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Abstract: Inflammatory bowel disease (IBD), which mainly consists of Crohn’s disease and

ulcerative colitis, is a chronic and relapsing inflammatory condition of the gastrointestinal

tract. The traditional treatment strategies relied on frequent administration of high dosages of

medications, including antibiotics, non-steroidal anti-inflammatory drugs, biologics, and

immunomodulators, with the goal of reducing inflammation. Some of these medications

were effective in alleviating the early-stage inflammatory symptoms, but their long-term

efficacies were compromised by the accumulation of toxicities. Recently, nanoparticle (NP)-

based drugs have been widely studied for their potential to solve such problems. Various

mechanisms/strategies, including size-, charge-, pH-, pressure-, degradation-, ligand-recep-

tor-, and microbiome- dependent drug delivery systems, have been exploited in preclinical

studies. A certain number of NP delivery systems have sought to target drugs to the inflamed

intestine. Although several NP-based drugs have entered clinical trials for the treatment of

IBD, most have failed due to premature drug release, weak targeting ability, and the high

immune toxicity of some of the synthetic nanomaterials that have been used to fabricate the

NPs. Therefore, there is still a need for rationally designed and stable NP drug delivery

system that can specifically target drugs to the disease site, prolong the drug’s residence time,

and minimize systemic side effects. This review will analyze the current state of the art in

NP-mediated drug delivery for IBD treatment. We will focus on topics such as deliverable

targets (at the tissue or cellular level) for treating inflammation; the target-homing NP

materials that can interact with such targets; and the major administration routes for treating

IBD. These discussions will integrate notable trends in the research and development of IBD

medications, including multi-responsive NP-mediated delivery and naturally-derived target-

ing NPs. Finally, current challenges and future directions will be presented in the hopes of

advancing the study of NP-mediated strategies for treating IBD.

Keywords: intestinal bowel disease, nanoparticle, multi-responsive, edible-plant derived,

exosome, targeted drug delivery

Introduction
More than 1.8 million patients in the United States and approximately 3.5 million

worldwide are suffering from inflammatory bowel disease (IBD), which is a set of

chronic and idiopathic inflammatory conditions that may affect the entire gastro-

intestinal (GI) tract.1,2 IBD primary comprises two clinically defined forms: ulcera-

tive colitis (UC) and Crohn’s disease (CD). UC, which is confined to the colon, can

spread from the rectum to the cecum in a non-interrupted fashion and show

extensive mucosal ulceration. CD, in contrast, mostly affects the ileum and the

colon but can also be found discontinuously in other regions of the GI tract.3 Both
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UC and CD are associated with increased colorectal cancer

risk, high morbidity, and a decreased quality of life.4–6 The

rise of global industrialization has been paralleled by a

dramatic increase in the incidence of IBD worldwide,

putting a substantial burden on public healthcare.7

The etiology of IBD has been extensively studied, but

the causative factors are not yet fully understood. The

current knowledge of complex diseases suggests that

their causes are often multifactorial.8 Endogenous triggers

(such as genetic predisposition and immunoregulatory dys-

function), external environmental triggers (including diet,

chemicals, and psychological stress), and microbial expo-

sure are thought to contribute to the development of

IBD.3,9,10 Recent studies of the human microbiome

revealed that dysbiosis (an alteration of the regular com-

position of the microbiota) also plays a pivotal role in the

development of IBD,3,11–13 adding another layer of com-

plexity of the etiology of this important disease.

Colon-targeted drug delivery system (DDS) has received

significant attention for their potential to treat IBD, which

predominantly affects the colon.14 Conventional formulations,

such as capsules, tablets, and solutions, are still used in the

clinic to deliver anti-inflammatory drugs (e.g., 5-aminosa-

licylic acid, corticosteroids) or immunosuppressive agents

(e.g., azathioprine, 6-mercaptopurine) for the treatment of

IBD. In contrast, IBD-targeting biologics (e.g., anti-tumor

necrosis factor [TNF]-monoclonal antibodies) are mainly

delivered via intravenous (IV) or subcutaneous (SC)

injection.15 These approaches do not yield colon-targeted

drug delivery and often trigger severe systemic side effects.

