A Novel Hybrid Compound LLP2A-Alendronate Accelerates Open Fracture Healing in a Rabbit Model [Corrigendum]


Following a review of the article, the authors noticed errors in the main text. The following statements below have been corrected:

Page 1078, column 1, line 12, the text:
"In order to solve this dispute, we tried to synthetize a novel chemical compound which could directly enhance autologous MSCs migrating to the fracture gap instead of any cell purification or gene modification" should read:

"Here, we evaluated a novel chemical compound which could directly enhance autologous MSCs migrating to the fracture gap instead of any cell purification or gene modification."

Page 1078, column 1, line 27, the text:
"Thus, we conjugated LLP2A to alendronate (Ale), a kind of bisphosphonate with high affinity for bone, which served as a bone-seeking component to direct both the cells and the compound to bone" should read:

"LLP2A conjugated to alendronate (Ale), a kind of bisphosphonate with high affinity for bone, could serve as a bone-seeking component to direct both the cells and the compound to bone."

Page 1078, column 1, line 40, the text:
"Our previous experiments in mice have demonstrated that LLP2A-Ale was able to increase homing of the transplanted MSCs to the fracture site, which consequently accelerated closed fracture healing."

Page 1084, column 1, line 2, the text:
"Our research group has previously reported that engraftment efficacy can be increased via the “bone-targeting” agent LLP2A-Ale, which improves the homing of transplanted MSCs to the fracture callus, using a mouse model with closed fracture."

"It has previously been reported by Yao et al that engraftment efficacy can be increased via the “bone-targeting” agent LLP2A-Ale, which improves the homing of transplanted MSCs to the fracture callus, using a mouse model with closed fracture."

References


The authors apologize for this error.