ↑ Not investigated Cell lines (SGC7901/ADR) and in vivo (SGC7901/

ADR)

[60]

miR-34c-5p PTX MAPT ↑ Not investigated Cell lines (SGC7901 and SGC7901/VCR) [67]

miR-27a OXA P-gp, LRP,

Bcl-2

↑ HIF-α/miR-27a/

P-gp, LRP, Bcl-2

Cell line (OCUM-2MD3/OXA) [70]

miR-21-5p DOX PTEN,TIMP3 ↓ Not investigated Cell line (SGC7901/DOX) [64]

miR-21 PTX P-gp ↓ Not investigated Cell line (SGC7901 and SGC7901/PTX) [65]

miR-16-1 DOX FUBP1 ↑ Not investigated Cell line (SGC7901/DOX) [61]

Notes: *Targets genes were confirmed by Western blotting, RT-qPCR or dual-luciferase. **Upregulation (↑) or downregulation (↓) of miRNAs enhance chemosensitivity.

***The drug resistance properties of microRNAs were investigated in cell lines or in vivo.

Abbreviations: VCR, vincristine; DOX (ADR), doxorubicin (adriamycin); OXA, oxaliplatin; PTX, paclitaxel.

Dovepress Zhao et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
11399

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Table 4 miRNAs Involved in Multidrug Resistance (MDR) in Gastric Cancer

miRNA Drug Target(s)* Expression

Level**

Mechanism Object*** Reference

miR-874 DDP, 5-FU,

VCR

ATG16 L1 ↑ Apoptosis Cell lines (SGC7901 and SGC7901/DDP) [128]

miR-633 DDP, DOX, FADD ↑ Foxo3a/miR-633/

FADD

Cell lines (SGC7901) [129]

miR-590-5p DDP, PTX RECK ↓ AKT/ERK and STAT3

signaling pathway

Cell lines (SGC7901 and BGC823) and

in vivo (SGC7901)

[79]

miR-567 5-FU, OXA PIK3AP1 ↑ miR-567-PIK3AP1-

PI3K/AKT-c-Myc

Cell lines (MGC803 and BGC823) [130]

miR-508-5p 5-FU, DDP,

VCR, DOX

ABCB1,

ZNRD1

↑ Not investigated Cell lines (SGC7901/VCR and SGC7901/

ADR) and in vivo (SGC7901/VCR)

[75]

miR-495 5-FU, DDP,

DOX,

MMC

ERBB2 ↑ mTOR signaling

pathway

Cell line (SGC7901) [131]

miR-363 5-FU, DDP,

Docetaxel

FBW7 ↓ Not investigated Cell lines (MGC803 and HGC27) [132]

miR-217 DOX, PTX Not

investigated

↑ HOTAIR/miR-217 Cell line (SGC7901) [133]

miR-200c DDP,

Cetuximab

RhoE ↑ Not investigated Cell line (SGC7901/DDP) [134]

miR-195-5p 5-FU, OXA ZNF139 ↑ Not investigated Cell line (MKN28) [135]

miR-185 5-FU,

DOX, XOA

Not

investigated

↓ ZNF139/miR-185 Cell line (SGC7901 and SGC7901/ADR) [136]

miR-181b 5-FU, DDP,

DOX, VCR,

VP-16

BCL2 ↑ Not investigated Cell lines (A549/DDP and SGC7901/VCR) [137]

miR-126 VCR, DOX EZH2 ↑ Not investigated Cell lines (SGC7901/VCR and SGC7901/

ADR)

[138]

miR-107 5-FU,

DOX, PTX,

OXA

Not

investigated

↑ Lin-28/miR-107 Cell lines (MKN45 and MKN48) [139]

miR-101 DDP, VCR ANXA2 ↑ Not investigated Cell lines (SGC7901/DDP andSGC7901/

VCR)

[140]

miR-96 DDP, DOX FOXO1 ↓ miR-96/FOXO1/p21 Cell lines (SGC7901) [141]

miR-33b-5p DDP,

Docetaxel

HMGA2 ↑ Not investigated Cell lines (SGC7901 and MGC803) [142]

miR-30a DDP, 5-FU P-gp ↑ Decrease the MDR-

related protein P-gp

Cell lines (SGC7901 and SGC7901/DDP) [143]

miR-29c DDP,

Docetaxel

CTNND1 ↑ Not investigated Cell lines (MGC803 and HGC27) [144]

(Continued)
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chemotherapy drugs to the target, which will be discussed

further in the following section.