Therefore, scientists have developed several advanced target-

ing DDSs, which employ different mechanisms for the con-

trolled and colon-targeted release of a loaded drug. Such

strategies include the use of time-dependent erodible hydrogel

capsules, pH-dependent coating formulations derived from

methacrylate derivatives or poly-(lactic-co-glycolic acid)

(PLGA),16 pressure-sensitive osmotic agents with capsulated

semi-permeable membranes, and microbiota-triggered ethyl-

cellulose/amylose particles.17 Although researchers have

expended tremendous effort in creating colon-targeted

DDSs, several of which have been approved for clinical stu-

dies, their potential seems limited for clinical use in treating

IBD. The available single factor-triggered NP therapies have

failed to control the disease inmany patients and carry risks for

severe systemic side effects.18 Clearly, there is no easy cure

for IBD.

Recent design language conveyed strategies for expli-

citly targeting the loaded drug to a subtype of cells, instead

of the entire colon tissue.19 The use of a cell-targeting

DDS in IBD is expected to provide a high local drug

concentration at the site of inflamed cells or tissues for a

prolonged period. Given that higher drug concentrations in

inflamed cells are associated with a lower histological

index of inflammation,20 inflammation-targeting DDS can

maximize the anti-inflammatory efficacy of the loaded

drug. Moreover, targeted deliveries have been shown to

prevent or reduce the premature drug delivery that occurs

when the delivery system is degraded before it reaches the

site of action.21 For example, biologics, such as antibodies

or small interfering RNAs (siRNAs), generally undergo

rapid degradation and exhibit a short half-life in circula-

tion, and thus benefit from the protection of a DDS.22 A

targeted DDS yields an elevated drug concentration and

enables prolonged drug-target interactions, and thus

should be able to be given at a lower dosing frequency.

Since the targeted DDS-loaded drug is directly released at

the inflamed cells, this strategy should minimize systemic

drug exposure and the associated side effects.

Among the cell-specific targeting approaches, NP-

based DDSs have gained considerable attention due to

their favorable small size, strong drug-loading ability,

and versatile surface structure. Smaller-sized NPs (<200

nm) were found to penetrate the mucus layer more deeply

than larger submicron particles and were shown to reach

the intestinal tissues.23 There is an overall increase in the

colon permeability of IBD patients, who lose tight junc-

tions and cellular integrity upon the activation of pro-

inflammatory cytokines. NPs passively target the drug to

the site of inflammation through the enhanced permeabil-

ity effect (EPR), which increases their uptake by activated

immune cells.24 NP-based delivery modifies the pharma-

cokinetics of the encapsulated drug, potentially improving

its stability and reducing its immunogenicity compared to

the free drug. Furthermore, surface modification of the NP

can facilitate its specific cell-targeting functions, enabling

nano-drugs to exhibit controlled release at the site of

inflamed cells and minimizing systemic toxicity.25

The published studies have largely focused on treating

IBD with mechanism-driven DDSs (including size-, charge-,

pH-, pressure-, enzymatic hydrolysis-, degradation-, ligand-

receptor-, and microbiome-dependent) and synthetic NP-

mediated DDSs (including amphiphilic prodrugs, hydrogels,

mesoporous silica, and solid lipid NPs), and such applica-

tions have been extensively reviewed.14,21,24,25 This review

will touch only lightly on these topics, instead focusing on

deliverable targets in IBD treatment, including the intestinal
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epithelium and mucus, immune cells, the lamina propria, the

extracellular matrix (ECM), and the microbiota (a newly

emerged target). In each section, we will describe the deli-

verable targets and present the corresponding NP materials

that show activity toward each target. We will then discuss

the main administration routes of different NPs for IBD

treatment. Finally, we will conclude by summarizing the

challenges and predicting future directions for NP-mediated

IBD treatment.

