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Introduction: As participants of the national China Hospital Invasive Fungal Surveillance

Net program, we sought to describe the epidemiology and antifungal susceptibility patterns

of yeast isolates obtained from patients with invasive fungal infection at the First Affiliated

Hospital of Zhengzhou University, China.

Methods: A total of 434 yeast isolates recovered from blood and other sterile body fluids

were identified to species by matrix-assisted laser desorption ionization –time of flight mass

spectrometry with or without supplementation by DNA sequencing. Antifungal susceptibil-

ities were determined by Sensititre YeastOneTM YO10 methodology.

Results: Candida albicans was the most common causative species (33.9% of isolates) but

significantly decreased in frequency from 37.2% to 27.7% from 2012 to 2014. C. tropicalis

was the next most common pathogen (25.1%), followed by C. parapsilosis complex (17.3%),

C. glabrata (9%), and C. pelliculosa (6.7%), with other species comprising 8% of isolates.

Caspofungin, micafungin, and anidulafungin exhibited potent in vitro activities against the

majority of Candida isolates. Azoles demonstrated in vitro activities against C. albicans with

a susceptibility rate of >95% and against C. parapsilosis complex, >95% isolates were

susceptible. Among C. tropicalis and C. glabrata isolates, resistance rates to fluconazole

and voriconazole were 11.9%, 9.1% and 7.7%, 28.2%, respectively. Of note, C. pelliculosa

had a high incidence rate in newborns and high rates of resistance to fluconazole and

voriconazole of 55.2% and 41.4%, respectively.

Conclusion: The present study provided valuable local surveillance data on the epidemiol-

ogy and antifungal susceptibilities of invasive yeast species, which is essential for guiding

antifungal treatment protocol development.
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Introduction
Invasive fungal infections (IFIs) are major global health threat, particularly the immuno-

compromised and critically ill, and are widely recognized as a major cause of substantial

morbidity andmortality and excess hospital costs.1,2 AlthoughCandida albicans remains

the most predominant species responsible for invasive infections, its dominance has

decreased as non-C. albicans yeast species are increasingly encountered.3,4 It is widely

appreciated that non-C. albicans yeast species are often less susceptible to antifungal

drugs than C. albicans which impact on clinical outcomes.5,6

Epidemiology data including species distribution and antifungal susceptibility

profile of the causative yeast species are essential to improve the overall outcomes.5,7
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However, species distribution varies considerably with geo-

graphic and institution or hospital, and even within any one

institution.8,9 Targeted antifungal therapy or antifungal pro-

phylaxis regimens are contingent on the timely diagnosis

and antifungal susceptibility testing.8,10 Henan is the third

largest province in China with a population of about 96

million, and knowledge of species distribution and their

antifungal susceptibility profile of invasive yeast infections

in this populous region will have substantial clinical impact.

The national China Hospital Invasive Fungal

Surveillance Net (CHIF-NET) program across China has

provided updated information on epidemiological data for

IFIs.3,5,11 As a participant of this national surveillance

program, the present study sought to describe the epide-

miology and antifungal susceptibility patterns of yeast

isolates obtained from IFI patients who presented to the

First Affiliated Hospital of Zhengzhou University in

Zhengzhou, China.

Materials And Methods
Study Design And Ethics Statement
Yeast isolates were collected consecutively over the 3-year

study period (August 2012 to July 2014) from patients

admitted to the First Affiliated Hospital of Zhengzhou

University enrolled in the CHIF-NET study. The First

Affiliated Hospital of Zhengzhou University is an 8000-

bed major tertiary teaching hospital in central China with a

range of specialty services. Non-duplicated isolates recov-

ered from blood or other sterile body fluids were included

according to the criteria described previously.11 The study

was approved by the Human Research Ethics Committee

of Peking Union Medical College Hospital (No. S-263).

Species Identification
Yeast isolates were initially identified at the First Affiliated

Hospital of Zhengzhou University using chromogenic agar

and the VITEK 2® compact system (bioMérieux, Marcy

l’Etoile, France). Accurate identification was confirmed to

species level at a central laboratory (Peking Union Medical

College Hospital) by matrix-assisted laser desorption ioniza-

tion-time of flight mass spectrometry (MALDI-TOF MS)

using the VITEK MS system (v2.0, IVD database,

bioMérieux) supplemented with internal transcribed spacer

(ITS) sequencing as previously described.12 DNA extraction

and amplification of the ITS region was carried out with

primer pairs ITS1/ITS4 as described by Zhang et al.12 The

PCR products were sequenced in both directions using

corresponding PCR amplification primer pairs at

Ruibiotech Co. Ltd. (Beijing, China) using theDNA analyzer

ABI 3730XL system (Applied Biosystems, Foster City, CA).

