The Therapeutic Effect of Melatonin on GC by Inducing Cell Apoptosis and Autophagy Induced by Endoplasmic Reticulum Stress

Yanshan Zheng
Jiawei Tu
Xinxin Wang
Yue Yu
Jiajia Li
Yin Jin*
Jiansheng Wu*

Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People’s Republic of China

*These authors contributed equally to this work

Background: Gastric cancer (GC) is the main malignancy affecting a large population worldwide. Lack of effective enough treatment is one of the leading factors contributing to the high mortality rate. Melatonin, a naturally occurring compound, has been proven to exert cytotoxic and antiproliferative effects on human gastric cancers. Nevertheless, the mechanisms of anti-gastric cancer of melatonin remain elucidated. It is believed that endoplasmic reticulum (ER) stress and its resultant unfolded protein response (UPR) are connected to the survival, progression, and chemoresistance of various tumor cells via multiple cellular procedures, such as autophagy. In this study, the effects of melatonin on human gastric cancer cell lines AGS and SGC-7901 was assessed to reveal the interaction between melatonin, endoplasmic reticulum stress, and autophagy in gastric cancer.

Methods: CCK-8, the wound healing analysis, colony formation assay, immunofluorescence analysis, Western blotting, flow cytometry, and animal models were used in the current study.

Results: The data demonstrated that melatonin could inhibit GC growth, proliferation, and invasion both in vivo and in vitro. Apoptosis and autophagy induced in a concentration-dependent manner is response to melatonin-induced ER stress. Melatonin induced the expression of apoptotic and autophagy-related proteins, which was markedly attenuated by the ER stress inhibitor 4-PBA and autophagy inhibitor 3-MA. In addition, we used the specific IRE1 inhibitor STF 083010, finding that inhibiting IRE1 could considerably relieve ER stress-induced autophagy activity, as revealed by the reduction of LC3-II and Beclin-1.

Conclusion: This study confirmed that melatonin-induced inhibition of GC cell proliferation is mediated by the activation of the IRE/JNK/Beclin1 signaling.

Keywords: melatonin, autophagy, endoplasmic reticulum stress, apoptosis, inositol-requiring 1α, Jun N-terminal kinase

Introduction

Gastric cancer (GC), as the fifth prevalent malignancy, is the third leading cause of cancer-related mortality worldwide. In spite of more attention shifted to the screening and treatment of GC over the past few decades, it remains a devastating disease with an unsatisfactory survival rate. Even with the advance in the earlier analysis approaches and innovative therapeutic methods, there are a less than 5-year survival rate and a poor postsurgery quality of life in most patients. Hence, there is a serious requirement for comprehending the biological mechanism of novel and promising agents for the treatment of GC.
The endoplasmic reticulum (ER) is a tubule dynamic network included in folding, the synthesis, and processing more than one-third of the entire cellular proteome. ER Homeostasis can be altered by several pathophysiological circumstances, such as acidosis, hypoxia, and nutrient deprivation can alter a resultant imbalance between ER capacity and protein-folding load and accumulating unfolded proteins in the ER, a state termed ER stress. Upon the initiation of ER stress, the activation of the unfolded protein response (UPR) results in managing ER stress and restoring homeostasis of ER by cells. The UPR is settled by 3 main sensors placed in the ER, known as Inositol-requiring transmembrane kinase/endonuclease 1α (IRE1α), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6), which are also involved in inducing autophagy upon ER stress. The UPR is an adaptive response to re-establishment cellular homeostasis. When UPR cannot sufficiently be copied with ER stress, the cell will undergo apoptosis or autophagy. Autophagy is a homeostatic mechanism and a metabolic process, that involves the sequestration and delivery of cellular proteins, organelles, and cytoplasmic components to the lysosome— which are ultimately recycled and degraded to meet the metabolic demands of the cells. Autophagy plays a vital role in the development and progressing of numerous cancers, including pancreatic cancer, lung cancer, and gastric carcinoma.

Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine that is synthesized by the pineal gland, retina, brain, heart, and the gastrointestinal system. Reportedly, the main source of melatonin is the gastrointestinal tract, with estimated production over 400 times higher than that in the pineal gland. The indoleamine has great pharmacological promise to protect from oxidative damage. Previous studies have shown that melatonin can inhibit the proliferation of various human cancers, including leukemia, hepatocarcinoma, breast cancer, colorectal cancer, lung cancer, and gastric carcinoma. However, studies investigating the molecular link between the UPR and autophagy activation by melatonin in GC are sparse. Unraveling this relationship is critical for novel targets for GC treatment.

Materials and Methods
Cell Lines and Treatment
The human gastric cancer cell lines AGS and SGC-7901 were prepared from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). Cultivation of the cells was regularly performed in RPMI-1640 media with the supplementation of 10% fetal bovine serum (Gibco, USA). Moreover, streptomycin (100 U/mL) and penicillin (100 U/mL) were inserted in the above-mentioned culture system which was set at 37°C in a moistened air under 5% CO2.

Melatonin was bought from (St. Louis, MO, Sigma Aldrich, USA), dissolved at a concentration of 1M as a stock solution in DMSO, and diluted with culture medium to suitable concentrations prior to use. Antibodies against β-actin, LC3A/B, Beclin-1, Ki-67, JNK, and phosphor-JNK were obtained from Cell Signaling Technology (Danvers, MA, USA). The P62 antibody was from Proteintech (Rosemont, IL, USA). Antibodies consist of IRE1α, GRP78, Caspase-3, Bax, and Bcl-2 were obtained from Abcam (Cambridge, Massachusetts, USA). The antibody was from 4-PBA was bought from Sigma Aldrich. 3-methyladenine (3-MA) and STF-083010 were purchased from Med Chem Express.

CCK-8 Assay
GC proliferation was determined through Cell Counting Kit-8 assay (Beyotime Institute of Biotechnology, Shanghai, China). At first, we seeded 4000 cells into 96-well plates to attach completely. The next day, we added given concentrations of melatonin to the culture media for 24, 48, and 72 h. Then, 10% Cell Counting Kit (CCK)-8 reagent was assigned to each well and the incubation was performed for the plates for 2–4 h at 37°C. Subsequently, we took a spectrophotometer to measure the absorbance at 450 nm for each day.

The Wound Healing Analysis
We made a scratch with a sterile clear tip (200 μl) to simulate a wound. The scratch pictures were taken by an inverted fluorescence microscope (Nikon, Tokyo, Japan) for the time point of 0 h. Afterwards, the cells were directed with different concentrations of melatonin in medium, separately. After 24 or 48 h of treatment, cell migration was seen via an optical microscope.

Cell Migration and Invasion Assays
The AGS cells’ invasiveness was calculated utilizing 24-well Boyden chambers covered by 10 μg of Matrigel (BD Biosciences, Sparks, MD). The cells (3 × 10⁵ cells) re-suspended in 200 μL of FBS-free medium was inserted to each upper chamber with various concentrations of melatonin (mM), and DMEM comprising 10% FBS was introduced to the lower section. For the
migrating assessments, 6 × 10⁴ cells were cultivated onto filters in a 24-well transwell chamber, and the cells were underwent to the similar drug concentration gradient similar to the invasion assay. After 48h, the cells were gently scraped off the transwell chamber’s upper surface, and the cells on the lower surface were washed 3 times with PBS, then submerged in 4% paraformaldehyde for 15 min. Then, crystal violet was utilized for staining cells for 15 min. The cells then were rinsed 2 times with PBS. The stained cells were seen in a randomly chosen field of view and counted utilizing a 200X inverted microscope.

Flow Cytometry

Apoptosis was found utilizing the Annexin V-FITC kit. GC cells were cultivated in 6-well plates treating with diverse concentrations of melatonin for 2 days. Then, the cells were rinsed 2 times with cold PBS and re-suspended in 1x Binding Buffer. Afterward, 100 μl of the solution (1 × 10⁵ cells) was transmitted to a tube and adding 5 μl of Annexin V-FITC and 5 μl of PI, the solution was incubated for 10–20 min in the darkness. Subsequently, the tubes were gently vortexed and were immediately examined with a flow cytometer (FACScan, BD Biosciences, USA).