Deliverable Targets In IBD And
Corresponding NP Materials
Intestinal Epithelium And Mucus
The intestinal epithelium is lined by a monolayer of

columnar intestinal epithelial cells (IECs), which comprise

several specialized cell types, such as enterocytes, goblet

cells, Paneth cells, M cells, and stem cells.26 These differ-

ent IECs are connected by intercellular junctions, such as

adherens and tight junctions (TJs). TJs act as intestinal

barriers and regulate the permeability of water, ions, and

nutrients. The goblet cells generate secreted mucins

(mainly mucin 2), which form a “loose” layer of gel-like

mucus. There are two mucus layers in the colon: a loose

outer layer of secreted mucins and a “firm” inner layer of

cell membrane-anchored mucins [Figure 1]; in contrast,

the mucus layer of the small intestine is a loose, discontin-

uous, unattached single layer that sometimes reveals the

tips of the villi.27

Logically, mucoadhesive NPs can locally deliver drugs to

the mucus of the small or large intestine.28 Mucin, which

forms the building blocks of the mucus layer, is a glycopro-

tein that is composed of single-chain amino acid backbones

(mainly containing proline, serine, and threonine) with

Figure 1 Mucus layer, epithelium, and lamina propria of the small and large intestine.
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branched oligosaccharide side chains, including fructose,

galactose, N-acetyl galactosamine, and N-acetyl

glucosamine.29 Given the hydrophilicity of mucin, NP mate-

rials that seek to target the mucous membrane should contain

hydrophilic functional groups, such as carboxyl or hydroxyl,

which will allow hydrogen bonds to form between the

mucins and the NPs. Many NP materials, including the

synthetic polymers (acrylic acid derivative/polyacrylate)

and many natural polymers (hyaluronic acid, cellulose deri-

vative, chitosan, alginates, and pectin), can nonspecifically

adhere to mucin, as they lack ligand molecules that can

recognize and bind to particular receptors on mucus.

However, some natural materials reportedly exhibit specific

mucin-binding functions. For example, tomato lectins can

recognize and bind to N-acetyl glucosamine-containing com-

plexes on cell surfaces, and these lectins show a strong

association with mucus gel.30 Some strain-specific bacterial

adhesins were also found to selectively attach to the glycoar-

ray presented by mucin.31 Therefore, tomato lectins and

bacterial adhesins might be useful for constructing specific

mucin-binding NPs.

In addition to its unique chemical properties, mucin is

also characterized by its continuous degradation and for-

mation. Many studies have shown that the reduced mucus

thickness seen in IBD patients compared with non-IBD

controls may result from depletion of goblet cells in the

affected colorectal mucosa.32 Patients with UC also exhibit

altered glycosylation and reduced sulfation of mucin, indi-

cating that there is enhanced microbiota-mediated degra-

dation of the outer mucus layer.33,34 Although this scenario

makes mucus-penetrating delivery much more accessible

in IBD patient than in healthy people, fast deterioration of

the thin mucus layer in IBD patient can limit the applica-

tion of mucoadhesion-based DDS. Therefore, although

many published reports have supported the delivery of

IBD-treating therapeutics to the mucus, this may not be

the best choice

As an alternative to delivering the drug to the mucus

layer, many other systems have sought to deliver NPs to the

intestinal epithelium.35 These NPs penetrate the mucus

layer following oral delivery or, if administrated by intra-

venous injection, they exit the leaky vasculature of the

inflamed intestine to reach IECs via the EPR effect

[Figure 2].36 In the context of IEC-targeted drug delivery,

rational DDS design focuses primarily on the NP size and

charge, and the specific ligand/receptor on the IECs.18,37

Several studies have indicated that the best tissue-penetrat-

ing NPs for IBD treatment are less than 200 nm in diameter

and have a negative surface charge (such as anionic lipo-

somes), as these characteristics allow the NPs to benefit

from the EPR effect of inflammation and the accumulation

of positively charged proteins at the damaged epithelium of

IBD patients, respectively.38 Many edible plant-derived

NPs, including broccoli-, ginger-, grape-, and grapefruit-

Figure 2 Orally delivery or injection of NPs to the inflamed intestinal epithelium with impaired epithelial cells and permeable blood vessel.
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derived NPs, have demonstrated excellent IEC-targeting