Species identification was performed by comparing the

obtained sequences against GenBank database with nucleo-

tide Basic Local Alignment Search Tool (BLASTn, http://

blast.ncbi.nlm.nih.gov).

Antifungal Susceptibility Testing
The in vitro susceptibility to nine antifungal drugs (fluco-

nazole, voriconazole, itraconazole, posaconazole, caspo-

fungin, micafungin, anidulafungin, amphotericin B, and

5-flucytosine) was determined by Sensititre YeastOneTM

YO10 methodology (Thermo Scientific, USA) following

the manufacturer’s instructions. Minimum inhibitory con-

centration (MIC) values for yeast isolates were determined

by the Sensititre YeastOne YO10 method and interpreted

by species-specific clinical breakpoints (CBPs) as recom-

mended by the CLSI M60 method.13 With regard to spe-

cies for which there are no CBPs we used epidemiological

cutoff values (ECVs) to differentiate wild-type (WT) from

non-WT isolates according to CLSI M59 method14 and

ECVs from the study by Pfaller et al.15 C. parapsilosis

ATCC 22019 and C. krusei ATCC 6258 were the quality

control strains.

Statistical Analysis
All statistical analyses were performed using IBM SPSS

software (version 24.0; IBM SPSS Inc., New York, USA).

Categorical variables were compared using χ2 or Fisher’s

exact test. A P value of 0.05 was significant.

Results
Patient Characteristics And Species

Distribution
Table 1 summarizes the patient characteristics and species

distribution. Overall, a total of 434 non-duplicated yeast

isolates from separate patients were collected; there were

more isolates from males than females (57.4 vs 42.6%,

respectively). Isolates were cultured from 434 patients

aged 0 to 96 years (average age 50.8 years). Invasive

infection occurred mainly in the age groups 15–49 and

over 65 years, accounting for 32% (139/434) and 30.9%

(134/434), respectively. For infants (aged 0–1 year), C.

pelliculosa was a predominant pathogen with an isolation

rate the same as that of C. albicans (both 35.5%) (see

species distribution below). The majority of the isolates
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were from patients in the intensive care unit (ICU) (168,

38.7%), surgical departments (152, 35%), and medical

departments (51, 11.8%).

Overall, 19 species of yeast were identified among the

434 isolates of which C. albicans was the most common

species (147 isolates, 33.9%). Non-albicans Candida spe-

cies accounted for 270 isolates (62.2%) – among these, C.

tropicalis was the most frequent species (25.1%, 109 iso-

lates). C. parapsilosis complex was the third common spe-

cies (75 isolates, 17.3%), which consisted of C. parapsilosis

sensu stricto (69/75 isolates, 15.9%), C. metapsilosis (3/75

isolates, 0.7%), and C. orthopsilosis (3/75 isolates, 0.7%),

followed by the C. glabrata (39 isolates, 9%) and C. pelli-

culosa (29 isolates, 6.7%). In addition, there were small

Table 1 Clinical Characteristics Of Patients And Species Distribution Of The Yeast Isolates

Patients

Characteristic

Number (%) Of Isolates

Total Candida

Albicans

Candida

Tropicalis

Candida

Parapsilosis

Complexa

Candida

Glabrata

Candida

Pelliculosa

Cryptococcus

Neoformans

Othersb

Gender

Female 185 (42.6) 63 (34.1) 40 (21.6) 26 (14.1) 24 (13.0) 13 (7.0) 6 (3.2) 13 (7.0)

Male 249 (57.4) 84 (33.7) 69 (27.7) 49 (19.7) 15 (6.0) 16 (6.4) 5 (2.0) 11 (4.4)

Age (years)

0–1 31 (7.1) 11 (35.5) 5 (16.1) 1 (3.2) 3 (9.7) 11 (35.5) - -

2–14 15 (3.5) 3 (20.0) 7 (46.7) - - 1 (6.7) 4 (26.6) -

15–49 139 (32.0) 41 (29.5) 38 (27.4) 33 (23.7) 10 (7.2) 5 (3.6) 2 (1.4) 10 (7.2)

50–65 115 (26.5) 43 (37.4) 28 (24.3) 14 (12.2) 11 (9.6) 6 (5.2) 5 (4.3) 8 (7.0)

>65 134 (30.9) 49 (36.6) 31 (23.1) 27 (20.1) 15 (11.2) 6 (4.5) - 6 (4.5)

Ward Type

ICU 168 (38.7) 69 (41.1) 43 (25.6) 28 (16.6) 15 (8.9) 4 (2.4) 4 (2.4) 5 (3.0)