Lapatinib, a type of tyrosine kinase inhibitor, is also com-

monly used in GC targeted treatment. The resistance to lapa-

tinib can be reversed by miR-494.85 Like trastuzumab,

lapatinib can induce miR-16 upregulation in GC sensitive

cells via inhibition of c-Myc and the PI3K/AKT and Erk1/2

pathways.86

Synthetic Nanoparticles and Compounds
As mentioned above, some studies have explored the appli-

cations of nanoparticles loaded with mimics/inhibitors of

miRNAs or some other tumor-targeting compounds. Song’s

team constructed a tumor-targeted gene carrier, PPP, through

modification of phenylboronic acid onto the surface of

a polyamidoamine dendrimer.11 The carrier PPP showed

favorable miRNAs binding and condensation ability, pro-

tected miRNAs against nuclease degradation, and mediated

the cellular uptake of miRNAs.11 Jang’s team used nanove-

sicles containing poly (l-lysine-graft-imidazole) (PLI)/

miRNA complexes (NVs/miR) to systemically deliver

miRNA to the target site.87 Incorporation of hydrophilic

PEG molecules on the nanoparticle surface could further

prolong the blood circulation. Li’s team loaded sorafenib

(SRF) and all-trans retinoic acid (ATRA) in PEGylated

solid lipid nanoparticles (SLNs) composed of Gelucire, and

loaded miRNA onto the surface of the SLNs based on the

electrostatic interaction.88 Liu’s team employed intelligent

gelatinases-stimuli nanoparticles to co-deliver miRNA and

docetaxel to inhibit cancer stem cells.89 Hu’s team and Wu’s

team each introduced PCL-PEG nanoparticles coated with

trastuzumab (HER-PEG-PCL NPs) to control the delivery of

the inhibitor of miRNA.12,90 These studies, respectively,

verified the inhibitory function of miR-34a, miR-21, miR-

542-3p, andmiR-200c on GC in vitro or in vivo. Importantly,

these strategies involve the use of synthetic nanoparticles and

compounds to attempt to solve the problem of improving

microRNAs-targeted transport to tumors so as to promote the

clinical application of microRNA-based targeted therapies.

Exosomes
Exosomes are nanosized extracellular membrane-derived

vesicles that are secreted by various cells. In 2007, miRNAs

were first identified to be transferred in exosomes.91 In a study

Table 4 (Continued).

miRNA Drug Target(s)* Expression

Level**

Mechanism Object*** Reference

miR-27b 5-FU, DDP,

DOX

Not

investigated

↑ LncRNA-UCA1

/miR-27b/

Cell lines (SGC7901/ADR) [145]

5-FU, DDP,

VCR, DOX

CCNG1 ↑ miR-27b/CCNG1/

P53/miR-508-5p/

ABCB1, ZNRD1

Cell lines (SGC7901, SGC7901/ADR and

SGC7901/VCR)

[75,76]

miR-23b-3p 5-FU, DDP,

VCR

ATG12,

HMGB2

↑ miR-23b-3p/ATG12/

HMGB2/autophagy

Cell lines (5-FU, DDP, VCR)(SGC7901 and

SGC7901/VCR) and in vivo (5-FU, DDP)

(SGC7901/VCR)

[77]

ATG12 ↑ Lnc RNA MALAT1/

miR-23b-3p/

autophagy

Cell lines (5-FU, DDP, VCR)(SGC7901 and

SGC7901/VCR) and in vivo (DDP)

(SGC7901/VCR)

[78]

miR-BART20

-5p

5-FU,

Docetaxel

BAD ↓ Not investigated Cell lines (AGS) [146]

miR-19a/b 5-FU, DDP MeCP2 ↓ Not investigated Cell lines (SGC7901) [147]

miR-17 5-FU, DDP DEDD ↓ Apoptosis Cell lines (SGC7901 and AGS) [148]

miR-15b, miR-

16

DDP, DOX,

VCR, VP-16

BCL2 ↑ Apoptosis Cell lines (SGC7901 and SGC7901/VCR) [149]

Notes: *Targets genes were confirmed by Western blotting, RT-qPCR or dual-luciferase. **Upregulation (↑) or downregulation (↓) of miRNAs enhance chemosensitivity.