Western Blot Assay

Following treatment with melatonin, all proteins within cells and tissues were harvested and lysed on ice in RIPA lysis buffer (Beyotime Institute of Biotechnology, Shanghai, China) comprising phenylmethylsulfonyl fluoride (Beyotime Institute of Biotechnology, Shanghai, China) and phosphatase inhibitor (Sigma-Aldrich) based on the instructions of the manufacturer. The protein content was calculated utilizing the BCA Protein Assay Kit (Beyotime, Shanghai, China). The equivalent protein for each specimen was detached by 8–12% SDS-polyacrylamide gel electrophoresis and transmitted to a PVDF membrane. Using corresponding primary antibodies, the membrane was blocked and incubated at 4°C overnight. Moreover, Horseradish peroxidase-conjugated secondary antibodies (1:5000) were employed for 1 h at room temperature. Enhanced chemiluminescence (ECL) detection kit (Thermo Fisher Scientific, Inc.) was utilized for detecting the proteins, and antibody band densities were visualized via Image Lab software.

Immunofluorescence Analysis

AGS cells were fixed on sterile sheet glass and disposed of with melatonin for 48h. Afterward, the cells were immersed in 4% (w/v) paraformaldehyde for 20 min in PBS after permeabilization with 0.5% Triton X-100 for 10 min. Then the cells were blocked in 10% BSA for 1 h, and incubated with primary antibody GRP78 and LC3-II overnight. The next day, the secondary antibody (1:200; cat#: BYE026; Boyun, Shanghai, China) was added to the glass slides for 1 h at 37°C. Finally, the cells were counterstained with DAPI (Beyotime, Shanghai, China) and visualized using a Leica DM4000B microscope (Jena, Germany).

Immunohistochemistry

Briefly, the tissue specimens were made constant in 4% paraformaldehyde solution, embedded in paraffin and then cut into a thickness of 4μm. Sections were incubated with Ki67, Bax, and P62 antibodies at a respectively working dilution overnight. Subsequently, the slides were incubated with secondary antibody for 1h, rinsed with PBS and stained with 3, 3-diaminobenzidine tetrahydrochloride. Ultimately, the images were photographed by a light microscope (Leica, DM4000B).

in vivo Tumorigenesis

Male BALB/c nude mice at the age of 4 weeks were purchased from SLAC Co., Ltd. (Shanghai, China). The mice were kept under pathogen-free conditions with laminar airflow and controlled humidity and exposed to a 12 h light/dark schedule. Before starting the experiment, the mice were acclimatized to the new environment for 1 week. Furthermore, the injection of SGC-7901 cells (5 × 10⁶), suspended in 100 μL sterile PBS, was performed subcutaneously into the right flank of the nude mice. The mice were monitored until 10 days for palpable tumor growth, the treatment group was treated with 50 mg/kg melatonin (ever day, intraperitoneal injection) containing 2.5% ethanol, while the control group received sterile saline. After treatment for 14 days, the mice were euthanized, and tissues were taken and were eliminated surgically and fixed in 4% PFA/PBS solution. The animal protocols were performed in strict obedience of the instructions in the Guideline for IACUC of NIH and were approved by the Ethical Committee of Wenzhou Medical University and the Laboratory Animal Management Committee of Zhejiang Province (Approval ID: wdyw2019-0433).

Statistical Analysis

All statistical analyses were performed utilizing the Prism5.0 software and the SPSS 15.0 statistical software. The statistical variations within two independent groups
were determined via Student’s t-test tests. To compare the means between groups, one-way analysis of variance (ANOVA) was conducted. The results were stated as the mean ± standard deviation (SD) of at least 3 independent. The p-value of less than 0.05 was regarded a significant.

Results
Melatonin Inhibited the Growth and Migration Ability of Gastric Cancer Cells in vitro

To investigate the impact of melatonin on human GC cell lines, AGS and SGC-7901, CCK-8 assays were performed (Figure 1A). As shown, melatonin reduced GC cell proliferation in a dose-and-time-dependent manner. The half maximal inhibitory concentration (IC50) values were 3.5 mM in AGS and 3.27 mM in SGC-7901. As for cells migration ability, we treated AGS cells with appropriate concentrations of melatonin for 48 and 72 h. The scratch assay demonstrated that melatonin strongly inhibits cell migration (Figure 1B). Consistent with the scratch assay results, Transwell migration assays and Matrigel invasion assays (Figure 2A and B) unveil inhibiting the migration and invasion of AGS cells by melatonin. Quantitative analysis of the result is shown in Figure 2C. The melatonin could distinctly inhibit the AGS cells' migration and invasion.