Surgical department 152 (35.0) 56 (36.8) 39 (25.7) 25 (16.4) 13 (8.6) 10 (6.6) - 9 (5.9)

Medical department 51 (11.8) (713.7) 12 (23.5) 12 (23.5) 5 (9.8) 3 (5.9) 6 (11.8) 6 (11.8)

Others 63 (14.5) 15 (23.8) 15 (23.8) 10 (15.9) 6 (9.5) 12 (19.0) 1 (1.6) 4 (6.4)

Separated year

2012 129 (29.7) 48 (37.2) 34 (26.4) 31 (24.0) 6 (4.7) 3 (2.3) 1 (0.7) 6 (4.7)

2013 114 (26.3) 46 (40.3) 17 (14.9) 19 (16.7) 17 (14.9) 6 (5.3) 4 (3.5) 5 (4.4)

2014 191 (44.0) 53 (27.7) 58 (30.4) 25 (13.1) 16 (8.4) 20 (10.5) 6 (3.1) 13 (6.8)

Separated sites

Blood 224 (51.6) 72 (32.1) 52 (23.2) 36 (16.1) 27 (12.1) 22 (9.8) 3 (1.3) 12 (5.4)

CVC 66 (15.2) 17 (25.8) 17 (25.8) 20 (30.3) 1 (1.4) 6 (9.1) - 5 (7.6)

pus 58 (13.4) 22 (37.9) 16 (27.6) 11 (19.0) 5 (8.6) - - 4 (6.9)

Ascitic fluid 38 (8.8) 19 (50.0) 10 (26.3) 3 (7.9) 4 (10.5) - - 2 (5.3)

Pleural fluid 13 (3.0) 8 (61.5) 2 (15.4) 1 (7.7) - - 2 (15.4) -

CSF 12 (2.7) 3 (25.0) 4 (33.3) 1 (8.4) - - 4 (33.3) -

Bile 7 (1.6) 2 (28.6) 4 (57.1) - 1 (14.3) - - -

Joint fluid 6 (1.4) 1 (16.6) 1 (16.6) 2 (33.6) 1 (16.6) - - 1 (16.6)

Tissue 6 (1.4) 2 (33.3) 2 (33.3) - - 1 (16.7) 1 (16.7) -

Others 4 (0.9) 1 (20.0) 1 (20.0) 1 (20.0) - - 1 (20.0) -

Total 434 147

(33.9)

109 (25.1) 75 (17.3) 39 (9.0) 29 (6.7) 11 (2.5) 24 (5.5)

Notes: aThis includes Candida parapsilosis sensu stricto (69 isolates), Candida metapsilosis (3 isolates), Candida orthopsilosis (3 isolates). bThis included Candida krusei (8 isolates),

Candida guilliermondii (4 isolates), Candida haemulonii (4 isolates), Candida lusitaniae (1 isolate), Candida intermedia (1 isolate), Kodamaea ohmeri (3 isolates), Rhodotorula
mucilaginosa (2 isolates) and Trichosporon asahii (1 isolate).
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numbers of isolates of other Candida species including C.

krusei (8 isolates), C. guilliermondii (4 isolates), C. haemu-

lonii (4 isolates), and each one isolate of C. intermedia and

C. lusitaniae. Cryptococcus neoformans (11 isolates, 2.5%)

was the most common non-Candida yeast species, followed

by Kodamaea ohmeri (3 isolates), Rhodotorula mucilagi-

nosa (2 isolates) and Trichosporon asahii (1 isolate)

(Table 1).

Over the 3-year study period, the frequency of all yeast

isolates decreased from 29.7% to 26.3% then markedly

increased to 44% from 2012 to 2014 (P<0.001), with the

frequency of non-Candida species also moderately

increasing from 3.1% to 4.7% (P<0.5). With regard to

individual species, the isolation rate of C. albicans

decreased significantly from 37.2% to 27.7% (P=0.095),

whilst the isolation rate of non-albicans Candida reached

up to 29.7% in 2014 (compared with 17.7% in 2012,

P<0.001). Of these, the proportion of C. tropicalis of

30.4% collected from 2014 exceeded the frequency of

26.4% and 14.9% collected during 2012 and 2013, respec-

tively (P=0.5). The isolation rate of C. glabrata was14.9%

and 8.4% of 2013 and 2014, respectively, higher than that

in 2012 (4.7%, P<0.5). Of note, the isolation rate of C.

pelliculosa rose from 2.3% to 10.5% during the 3 years

(P<0.05). Conversely, the frequency of C. parapsilosis

complex declined from 24% to 13.1% from 2012 to 2014

(P<0.05).