***The drug resistance properties of microRNAs were investigated in cell lines or in vivo.

Abbreviations: DDP, cisplatin; 5-FU, 5-fluorouracil; VCR, vincristine; DOX (ADR), doxorubicin (adriamycin); PTX, paclitaxel; OXA, oxaliplatin; L-OHP, oxaliplatin; VP-16,

etoposide; MMC, mitomycin.
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on the DDP resistance mechanism, miR-21 was identified

within the exosomes secreted by tumor-associated macro-

phages and could be directly transferred from macrophages

to GC cells to promote DDP resistance.30 Similarly, the exo-

somal transfer of miR-501-5p from DOX-resistant GC

SGC7901/ADR cells to SGC7901 cells enhanced recipient

cell growth, metastasis, and chemoresistance.62 Moreover,

the exosomal delivery of miR-155-5p was suggested to induce

chemoresistant phenotypes from paclitaxel-resistant GC cells

to sensitive cells.66 Given the potential of genetic exchange

between cells via exosomes, they have been considered as an

alternative promising tool for therapeutic purposes, including

in microRNA-based treatment. To support this possibility, one

study transfected inhibitors of miR-214 and a negative control

into HEK293T cells, and exosomes extracted from the cell

medium after 48 h were verified to contain the inhibitor of

miR-214, which reversed the resistance to DDP both in GC

cells and in vivo.10 In applications for reversing drug resis-

tance or directly suppressing tumors, exosomes containing

mimics or inhibitors of miRNAs are likely safer than synthetic

nanoparticles and compounds. However, more research is

needed to solve exosome-related technical problems, such as

the lack of methods to interfere with the packaging of cargo or

with vesicle release, before microRNA-based targeted thera-

pies can become a reality.92

microRNA-Based Tumor
Immunotherapy
In the past decade, tumor immunotherapy has made great

progress in both scientific research and clinical applica-

tion. Novel drugs target immune checkpoint molecules,

such as programmed cell death protein 1 (PD-1), PD-1
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ligand cytotoxic, and T lymphocyte antigen-4 (CTLA-4),

and augment T-cell activity. The use of immune check-

point inhibitors has been approved in several tumors, and

they are showing remarkable clinical effects. However,

only a limited number of GC patients respond to tumor

immunotherapy. Few studies have focused on the func-

tions of miRNAs in immunotherapy for GC. Fan et al93

reported that Cbl proto-oncogene B (Cbl-b) as a target

gene of miR-940 interacted and ubiquitinated signal trans-

ducer and activator of transcription 5a (STAT5a) and

down-regulated the expression of STAT5a and anti-

programmed death ligand-1 (PD-L1). The miR-940/Cbl-

b/STAT5a/PD-L1 axis promoted the proliferation and

migration of gastric cancer cells. Accordingly, similar

researches can perhaps provide some new ideas and con-

jectures for microRNA-based immunotherapies of GC.

microRNA-Based Other Therapies
The upstream regulatory mechanism of miRNAs, such as

hypermethylation in the promoter region and transcription

factor dysregulation, affects the expression of miRNAs.

Some miRNAs play key roles in GC tumorigenesis, prolifera-

tion, metastasis, and recurrence. In theory, many genes and

miRNAs in these processes could become potential therapeu-

tic targets. However, there are too many possible miRNAs and

related mechanisms involved in GC to give a detailed
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Table 5 miRNAs Involved in Treatment Mechanisms of Anti-Tumor Drugs

miRNA Drug Mechanism Object* Reference

miR-4670-5p Aspirin Aspirin→miR-4670-5p↓→suppress proliferation Cell lines (MKN45, NUGC3 and AGS) and

in vivo (MKN45)

[99]

miR-940 PD-L1 miR-940↑→Cbl-b↓→ubiquitination regulation of

STAT5a→ PD-L1↑→promote proliferation and

migration of GC

Cell lines (MGC803, AGS, NCI-N87 and

MKN74) and in vivo (MGC803)

[93]

miR-494 Cinobufacini Cinobufacini→miR-494↑→BAG-1↓→inhibit cell

proliferation and promote apoptosis

Cell lines (BGC823 and SGC7901) [97,98]

TNF-related

apoptosis-inducing

ligand (TRAIL)

miR-494↑→survivin↓→sensitize GC cells to TRAIL-

induced cytotoxicity

Cell lines (BGC823 and MGC803) [103]

miR-493 Dickkopf-1

(DKK1)

miR-493↑→DKK1↓→promote proliferation, invasion

and chemo-resistance

Cell lines (SGC7901, MKN28, AGS and

MGC803) and in vivo (MGC803 and SGC7901)