Melatonin Induced Apoptosis in Human GC Cell Line AGS

To validate apoptotic cell death induced by melatonin, flow cytometry analysis was used. As observed in Figure 3A, the apoptosis rates after 48 h of treatment with 0, 1, 2, 3 mM melatonin were 6.45±0.055, 13.49±0.930, 24.48±0.167 and

Figure 1 Melatonin inhibited the growth and migration ability of tumor cells (A) CCK8 assessment results of AGS and SGC-7901 cell activity following being treated with melatonin for 24, 48, and 72 h at varying concentrations. (B) Scratch assessment results indicated that the cell migration inhibition in the melatonin group. The figure indicates data as the means ± SD, n=3. Student’s t-test was compared to the control. *P<0.05, **P<0.01.

Abbreviations: M1, 1 mM melatonin; M2, 2 mM melatonin; M3, 3 mM melatonin; Con, control trip.
30.5±0.458%, respectively. Furthermore, the apoptosis impact of melatonin was explored by Western Blot analysis. The protein levels of apoptosis markers Bax and Caspase3 were upregulated with increasing concentrations of melatonin, however the anti-apoptotic protein Bcl2 expression was reduced (Figure 3B). Quantitative analysis of the Western Blot analysis is shown in Figure 3C. The above-mentioned results reveal that the activation of apoptotic signaling pathways in AGS cells can be modulated by melatonin.

Contribution of the ER Stress Response to the AGS Autophagy and Apoptosis Induced by Melatonin

GRP78/bip is a major ER molecular chaperone, which separated from the three ER stress transducers, leading to an increased protein expression when ERS occurring. The GRP78 levels were significantly increased in AGS cells in a dose-dependent manner (Figure 4A). To elucidate the impact of melatonin on autophagy flux in gastric cancer, the related
hallmarks was tested through Western Blotting. Based on Figure 4A, melatonin-treated AGS cells expressed less p62 but more Beclin-1 compared to the equivalent control group. Additionally, LC3A/B-II expression in the AGS cell line was influenced by melatonin treatment. Furthermore, consistent with these findings, the protein expression of LC3 was further approved by the immunofluorescence results (Figure 5). In total, these findings revealed that melatonin activated autophagy in gastric cancer cells. To more demonstrate the promotion of apoptosis and autophagy by melatonin through ER stress, the specific ER stress inhibitor 4-PBA (1 mM) and autophagy inhibitor 3-MA were added to AGS cells after melatonin exposure for 24 h. 4-PBA is a chemical chaperone contributing to protein trafficking and folding within the ER, acting as an ER stress inhibitor alleviating ER stress. Of note, after exposure to 4-PBA for 2 h, the expressions of GRP78, Beclin-1, LC3-II, and Bax were notably suppressed by 4 PBA (Figure 4B). Furthermore, 3-MA pretreatment expressed a markedly decrease in protein expression of GRP78, Beclin-1, LC3-II, Bax, and increase in Bcl-2 protein compared with melatonin-treated cells without 3-MA pre-treatment. Quantitative analysis of the Western Blot analysis is shown in Figure 4D–F. These findings indicated that apoptosis is induced by melatonin through activating the autophagy and ER stress and autophagy. Nevertheless, the melatonin autophagy impact may be dominated by activating the ER stress.