Table 1 also shows species distribution of the 434 yeast

isolates according to the source of specimens. The most

common specimen type was blood (51.6%), followed by a

central venous catheter (CVC; 15.2%), pus (13.4%), asci-

tic fluid (8.8%), pleural fluid (3.0%), cerebrospinal fluid

(2.8%), bile (1.6%), joint fluid (1.4%), tissue (1.4%).

Other than C. metapsilosis and T. asahii, the other 14

species caused bloodstream infections. C. albicans (72/

224 isolates, 32.1%) remained the most common pathogen

for bloodstream infections, followed by C. tropicalis (52/

224 isolates, 23.2%). The proportion of non-albicans

Candida isolates recovered from blood cultures (146/434

isolates, 33.6%) was significantly higher than that recov-

ered from other specimen types (124/434 isolates, 28.6%)

(P<0.5). The frequency between blood source and non-

blood source isolates was similar for C. tropicalis (12%

versus 13.1%) and C. parapsilosis complex (8.3% versus

9%). However, there was a significant difference in pro-

portions of blood vs non-blood source for C. glabrata

(6.2% versus 2.7%, P<0.05) and C. pelliculosa (5.1%

versus 1.6%, P<0.01). There were also a few uncommon

yeast species causing bloodstream infections, such as R.

mucilaginosa, C. intermedia and K. ohmeri (Table S1).

Concordance Of Initial And Final

Identification Results
The agreement of identification results for yeast isolates

obtained from the First Affiliated Hospital of Zhengzhou

University and from the central laboratory is presented in

Table 2. Overall concordance was 71.2% (309/434) with

the highest observed for C. albicans (97.3%,143/147),

while concordance much lower (0% to 76.9%) for other

species. In particular, all isolates of C. metapsilosis, C.

orthopsilosis, K. ohmeri, R. mucilaginosa, C. intermedia,

C. lusitaniae, T. asahii were incorrectly identified or

unable to be identified at the First Affiliated Hospital of

Zhengzhou University.

Further, accurate identification results to species level

by conventional methods from the local hospital showed a

relatively high error rate for non-C. albicans isolates: C.

tropicalis (75/109, 68.8%), C. parapsilosis complex sensu

stricto (39/69, 56.5%), C. glabrata (30/39, 76.9%), C.

pelliculosa (8/29, 27.6%), C. neoformans (8/11, 72.8%),

C. krusei (4/8, 50%), C. guilliermondii (1/4, 25%) and C.

haemulonii (1/4, 25%). Other uncommon minority species

were prone to incorrect identification. Only two R. muci-

laginosa occurred during minor error identification and

misidentified to genus level as Rhodotorulaspp. (Table 2).

In Vitro Susceptibilities
The antifungal susceptibilities of the 434 yeast isolates are

presented in Table 3. All three echinocandins exhibited

potent in vitro activities against the majority of Candida

isolates. All 75 isolates of C. parapsilosis complex were

susceptible to anidulafungin, micafungin, and caspofungin

with MIC50 of 1, 1, and 0.5 μg/mL. All the C. albicans

were susceptible to micafungin and caspofungin, except

one isolate (0.7%) showed MIC value to anidulafungin of

0.5 μg/mL. Decreased susceptibility to echinocandins was

observed among C. tropicalis isolates, two isolates dis-

played resistant to anidulafungin, micafungin, and caspo-

fungin with MICs of 2 and over 8 μg/mL, 2 and over 8 μg/

mL, and 1 and over 8 μg/mL. There was one C. tropicalis

isolate that showed MIC value to anidulafungin and cas-

pofungin of 0.5 and 0.5 μg/mL, respectively. Each C.

glabrata isolate showed intermediate susceptible to anidu-

lafungin or micafungin with MIC of 0.25 or 0.12 μg/mL,
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respectively. All echinocandins had MICs of over 8 μg/mL

against C. neoformans and T. asahii.

Of the azoles, C. albicans remained susceptible to all

azoles tested during the 3 years (over 95% susceptible). Of

these, voriconazole had a susceptibility rate of 95.9% (141/

147 isolates) compared with susceptibility rates of 98%,

99.3%, and 99.3%, for posaconazole, itraconazole, and flu-

conazole, respectively. Azoles also demonstrated potential in

vitro activities againstC. parapsilosis complex, with suscept-

ibility rate to posaconazole, voriconazole, itraconazole, and

fluconazole of 96%, 94.7%, 100%, and 94.7%, respectively.