functions, partly due to their suitable sizes and negatively

charged surfaces.39,40 In the context of ligand/receptor-

dominated IEC targeting, some of the membrane proteins

that are upregulated in IBD can be used as anchors for the

attachment of nano-drugs. For example, the glycoprotein,

CD98, which is a heterodimer that forms the large neutral

amino acid transporter, is abnormally up-regulated on both

epithelial and immune cells in IBD.41 NPs decorated on

their surfaces with a CD98 antibody demonstrated an IEC-

targeting function and successfully delivered CD98 Fab’-

bearing quantum dot (QD)-loaded NPs and CD98 siRNA to

reduce inflammation in a mouse model of IBD.42 Peptide

transporter 1 (PepT1), an oligopeptide transporter, was also

found to be overexpressed in the colon epithelium of IBD

patients.43–45 Numerous pro-drug strategies have been

examined for their ability to target PepT1 as a means to

enhance drug absorption. Some have used dipeptides (e.g.,

valine-glycine and tyrosine-valine) chemically linked to

poly-lactic acid-poly-ethylene glycol (PLA-PEG) to deliver

drugs.46,47 The results from these studies have suggested

that upregulated membrane proteins, especially transporters,

are excellent anchors for IEC-targeted NP delivery.

Immune Cells, The Lamina Propria, And

The Extracellular Matrix
The intestinal immune system, which is separated from the

GI lumen by the intestinal epithelium, prevents the inva-

sion of pathogens and maintains the tolerance of commen-

sal microorganisms and ingested foods.48,49 The innate

immune system comprises a variety of cells, including

dendritic cells (DCs), granulocytes (such as neutrophils),

macrophages, and monocytes. In active IBD, there is a

noticeable infiltration of innate immune cells, including

DCs, macrophages, natural killer cells, neutrophils, and

some adaptive immune cells, such as B cells and T cells,

into the lamina propria.50,51 Notably, the infiltration of

macrophages and neutrophils is recognized as a hallmark

of IBD.52,53 Recently, the ECM has been proven to play an

essential role in interacting with the immune response.54

The ECM contains numerous macromolecules (e.g., col-

lagen, elastin, proteoglycan, and non-collagenous proteins)

that control critical cellular events, such as adhesion, dif-

ferentiation, migration, proliferation, and survival.55 In the

inflamed tissues, the ECM is affected by the infiltrating

immune cells and the activated tissue-resident cells; this

results in a remodeled ECM microenvironment with high

concentrations of proinflammatory cytokines (e.g., inter-

ferons [IFNs], TNF-α, and transforming growth factor-β
[TGF-β]), esterases, matrix metalloproteinases (MMPs),

myeloperoxidase (MPO), and reactive oxygen species/

reactive nitrogen species (ROS/RNS).56 These released

inflammatory regulators can modulate a wide range of

ECM macromolecules. The proteases, especially MMPs

(e.g., MMP8 or MMP9), selectively cleave ECM macro-

molecules (such as type I collagen) into small bioactive

peptides that may reversely alter immune cell activities.57

In active IBD, altered immune cells and macromolecules

of the lamina propria and ECM offer opportunities for tar-

geted drug delivery. Notably, some specific ligands/receptors

are overexpressed at the leukocyte-endothelial interface to

selectively recruit leukocytes to the site of inflammation.58

Endothelial cells, especially those from capillary blood ves-

sels, are activated by inflammatory cytokines to upregulate

several adhesion molecules, including E-selectin, intercellu-

lar adhesion molecule (ICAM)-1, P-selectin, and vascular

cell adhesion molecule (VCAM)-1, on their luminal

surfaces.59 Meanwhile, ligands that participate in anchoring

these leukocyte receptors are increasingly expressed by the

immune cells. Targeting the molecules that modulate leuko-

cyte traffic has recently become a popular approach for drug

delivery.60 NPs that mimic the structures of these ligands

have been designed to attach to endothelial cells and release

drugs to the adjacent immune cells. For example, recombi-

nant P-selectin glycoprotein ligand-1 (PSGL-1) was conju-

gated to PEGylated PLA particles, and the synthesized NPs

demonstrated a significantly stronger ability to adhere to the

inflamed endothelium in an in vivo model, compared to

unconjugated PEG-PLA particles.61,62 Another example is

the use of P- and E-selectins (which bind carbohydrate) to

attach to the surface of PLGA particles and mimic the leu-

kocyte adhesion on selectins.63,64 Although these innovative

approaches have shown excellent delivery efficiency both in

vitro and in vivo, additional work is needed to evaluate their

toxicity and therapeutic potential in IBD and further improve

their targeting specificity.