[100]

miR-388-5p Anticancer

bioactive peptide-

3 (ACBP-3)

ACBP-3→miR-338-5p↑, BAK↑, BIM↑→inhibit gastric

cancer stem cell (GCSC) proliferation and induce

apoptosis and lower the required effective dose of DDP or

5-FU

Cell lines (MKN45, MKN74 and GES-1) [150]

miR-298 Bufalin Bufalin →miR-298↓→BAX↑→inhibit proliferation and

promote apoptosis

Cell lines (MKN45, MGC803, SGC7901 and

GES-1)

[151]

miR-203 Berberine (BER) BER→miR-203↑→Bcl-w→reduce DDP resistance Cell lines (SGC7901, BGC823, SGC7901/DDP

and BGC823/DDP)

[152]

miR-195 Propofol Propofol→miR-195↑→inactivate JAK/STAT and NF-λB

pathway→suppress proliferation, migration, invasion and

promote apoptosis

Cell lines (MKN45) [153]

miR-181a Kaempferol Kaempferol→miR-181a↑→inactivate MAPK/ERK and PI3K

pathway→suppress proliferation and promote autophagy,

but not apoptosis

Cell lines (SNU216 and GES-1) [154]

miR-133a Ursolic acid (UA) UA→miR-133a↑→Bax/caspase 3/Bcl2↓→inhibit GC

growth and metastasis

Cell lines (BGC823) [155]

miR-124 Sulforaphane

(SFN)

SFN→miR-124↑→IL-6R↓, STAT3↓→enhance the anti-

cancer function of DDP

Cell lines (MGC803 and BGC823) [104]

Paeoniflorin Paeoniflorin→ miR-124↑→inhibit PI3K/Akt and STAT3

signaling→inhibit cell viability and induce apoptosis

Cell lines (MGC803 and GES-1) [105]

miR-106b Docosahexaenoic

acid (DHA)

DHA+docetaxel→MMP2↓and DHA lower the docetaxel-

mediated upregulation of miR-106b

Cell lines (MKN45) [156]

miR-34a Luteolin Luteolin→miR-34a↑→HK1↓→p53/p21 and MAPK/ERK

pathway→inhibit GC and induce G1 phase

arrest→modulate the susceptibility of GC to luteolin

Cell lines (AGS, BGC823 and SGC7901) [106]

Luteolin→miR-34a↑→Bcl-2↓→inhibit proliferation and

induce apoptosis

Cell lines (BGC823 and SGC7901) [107]

Diallyl disulfide

(DADS)

DADS→miR-34a↑→inhibit PI3K/Akt signaling

pathway→inhibit invasion and induce apoptosis

Cell lines (SGC7901) [108]

Chrysin Chrysin loaded PLGA-PEG-PLGA rather than free

chrysin→miR-34a↑

Cell lines (AGS) [109]

(Continued)
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description of them in just one paper. SomemiRNAs, regarded

as potential therapeutic targets, have also had been reviewed

elsewhere.94–96 Our review focused more on discussing

miRNAs that are more promising for clinical use. We believe

that miRNAs that have an effect on GC treatment (including

chemotherapy, targeted therapy, immunotherapy, and others)

could also become core targets in microRNA-based therapies.

It is reported that some drugs with anti-tumor effects may play

roles by altering the expression of miRNAs and their related

pathways. For example, cinobufacini, which is widely used in

the treatment of advanced cancers, was reported to suppress

cell proliferation and induce apoptosis in GC by regulating the

miR-494-BAG-1 (BCL2 associated athanogene 1) axis.97,98

Table 5 summarizes the 24 microRNAs reported to be

involved in the mechanism of other anti-tumor drugs in GC

treatment. Some miRNAs, such as miR-4670-5p, miR-940,

miR-493, miR-30e, and miR-7, have been shown to have anti-

tumor effects both in vitro and in vivo,99–102 and other

miRNAs, such as miR-494, miR-124, miR-34a, miR-21, and

miR-9, have been investigated in more than one study.97–114

Future Prospects and Challenges
Since Ma et al115 first reported that miRNAs affected the

biological behavior of tumors in 2007, more and more

functions of miRNAs have been described and more and

more miRNAs have been identified in different tumors,

including GC. With the continual development of research

on miRNAs, scientists are no longer satisfied with

Table 5 (Continued).

miRNA Drug Mechanism Object* Reference

miR-30e 3,3ʹ-

Diindolylmethane

(DIM)

DIM→miR-30e↓→ATG5↑→block autophagy and inhibit

the proliferation

Cell lines (BGC823 and SGC7901) and in vivo

(BGC823)

[101]

miR-21 Cyclooxygenase-2

inhibitor NS398

NS398→miR-21↓→Bcl2↓, Bax↑, Bak↑, PTEN↑→induce

apoptosis and decrease invasiveness

Cell lines (AGS) [110]

Celastrol Celastrol→miR-21↓→inactivate PTEN/PI3K/AKT and

nuclear factor κB signaling pathway→inhibit

proliferation, migration, invasion and induce apoptosis,

G2/M cell cycle arrest.