However, two isolates of C. orthopsilosis exhibited high

MICs to posaconazole, voriconazole, and fluconazole (0.5,

8, and 256 μg/mL, respectively). There were also one C.

parapsilosis sensu stricto isolates resistant to posaconazole,

voriconazole, and fluconazole with MIC of 0.51 and 16 μg/

mL, and another C. orthopsilosis isolate resistant to vorico-

nazole and fluconazole with MIC of 0.25 and 8 μg/mL,

respectively. Significant decreased susceptibility was mostly

observed in C. tropicalis, and the resistance rate of this

Table 2 Comparison Of Identification Results Of The 434 Isolates Between Those Obtained From The First Affiliated Hospital Of

Zhengzhou University (Initial identification) And From The Central Laboratory (Final identification)

Final Identification Number

Of

Isolates

Concordance Of Initial And Final Identification Results

Number (%) Of

Isolates With

Concordance

Number (%) Of Isolates With Identifcation Errors

Major

Error

Misidentification (Number)

Candida albicans 147 143(97.3) 4(2.7) C. parapsilosis (2), C. tropicalis (1), Stephanoascus ciferrii (1)

Candida tropicalis 109 75(68.8) 34(31.2) C. albicans (7), C. krusei (7), C. famata (6), C. parapsilosis (5),

C. glabrata (4), C. laurentii (2), C. guilliermondii (1), C.

pelliculosa (1), C. neoformans (1)

Candida parapsilosis complex 75 39(52) 36(48)

Candida parapsilosis sensu stricto 69 39 (56.5) 30(43.5) C. famata (12), C. laurentii (5), C. albicans (3), C. glabrata (3),

C. krusei (2), C. rugosa (2), C. tropicalis (1), C. pelliculosa (1)

Candida metapsilosis 3 – 3(100) C. krusei (2), C. laurentii (1)

Candida orthopsilosis 3 – 3(100) C. krusei (2), C. famata (1)

Candida glabrata 39 30(76.9) 9(23.1) C.parapsilosis (2), C.tropicalis (2), S.ciferrii (2), C.albicans (1),

C.laurentii (1), Rhodotorula spp. (1)

Candida pelliculosa 29 8(27.6) 21(72.4) C. glabrata (11), C. krusei (5), C. parapsilosis (2), C. albicans

(1), C. norvegensis (1), C. laurentii (1)

Cryptococcus neoformans 11 8(72.8) 3(27.2) S. ciferrii (1), C. laurentii (1), C. krusei (1)

Candida krusei 8 4(50.0) 4(50.0) C. lipolytica (1), C. glabrata (1), C. pelliculosa (1), C.

neoformans (1)

Candida guilliermondii 4 1(25.0) 3(75.0) C. glabrata (2), C. parapsilosis(1)

Candida haemulonii 4 1(25.0) 3(75.0) C. glabrata (2), C. krusei (1)

Kodamaea ohmeri 3 – 3(100.0) C. guilliermondii (1), C. pelliculosa (1) C. albicans (1)

Rhodotorula mucilaginosaa 2 – – –

Candida intermedia 1 – 1(100.0) C. glabrata (1)

Candida lusitaniae 1 – 1(100.0) C. laurentii (1)

Trichosporon asahii 1 – 1(100.0) C. albicans (1)

Total 434 309(71.2) 123(28.3) –

Note: aOnly two Rhodotorula mucilaginosa isolates occurred during minor error identification and misidentified to genus level as Rhodotorulaspp.
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Table 3 In Vitro Susceptibility Results Of 434 Isolates To Nine Antifungal Agents

Species And Agents MIC (μg/mL) Number (%) Of Isolates In Each Category

Range 50% 90% S/WT I/SDD R/non-WT

Candida albicans(n=147)

Anidulafungin ≤0.015–0.5 ≤0.015 0.12 146(99.3) 1(0.7)

Micafungin ≤0.008–0.25 ≤0.008 0.15 147(100)

Caspofungin 0.015–0.25 0.03 0.06 147(100)

Posaconazole ≤0.08–0.5 0.015 0.03 144(98) 3(2)

Voriconazole ≤0.08–0.5 ≤0.08 0.15 141(95.9) 6(4.1)

Itraconazole ≤0.015–0.25 0.03 0.06 146(99.3) 1(0.7)

Fluconazole ≤0.12–8 0.25 0.5 146(99.3) 1(0.7)

5-Flucytosine ≤0.06->64 ≤0.06 0.12 145(98.6) 2(1.4)

Amphotericin B ≤0.12–2 0.5 1 147(100)

Candida tropicalis (n=109)

Anidulafungin ≤0.015->8 0.12 0.25 106(97.2) 1(0.9) 2(1.8)

Micafungin ≤0.008->8 0.03 0.03 107(98.2) 2(1.8)

Caspofungin 0.015->8 0.03 0.25 106(97.2) 1(0.9) 2(1.8)