The ultimate goal of NP-mediated drug delivery for IBD

is to target the NPs to a specific subtype of inflammation-

associated cells. In a breakthrough study, surface-modified

nontoxic liposomal nanomaterials illustrated the specific-

cell targeting ability of NPs. In this work, neutral phospho-

lipids were conjugated with hyaluronan to form liposomal

NPs, whose surfaces were further decorated with integrin-

targeted antibodies against β7 integrin (β7 I). This enabled

them to target a specific subset of leukocytes: the gut
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mononuclear leukocytes. Through the cell-specific targeting

and precise delivery of siRNAs against the cell cycle-reg-

ulating molecule, cyclin D1 (CyD1), the authors verified

that CyD1 is a potent anti-inflammatory therapeutic target.65

The targeting of activated macrophages via recognition of

their overexpressed surface receptors has also been applied

in NP-based cell-specific therapies for IBD. The relevant

studies used mannosylated poly-(amidoamine)-based NPs

to target mannose,66 galactosylated chitosan NPs to target

the macrophage galactose/N-acetyl galactosamine-specific

lectins (MGLs),67–69 and PLA-PEG NPs grafted with the

Fab’ portion of F4/80 antibodies to target the F4/80 mem-

brane proteins.70 These studies showcased the power of NPs

to target specific cells through ligand/receptor interactions.

Another emerging direction in the cell-specific targeting

field is to employ naturally occurring nanoscale extracellular

vesicles for delivery purposes, such as by using edible plant-

or mammalian cell-derived exosomes. The lipid bilayer of

edible plant-derived exosomes has a unique chemical com-

position characterized by the noticeable enrichment of phos-

phatidylethanolamine (PE) and phosphatidylcholine (PC) on

the outer layer.40 Two interesting studies showed that the PE-

and PC-enriched outer layer could guide grapefruit-derived

exosomes to target macrophages via the clathrin-dependent

pathway and macropinocytosis.71,72 Another set of studies

showed that exosomes derived from TGF-β1 gene-modified

DCs could specifically interact with Tcell subsets, induce the

regulatory T cells (CD4+Foxp3+ Tregs) from lymph nodes of

the inflammatory site, and decrease the proportion of helper

T cells (Th17) at inflammatory sites, thereby inhibiting the

development of DSS-induced colitis in mice.73,74 Given their

lipid bilayer membranes and specific surface proteins, natu-

rally occurring exosomes exhibit a highly selective homing

ability and specific targeting capability, and thus might be an

ideal NP DDS for IBD.

Microbiota
It is estimated that more than 1013 commensal microorgan-

isms reside in the adult human’s intestine, over 90% of

which live in the colon.75,76 These commensal microor-

ganisms are commonly known as the human microbiota

and include bacteria, fungi, and viruses. In this review, our

discussion will focus on the bacteria. Commensal bacteria

in a healthy gut were found to comprise at least 400–500

different bacterial species and many different strains

within each species, indicating the enormous complexity

of this ecosystem.77 It is commonly observed that the

members of the human microbiota mainly belong to four

phyla; the majority are Bacteroidetes and Firmicutes

(represented mostly by Clostridia), with minor representa-

tions of Actinobacteria and Proteobacteria. Intestinal

inflammation is typically associated with significant

decreases in the population of Bacteroidetes and

Firmicutes, especially in species of Clostridium coccoides

and Clostridium leptum, and substantial increases in the

community of Actinobacteria and Proteobacteria, mainly

Enterobacteriaceae.75,77 In general, IBD patients show an

overall decrease in microbial diversity and a reduction of

about 25% in microbial genes.78

Most of the commensal microbiota is located in the

intestine; this site has a significantly higher pH (5.5–7.5)