Promoting AGS Cells Apoptosis and Autophagy by Melatonin Through Activating IRE-JNK-Beclin1 Pathway Activation

Once ER stress is set off, JNK phosphorylates the anti-apoptotic protein Bcl-2; this phosphorylation results in the destruction of the Bcl-2/Beclin-1 complex and allows Beclin-1 to trigger autophagy. To investigate the IRE1 pathway’s roles in the relationship between autophagy and the ER stress response, we used the specific IRE1 inhibitor STF-083010. The Western blot analysis showed that, pretreatment with STF-083010, inhibiting IRE1 could considerably relieve ER stress-induced autophagy activity, as revealed by the reduction of LC3-II and Beclin-1 (Figure 4C). The data suggested that melatonin promotes ER stress-induced autophagy through the IRE1/ JNK/Beclin-1 signaling pathway.
Inhibition of the Gastric Cancers’ Growth by Melatonin in vivo

In the present work, considering the potent in vitro anti-tumor impacts of melatonin in GC, the therapeutic efficacy of melatonin in SGC-7901 xenograft models was investigated. The mice were treated with an i.p. injection of melatonin daily for 10 days (50 mg/kg body weight; n = 6) (Figure 6A). The results suggested that melatonin inhibited tumor growth in xenograft models compared with the control group. Mechanistically, we found that melatonin significantly upregulated ER stress related apoptosis and autophagy proteins including GRP78, Beclin-1 and LCII, and downregulated Bcl-2 and P62 in tumor tissues (Figure 6B). Moreover, melatonin did not
Melatonin activated autophagy by ER stress in GC cells (A, B). AGS cells were immunostained with GRP78 and LC3 antibodies and observed by the microscope (magnification, x400). Data are shown as means ± SEM of at least 3 independent experiments.

Figure 5
Figure 6 Melatonin prevents GC cells apoptosis, proliferation, and autophagy in vivo. (A) Inoculation of 5x10^6 SGC-7901 cells was done into BALB/c-nude mice. The mice were assigned into two groups (n=6) randomly, and they were treated with melatonin and PBS on a daily basis for 10 days. Measurement of body weight and tumor volumes was done daily. (B) The tumor tissues were cut out, and a Western blot assay was performed. (C) The apoptosis, autophagy and invasion of Bax, P62 and Ki67 in xenograft tumor tissues were determined by immunohistochemistry (magnification, x400). (D) The kidneys and liver from the treatment and control groups were stained by eosin and hematoxylin so that the toxicity can be evaluated following the treatment. The kidney and liver's histological structures were obtained, and they were compared by the microscope (magnification, x200). **P<0.01 compared to the control.

Abbreviations: PBS, phosphate-buffered saline; Con, control.
have considerable toxic side effects. No considerable
difference was found in the weight of the mouse within the
control and melatonin-treated group. Melatonin treatment
caused no apparent toxicities on the liver and kidney and
lung compared with the control group (Figure 6D).
Additionally, using immunohistochemistry, the proteins
expression levels associated with apoptosis, proliferation,
and autophagy in xenograft tumor tissues were assessed.
Figure 6C showed that apoptosis and autophagy were
activated in xenograft tumors by melatonin. Ki67 and
Bax revealed the existence of further apoptotic cells and
clearly fewer proliferative cells in melatonin-treated
tumors. In addition, the higher autophagy level, as calcu-
lated by P62, was detected in tumors in the melatonin
treatment group.

Discussion
GC is the second most predominant kind of cancer occur-
rence and the second prominent cause of cancer-related
mortality in China.28 Despite advancements in the thera-
petic and surgical approaches, the five-year survival rate
is only 5%–15%. Previous studies show that melatonin, an
indoleamine, plays a pivotal part in cancer-fighting.29
Numerous studies have shown that Melatonin has
a significant inhibitory effect on the various human can-
cers at drug concentrations in different pathophysiological
situations.30 The study aimed to investigate the possible
signaling pathways involved in the antitumor impacts of
the melatonin in human GC cells, which would lay
a foundation for the development of new antitumor.

Emerging evidence has demonstrated that ER stress is
related to cancer cell apoptosis and autophagy.31 The study
of Ogata M et al indicated that there was a close relation
between targeting the autophagy mechanisms and ER
stress pathway.32 ER stress and autophagy seems to be
critical for oncogenesis and cell homeostasis. Melatonin,
a naturally occurring compound with clear potent inhibi-
tory effects on cancer cells is one of the main candidates,
which can be recruited herein. In preceding investigations
on GC cells, melatonin was demonstrated as effective in
arresting tumor cell growth. Hence, we assumed that
autophagy and ER stress were involved in melatonin-
induced apoptosis in human GC cells. However, the spe-
cific signaling pathways included in the antitumor impacts
of the melatonin remain unclear so far. More investiga-
tions are required better comprehending the interference
among autophagy, ER stress, and apoptosis and to
obviously outline the mechanisms responsible for modu-
lation these responses by melatonin.