Posaconazole 0.015–8 0.25 0.6 50(45.9) 56(54.1)

Voriconazole ≤0.008->8 0.12 0.5 67(61.5) 32(29.4) 10(9.1)

Itraconazole 0.03->16 0.25 0.5 100(91.7) 9(8.3）

Fluconazole 0.25->256 2 16 86(78.9） 10(9.2） 13(11.9）

5-Flucytosine ≤0.06–64 ≤0.06 0.12 107(98.2） 2(1.8）

Amphotericin B ≤0.12–4 1 1 107(98.2） 2(1.8）

Candida parapsilosis complex (n=75)a

Anidulafungin 0.03–2 1 2 75(100）

Micafungin 0.06–2 1 1 75(100）

Caspofungin 0.06–1 0.5 0.5 75(100）

Posaconazole ≤0.008–0.5 0.03 0.06 72(96） 3(4）

Voriconazole ≤0.008–8 ≤0.008 0.03 71(94.7） 4(5.3）

Itraconazole ≤0.015–0.5 0.03 0.12 75(100）

Fluconazole ≤0.12–256 0.5 2 71(94.7） 4(5.3）

5-Flucytosine ≤0.06->64 ≤0.06 0.25 70(93.3） 5(6.7）

Amphotericin B 0.25–2 0.5 1 75(100）

Candida glabrata (n=39)

Anidulafungin ≤0.015–0.25 0.03 0.12 38(97.4） 1(2.6）

Micafungin ≤0.008–0.12 0.015 0.03 38(97.4） 1(2.6）

Caspofungin 0.03–0.12 0.06 0.12 39(100）

Posaconazole 0.03->8 0.5 2 35(89.7） 4(10.3）

Voriconazole 0.015->8 0.25 1 28(71.8） 11(28.2）

Itraconazole 0.03->16 0.5 1 36(92.3） 3(7.7）

Fluconazole 0.5->256 8 32 36(92.3） 3(7.7）

5-Flucytosine ≤0.06->64 ≤0.06 ≤0.06 38(97.4） 1(2.6）

Amphotericin B 0.25–4 1 1 38(97.4） 1(2.6）

Candida pelliculosa (n=29)

Anidulafungin ≤0.015–0.06 ≤0.015 ≤0.015

Micafungin 0.03–0.06 0.03 0.06

Caspofungin ≤0.008–0.12 0.06 0.06 29(100）

Posaconazole 0.12->8 0.5 2 28(96.6） 1(3.4）

(Continued)
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species to posaconazole, voriconazole, itraconazole, and flu-

conazole of 54.1%, 9.1%, 8.3%, and 11.9%, respectively. In

addition, the non-susceptibility of C. tropicalis to both fluco-

nazole and voriconazole clearly increased to 27.5% and

44.8% in 2014, distinctly higher than those of 14.7% and

32.4% in 2012, but no statistical significance (P<0.5) was

shown. Similarly, a decreased susceptibility trend was

observed among the C. glabrata isolates, especially for the

overall voriconazole resistance rate already up to 28.2%,

followed by the resistance rate to posaconazole, itraconazole,

and fluconazole of 10.3%, 7.7%, and 7.7%, respectively. C.

pelliculosa exhibited extremely high rates of resistance to

fluconazole and voriconazole that reach up to 55.2% and

41.4%, respectively (Table 3).

Azoles showed a good in vitro antifungal activity

against C. neoformans to posaconazole, voriconazole,

itraconazole, and fluconazole with the MIC90 of 0.12,

0.06, 0.12, and 4 μg/mL, respectively. Other uncommon

yeast species displayed generally high MIC values to four

azole agents. It is noteworthy that three of four C. haemu-

lonii isolates showed high MIC values to posaconazole,

voriconazole, itraconazole, and fluconazole of 1, >8, >16,

and >256 μg/mL, respectively.

All 147 C. albicans isolates showed a WT phenotype

to amphotericin B while two isolates of this species (1.4%)

were non-WT phenotype to 5-flucytosine. And, 2.6% of C.

glabrata (one isolate) and 1.8% of C. tropicalis (two

isolates) had non-WT phenotype both to amphotericin B

and 5-flucytosine. All isolates of C. parapsilosis complex

were susceptible to amphotericin B, but 6.7% of this

species (5 isolates) were resistant to 5-flucytosine. C.

pelliculosa and other yeast species possessed higher

Table 3 (Continued).