than the stomach (pH 1.5–2.0), and the delivery of anti-

biotics to the intestine can alter the structure of the micro-

biota. Thus, many nano-delivery systems use pH-sensitive

polymeric materials to target the microbiota with antibiotic

drugs.79,80 Synthetic polymers, including poly (acrylic

acid), poly (acrylamide), poly (diethyl-aminoethyl metha-

crylate), poly (dimethyl-aminoethyl methacrylate), and

poly (methacrylic acid), have been widely studied for the

construction of pH-sensitive antibiotic nano-drugs that

yield enhanced antimicrobial effects through sustained

drug release.81 Some natural polymers, including albumin

and gelatin, have also been tested for the production of

efficient pH-susceptible nanosystems that can improve the

antimicrobial efficiency of antibiotics (i.e., ciprofloxacin,

aminoglycosides) by ensuring a targeted and controlled

release.82

Beyond the polymer-based NPs, some novel strategies

have harnessed genetically engineered probiotic bacteria as

the NP delivery system and “nano-factory”. In the first such

effort, the probiotic strain, Lactococcus lactis, was geneti-

cally modified to express the anti-inflammatory cytokine,

interleukin-10 (IL-10), to treat colitis in a mouse model of

IBD. When an engineered Lactococcus lactis was orally

delivered to the GI tract, it was found to restore intestinal

homeostasis.83 Subsequently, Lactococcus lactis was geneti-

cally engineered to produce the low calcium response V

protein, an immunomodulatory pathogenic protein, and

orally delivered to mice. The distributed bacteria released a

low dosage of the pathogenic protein, which triggered IL-10

secretion by the host immune cells and reduce colitis.84,85 In

similar studies, engineered bacteria, such as Lactobacillus

casei,86,87 Lactococcus plantarum,88,89 and Streptococcus

gordonii,90 have been used to deliver various molecules to

treat colitis in animal models of IBD. Strictly speaking, these

probiotics-based NPs are not explicitly designed to tailor the
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microbiota structure, as their secreted proteins are intended to

target immune cells. However, the administration of the

probiotics themselves will naturally modify the microbial

ecosystem, and the immune changes triggered by their

secreted proteins will also reshape the microbiota structure.

Recent studies have shown that edible plant-derived

NPs are potent weapons for targeting specific strains of

the microbiota. Orally administered ginger-derived lipid

nanoparticles (GDLPs) were found to specifically target

the Lactobacillaceae in a lipid-dependent manner. The

delivered GDLPs contained microRNAs that were shown

to affect various genes in Lactobacillus rhamnosus (LGG).

In particular, the GDLPs microRNA, mdo-miR7267-3p,

mediated targeting of an LGG monooxygenase (ycnE),

increased indole-3-carboxaldehyde (I3A), and subse-

quently induced the production of IL-22, which can

improve barrier function and ameliorate mouse colitis.91

These findings indicated that edible plant-derived NPs

might be used to target specific components of the micro-

biome to alleviate inflammation in IBD.

Delivery Routes Of NPs In IBD
Because of their unique size and size-dependent physical

properties, NPs are able to pass through mucus layer and

deliver loaded drugs to intestinal cells.23 NPs can also be

engulfed by macrophage cells through phagocytosis, and

thereby modulate the immune environment of the gut.92

Surface-modified NPs can attach to the target tissue for an

extended period, and thus can be used for intestinal ima-

ging or other therapeutic purposes.93 Therefore, NPs are

mainly used for targeted delivery of drugs, immune-mod-

ulating, and medical imaging. In general, the routes of NP

delivery include oral administration and non-oral drug

delivery (injection and rectal administration).