In this study, the percentage of apoptotic cells were
dose-dependently incremented in GC cells treated with
melatonin in comparison with the control group, as deter-
mined by the decreased cell activity responsible for inhib-
iting the cell migration. The findings essentially approved
that melatonin prevented the cancer cell growth in vitro
and indicated the potential anti-cancer impacts on gastric
carcinoma. In the basic molecular mechanisms, ER stress
was accelerated by melatonin as confirmed by the ER
stress-related proteins’ upregulated expressions. This was
consistent with the melatonin’s activated apoptosis
impacts. To study the ER stress role caused by melatonin,
in the present work the ER stress inhibitor 4-PBA was
used to overwhelm the ER stress-related proteins.
Particularly, melatonin treatment upregulated the ER
stress-related proteins inhibited by 4-PBA. Consequently,
there was a close relation between the melatonin enhanced
AGS cell apoptosis and the ER stress activation.

Autophagy is vital for the maintenance of cellular homeo-
static status since it sequesters damaged organelles and mis-
folded proteins and delivers them to lysosomes for degradation
and recycling.33 Autophagy might be induced in cancer cells
exposed to different perturbations, such as starvation, hypoxia,
radiation, and growth factor withdrawal.34 It was found that
treating the cancer cells with melatonin enhances the creation
of autophagosome in AGS cells. During autophagy, LC3-I,
a cytosolic form, is conjugated to LC3-II, which is employed to
the autophagosome membrane.35 The accumulation of LC3-II
is commonly used as markers of autophagy. Beclin-1 is
required for the initiation of the autophagy process and is an
interactive protein of PI3KCI3, a specific target of 3-MA.35 The
expressions of Beclin-1 and LC3 were considerably upregu-
lated by melatonin, meanwhile the p62 expression was
decreased. To discover the role of melatonin-induced autop-
thy in GC, we treated cells either with melatonin alone or
joined with autophagy inhibitor 3-MA. Notably, these data
indicated that the melatonin’s anticancer action is enhanced
by inducing the autophagy through incremented apoptosis of
gastric cancer cells. In addition, melatonin could not reserve
the autophagy activation in cells with 4-PBA-suppressed ER-
stress action. Hence, in this work, it concluded that melatonin
enhanced apoptosis by activating the autophagy, while melat-
onin-induced autophagy triggered after the ER stress
promotion.

GRP78 is a vital ER molecular chaperone and generally
binds to IRE1α in a regular physiological state.35
Under ER stress, IRE1α is released, resulting in trans-autophosphorylation and oligomerization of IRE1α. The XBP1 mRNA is cleaved by the activated IRE1α into its active spliced form (XBP1s), that are the transcription factors for different UPR genes contributing to apoptosis or autophagy. The IRE1α could recruit tumor necrosis factor receptor associated factor 2 (TRAF2), activate apoptosis signal-regulating kinase 1 (ASK1), and then phosphorylate c-Jun amino terminal kinase (JNK) at the ER. The release of Beclin-1 from Bcl-2 is stimulated by activated JNK, thus promoting vesicle nucleation and allowing autophagy to proceed. The present study investigates that ER stress-induced autophagy activity, as revealed by the levels of LC3-II and Beclin-1, were significantly reduced, following by the pretreatment with STF 083010.

Conclusion
In total, the present study revealed that the melatonin-induced promotion of GC cell proliferation was mediated via activation of the IRE/JNK/Beclin1 signaling pathway. Considering the role of melatonin on GC progression, the indoleamine may be a powerful candidate for antitumor treatments.

Acknowledgments
This study was based on the project approved by the Natural Science Foundation of Zhejiang Province (No. LQ17H030004) and Basic Public Welfare Research Project of Zhejiang Province (LGF18H160036).

Disclosure
The authors report no conflicts of interest in this work.

References
12. Jaworek J, Leja-Szpaka A, Nawrot-Porabka K, et al. Effects of melatonin on GC progression, the indoleamine may be a powerful candidate for antitumor treatments.