Species And Agents MIC (μg/mL) Number (%) Of Isolates In Each Category

Range 50% 90% S/WT I/SDD R/non-WT

Voriconazole 0.06->8 0.25 0.5 17(58.6） 12(41.4）

Itraconazole 0.06->16 0.25 0.5

Fluconazole 2->256 8 16 13(44.5） 16(55.2）

5-Flucytosine ≤0.06->64 2 32

Amphotericin B 0.25–1 1 1

Cryptococcus neoformans (n=11)

Anidulafungin >8 >8 >8

Micafungin >8 >8 >8

Caspofungin >8 >8 >8

Posaconazole 0.06–0.25 0.12 0.12

Voriconazole 0.03–0.06 0.03 0.06

Itraconazole 0.03–0.12 0.06 0.12

Fluconazole 2–8 4 4

5-Flucytosine 0.5–4 2 4

Amphotericin B 0.5–1 0.5 1

Other species (n=24)b

Anidulafungin ≤0.015->8 1 2

Micafungin 0.015->8 0.12 0.5

Caspofungin 0.03->8 0.12 2

Posaconazole 0.015–1 0.25 1

Voriconazole ≤0.008->8 0.25 >8

Itraconazole 0.03->16 0.25 1

Fluconazole 0.5->256 16 >256

5-Flucytosine ≤0.06->64 8 64

Amphotericin B ≤0.12–4 0.25 4

Note: aThis includes Candida parapsilosis sensu stricto (69 isolates), Candida metapsilosis (3 isolates), Candida orthopsilosis (3 isolates). bThis included Candida krusei (8
isolates), Candida guilliermondii (4 isolates), Candida haemulonii (4 isolates), Candida lusitaniae (1 isolate), Candida intermedia (1 isolate), Kodamaea ohmeri (3 isolates),

Rhodotorula mucilaginosa (2 isolates) and Trichosporon asahii (1 isolate).

Abbreviations: S, Susceptible; SDD, Susceptible-dose dependent; I, Intermediate; WT, Wild-type; R, Resistant.
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MIC50 to flucytosine of 2 and 8 μg/mL, respectiveluy. The

MIC50 value of amphotericin B for all species tested were

0.25 to 1 μg/mL.

Discussion
This retrospective observational study describes a labora-

tory-based, 3-year surveillance of invasive yeast infections

in the First Affiliated Hospital of Zhengzhou University.

Although national data have been published, local data of

species distribution, patient characteristics, and antifungal

susceptibility profiles are essential to inform early and

effective treatment for Candida infections.

Although there are many large-scale, global surveillance

programs identifying species distribution and resistance

trends of IFIs,5,9,15 similar studies in medical institutions

within China are few.16–19 Invasive candidiasis remains the

most common invasive yeast infection, accounting for 96.1%

of the episodes in this study. Generally, although C. albicans

remains the dominant species, it accounted for only 33.9% of

the isolates collected in this study, lower than that overall in

the Asia-Pacific region (46.3%),9 another Chinese study (43–

47.4%)5 and more specifically, in Beijing (50.3%)10 during

the same period. C. tropicalis was the most common non-

albicans Candida species (25.1%), which again differs from

the epidemiology reported in the Asia-Pacific region of

SENTRYantimicrobial surveillance program, whereC. glab-

rata was second most common species (19.3%)9 and con-

trasting with the CHIF-NET Study in China.5 However, the

relative frequency of C. tropicalis in our study was similar to

other single-center studies.16,18 Of interest, we observed a

relatively high frequency of C. pelliculosa (6.7%) isolates at

our hospital (similar to the frequency of C. glabrata, 9%)with

the majority of isolates being from blood (81.5%). The above

findings emphasize the necessity to perform locally relevant

epidemiological studies.

From the clinical perspective, the frequency of IFIs in

the patients older than 65 years deserves attention in

keeping with previous observations that infection with

some common Candida species, such as C. albicans, C.

parapsilosis, C. tropicalis, and C. glabrata, may be asso-

ciated with older age.10,16,20 Conversely, the isolation of C.

pelliculosa in our study was associated with disease in

newborns (35.5%). There have been reports of nosocomial

transmission of C. pelliculosa fungemia in the neonatal

ICU,21,22 and clinicians should be vigilant about the poten-

tial presence of this species. Our study also confirmed that

patients admitted to ICUs and surgical department pose a

high risk of developing IFIs.17,23 MALDI-TOF MS has

been extensively proven as a powerful tool in the identifi-

cation of yeast species compared with traditional identifi-

cation methods.12,26 To this end, incorrect identification

results in our study using the CHROMagar Candida med-

ium and the VITEK 2® compact system not only occurred

for uncommon Candida isolates but also for common

Candida species (error rates from 2.7% of C. albicans up

to 48% of the C. parapsilosis complex). For the common

Candida species, conventional identification methods

especially exhibited poor identification performance to

the C. parapsilosis complex with 48% of the error identi-

fication rate. Of these, C. parapsilosis sensu stricto were

most indistinguishable from C. famata and C. laurentii

while C. metapsilosis and C. orthopsilosis were liable to

misidentified as C. krusei. Some studies have highlighted

the inferior identification performance of common com-

mercial systems to C. parapsilosis complex, and C. famata

has also been reported as the most primary species mis-

identified from C. parapsilosis sensu stricto.27,28 As is

well known, the performance of conventional identifica-

tion methods to less commonly encountered yeast species

is unsatisfactory.29,30 We observed high misidentification

rates in the identification of C. pelliculosa (72.4%), C.