Oral Administration
The major challenge for oral NP systems targeting the

inflamed intestine lies in the environmental extremes in

the GI tract. Multiple factors (e.g., digestive enzyme, pH

variation, transit time, and microbiota composition) affect

the stability and delivery efficiency of NPs. This scenario

becomes even more complicated in a chronic inflamma-

tory condition.94 The pH value in the colon can vary

widely under inflammation, and studies have shown that

the colonic pH can be significantly more acidic in IBD

patients (pH 2.3–5.5) than under normal conditions (pH

7.0 ± 0.7).18 The transit time in the GI tract can also vary

remarkably in different IBD patients and healthy

individuals.95 The physiological characteristics of the

respective GI tract segments have been well exploited for

designing traditional oral DDS. Ligand-receptor, enzyme-,

pH-, time-, microbiota-, and pressure-mediated mechan-

isms have all been considered for the design of colonic-

targeting NPs for IBD treatment.14,18

NP drug delivery strategies that involve only a single

drug release mechanism have not succeeded well in clin-

ical studies due to their lack of flexibility and/or the loss of

selectivity upon encountering the complex and harsh gut

microenvironment. Recently, the combination of multi-

responsive mechanisms has gained traction in efforts to

design NP-based delivery systems. A multi-responsive

DDS would be expected to overcome the limitations of

single mechanism-guided delivery and largely enhance the

drug delivery efficiency. For example, CODES® (for 5-

aminosalicylic acid) and TARGIT® (for budesonide)

employed both pH-responsive and microbiota-mediated

degradation strategies to target the drug to the colon, and

demonstrated more efficient targeting ability than NPs that

exhibited only pH- or microbiota-mediated degradation

(Table 1).96,97 Going forward, multi-responsive drug deliv-

ery is expected to become more and more popular in the

treatment of IBD.

An emerging branch in the multi-responsive DDS field

is the therapeutic application of naturally derived nanopar-

ticles, such as NPs isolated from edible plants and mam-

malian cells. The plant-derived NPs have shown excellent

targeting ability with negligible toxicity. Owning to their

biocompatible lipid bilayer structure [Figure 3], edible

plant-derived NPs do not cause an immune response. If

properly manufactured, these NPs often maintain their

surface structures, which are typically characterized by a

few transmembrane proteins, ligands, abundant encapsu-

lated genetic materials, and enriched bioactive metabolites.

For example, GDNPs have been shown to carry proteins,

ginger miRNAs, and ginger active compounds. Orally

administrated GDNPs were found to efficiently target the

colon and were mainly absorbed by cells in the lining of

the intestine, which is the site of IBD-associated

inflammation.98 The colon-targeting function of GDNPs

is multi-factorial and is likely to involve size-, ligand-,

and receptor-mediated actions. The capacity of other

plant-derived NPs, including grape-, grapefruit-, and broc-

coli-derived NPs, to target different tissues is also likely to

be mediated via multiple factors.71,72,99–101 These mechan-

isms warrant further study. Unlike the edible plant-derived

NPs, most mammalian cell-derived NPs are not suitable
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for oral administration (see the injectable DDS section for

more information on these NPs).

In addition to considering the targeting mechanisms for

oral-deliverable NPs, the drugs’ properties need to be

considered during NP design efforts. For example, anti-

bodies or small molecules that target G-protein coupled

receptor (GPCR) signaling can be delivered to the ECM,

siRNA drugs require a DDS for high cellular uptake, and

DNA drugs need to be escorted into the nucleus. For

biologics, the traditional delivery route is the intravenous

injection; however, recent advances in plant-derived NPs

have demonstrated that GDLPs could orally deliver CD98

siRNAs to the inflamed colon, offering a new approach for

orally delivering biologics to treat IBD.102 Although many

small molecules may be delivered to the colon by NPs,

efforts should be made to prevent the premature drug

Table 1 US Food And Drug Administration Approved Multi-Responsive Oral Drug Delivery Systems For IBD Treatment

Drug Active Ingredient NP Formulation Mechanism Of Release

CODES130,131 Mesalamine (mesalazine, or

aminosalicylate [5-ASA])

Polysaccharide/pH-sensitive polymer Bacteria-degradation & pH-

dependent

DELZICOL* Methacrylic acid copolymer type B & polyethylene glycol &

hydroxypropyl methylcellulose (HPMC)

pH-dependent & time-

delayed; delayed release

LIALDA132,133* Multi-Matrix system with Hydrophobic/hydrophilic coating pH-dependent & time-

delayed; prolonged-release

MEZAVANT134 Multi-Matrix system with Lipophilic/hydrophilic coating pH-dependent & time-

delayed; prolonged release

Entocort EC135 Budesonide Gelatin capsules with enteric-coated granules pH-dependent & time-

depended;

Uceris136 Multi-Matrix system with Hydrophobic/hydrophilic coating pH-dependent & time-

delayed; extended-release

TARGIT137 pH-sensitive coatings onto injection-moulded starch Bacteria-degradation & pH-

dependent

Note: *Source: the professional version of Merck manual (https://www.merckmanuals.com).