Cell lines (MKN45) [111]

Aspirin and

lapatinib

Aspirin and lapatinib→ VEGF↓→miR-

21↓→PPARα↑→attenuate PI3K/AKT signaling→inhibit

proliferation and migration

Cell lines (MKN1, MKN45, MKN74 and IM95) [112]

miR-18a, miR-21,

miR-221

Chrysin Chrysin loaded PLGA-PEG nanoparticles more effective

than free chrysin→miR-18a↓, miR-21↓, miR-221↓

Cell lines (AGS) [157,158]

miR-17-5p Shenqifuzheng

(SQFZ)

SQFZ→amplify the effects of si-HOTAIR, miR-17-5p

inhibitor and overexpression of PTEN on boosting the

chemosensitivity of GC

Cell lines (MGC803, SGC7901, BGC83, MKN28

and GES-1)

[159]

miR-16-5p Melatonin Melatonin→miR-16-5p↓→Smad3↑→inhibit the growth

and induce apoptosis of GC

Cell lines (BSG823 and SGC7901) [160]

miR-9 and miR-

326

Sulforaphane

extracted from

broccoli sprout

(SEBS)

SEBS→aberrant expression of miR-9, miR-326, CDX1,

CDX2 →anti-proliferative effects

Cell lines (AGS) [113]

miR-9 and Let-7 Chrysin Chrysin-PLGA-PEG nanoparticles are more effective

than pure chrysin→miR-9↑, Let-7a↑

Cell lines (AGS) [114]

miR-7 Canolol Canolol→miR-7↑→block up of COX-2/PGE signaling

pathway→inhibit the gastritis-related tumor initiation

and progression

Cell lines (AGS) and in vivo (K19-C2mE

transgenic mice model which could develop

hyperplastic tumors spontaneously in the

glandular stomach)

[102]

Notes: *The drug resistance properties of microRNAs were investigated in cell lines or in vivo.

Dovepress Zhao et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
11405

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


exploration of mechanisms but are now actively trying to

realize the goal of clinical application and translation of

achievements from the laboratory to clinical practice.

Hence, microRNAs-based therapy is expected to become

a promising research direction and ultimately benefit

patients with GC.

The goal of the present review was not only to sum-

marize the relevant literature and advances on the roles of

miRNAs in GC treatment, but to further attempt at answer-

ing several existing questions. First, we wondered which

aspects of GC treatment will microRNA-based therapies

be best suited for. As reviewed herein, miRNAs can func-

tion in reversing drug resistance, directly inhibiting

tumors, or enhancing the anti-tumor effects of drugs.

Here, we have mainly focused on the potential for curbing

drug resistance and the enhancing the anti-tumor effects of

drugs. In terms of directly inhibiting tumors, we have

highlighted only some key representative studies, as this

field is extremely rich and therefore a comprehensive

review is outside of the overall scope. Second, we have

tried to assess which miRNAs are most suitable for ther-

apeutic applications. We believe that the miRNAs verified

in animal experiments and in more than one study are

more reliable for further investigation. Of course, we

also acknowledge that this perspective is limited by the

extent and scope of current research. Therefore, further

verification and screening are needed in future studies.

Third, we want to determine the best method to realize

the utilization of these miRNAs. Synthesized oligonucleo-

tides of miRNA mimics or inhibitors have been used in an

animal tumor model for several years with good results.

However, before clinical application, more safety, target-

ing, and stability issues of this approach need to be con-

sidered. Recently, the application of synthetic

nanoparticles/compounds and exosomes provides more

promising possibilities; however, these techniques also

require the combined efforts of doctors, pharmacists, and

scientists of other disciplines.

Overall, we believe that this field is currently at an

explosive stage of discovery, and hope that this review will

promote further applications of this research to realize the

ultimate goal of improving the quality of life and outcome

of patients with GC.
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