krusei (50%), C. guilliermondii (75%), C. haemulonii

(75%), and K. ohmeri (100%). In consideration of mole-

cular techniques associated with increased costs, longer

turn-around time and the need for considerable expertise,29

Zhang et al proposed an algorithm of MALDI-TOF MS

supplied with DNA sequencing for yeast identification that

can be applied to epidemiological investigation and the

routine laboratory identification.12

C. albicans exhibited low antifungal resistance rates as has

been shown globally.5,9,10 The majority of the C. parapsilosis

complex isolates were susceptible (or WT) to all nine antifun-

gals tested (≥93.3%), with a 5.3% of resistance rate to fluco-

nazole and voriconazole. The findings were in general higher

than those obtained from the national CHIF-NET

surveillance.5,31 Among the C. parapsilosis complex, C.

orthopsilosis was the most resistant species and had very

high MICs to azoles (8 or 256 μg/mL for fluconazole).

Although C. orthopsilosis is relatively uncommon, it is essen-

tial to perform accurate identification and antifungal suscept-

ibility test to detect such species.32 High-level azole resistance

was mainly observed in C. tropicalis, with resistance rates to

fluconazole of 11.9%, and to voriconazole of 9.1%, both higher

than that seen in the SENTRY Antifungal Surveillance

Program (1997–2016) (9.2%fluconazole-resistance),9 national

level (2010–2012) (both of 5.7%),31 and a teaching hospital in
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southwest China (2.2% and 0%),16 but similar to that in the

national level during a 5-year surveillance (12.8% and

11.4%)33 and Beijing hospitals (both of 9.4%).10 Fan et al

have underlined the notable increasing trend in azole non-

susceptible invasive C. tropicalis infection in China. Our

research data accorded with this epidemical tendency with an

even higher voriconazole non-susceptible rate.33 Thus, contin-

uous surveillance, molecular epidemiology, and resistance

mechanism study are essential, and empirical therapeutic stra-

tegies for C. tropicalis invasive infections may be modified in

China.33,34 Moreover, in vitro susceptibility results showed

that only 7.7% of C. glabrata isolates were resistant or non-

WT to all four azoles similar to results reported in a 5-year

multicenter study based on CHIF-NET program35 but contrast

with results in the USA.36 Although a rising echinocandin

resistance of C. glabrata in the USA poses a serious challenge

for clinical therapy,37 the fact that only one isolate (2.6%)

herein was considered to be of “intermediate susceptibility”

to anidulafungin and micafungin is reassuring. Interestingly,

our results showed that a high proportion of C. pelliculosa

isolates – 55.2% and 41.4% were non-WT to fluconazole and

voriconazole, respectively. Such high resistance rates have not

been previously reported11,38. Other yeast species, although

uncommon, exhibited high MIC values to the four azole

agents. For example, C. haemulonii was highly resistant to

the azoles, amphotericin B, and 5-flucytosine but had low

MICs for the echinocandins in our study. This resistance pat-

tern is similar to that reported byHou et al in China and Ramos

et al in Brazil.39,40

Two main limitations of this study are mentioned. First,

we used the YO10 methodology to perform antifungal

susceptibility testing and not a reference broth microdilu-

tion method. However, the essential agreement between

this methodology and the CLSI and the EUCAST refer-

ence procedures had been proven to be very high for yeast

species.35,41,42 Importantly, surveillance work was inter-

rupted for a number of reasons beyond our control from

2014 to 2016 limiting the collection of more complete

epidemiological data.

In conclusion, the present study provides valuable local

surveillance data on the epidemiology and antifungal sus-

ceptibilities of invasive yeast species isolated from the First

Affiliated Hospital of Zhengzhou University, which can be

used to guide the selection of both empiric and targeted

antifungal therapy. Although C. albicans remained the most

prevalent species, the frequency of C. tropicalis and its

notable and increasing trend azole non-susceptibility

requires noting. Less common Candida species also

exhibited high azole resistance rates, continuously monitor-

ing of local epidemiology of invasive yeast infection and of

antifungal resistance is warranted.
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