Figure 3 Structures of plant-derived nanoparticles (PDNPs), exosome, and synthetic nanoparticles (artificial liposomes). (A) Major forms of PDNPs, (B) mammalian

exosome, and (C) major forms of the artificial liposomes. Reprinted with permission from The Royal Society of Chemistry. Yang C, Zhang M, Merlin D. Advances in plant-

derived edible nanoparticle-based lipid nano-drug delivery systems as therapeutic nanomedicines. J Mater Chem B. 2018;6(9):1312–1321.40
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release caused by acidic erosion in the stomach and enzy-

matic degradation along the GI tract. Enteric coatings or

degradation-resistant NP delivery systems can potentially

be used to protect encapsulated drugs.

Injectable NPs For IBD
Injectable administration, including IV, intramuscular

(IM), and SC injection, is less favored by patients com-

pared to oral administration, as injections require specia-

lized personnel and devices, and are often associated with

pain. Injectable administration offers benefits over oral

administration in providing instant and high systemic bioa-

vailability and largely reducing the liver’s first-pass meta-

bolism of drugs. However, the consequent high systemic

bioavailability inevitably increases the possibility of sys-

temic side effects. For example, IV infusion of anti-TNF-α

biologics may suppress the whole immune system,103 and

patients receiving SC delivery of Leukine® (sargramos-

tim), a human granulocyte-macrophage colony-stimulating

factor (GM-CSF) that activates innate immunity, reported

more musculoskeletal pain than those that received a

placebo.104,105

Currently, most biologics (anti-TNF-antibodies, antibo-

dies against integrins) and some corticosteroids are admi-

nistered through IV or SC injections. However, injectable

NP-mediated drug delivery could enable such agents to

reach the inflammation site and/or target it through the

EPR effect and then undergo local cargo delivery via

both size- and ligand/receptor interaction-dependent

mechanisms. Other microenvironment-dependent release

mechanisms, such as enzyme-, pH-, and ROS-driven

degradation of NPs, can also be harnessed when designing

injectable NPs. As seen with oral administration, multi-

responsive degradation is becoming more and more popu-

lar in the development of injectable NPs.

Various polymer-based injectable NPs have been

assessed in preclinical studies of IBD treatment. To ensure

safety, however, each component of a synthetic polymer-

based NP should be investigated for long-term toxicity.

This could be an issue for further development of inject-

able polymer-based NPs, as relatively few polymers (e.g.,

polyethylene glycol [PEG], PLGA, and chitosan) have

been verified as safe materials,106,107 and most synthetic

polymers have not been sufficiently studied in terms of

their long-term toxicity. Some synthetic NP materials have

even been reported to promote tissue inflammation and

sclerosis.108–111

In contrasts to synthetic polymers, mammalian cell-

derived exosomes are much safer NP system for injectable

drug delivery. In their role as part of the cell-cell commu-

nication system, mammalian cell-derived exosomes con-

tinuously shuttle between the host and receptor cells under

the supervision of the immune system. Therefore, these

exosomes are extraordinary biocompatible and can be

used to generate highly specific NP systems.112 Some exo-

somes can even have their own innate therapeutic effects.

For example, intravenous injection of intestinal epithelial

cell (IEC) exosomes into mice with dextran sulfate sodium

(DSS)-induced colitis has been shown to inhibit the pro-

gress of colitis. In one study, IEC exosomes carrying trans-

forming growth factor-beta 1 (TGF-β1) exhibited

immunosuppressive activity by inducing Tregs and immu-

nosuppressive DCs,74 other studies found that exosomes

released by granulocytic myeloid-derived suppressor cells

(G-MDSCs) could attenuate DSS-induced acute colitis in

mice, decreasing the proportion of Th1 cells and increasing

the proportion of Tregs in mesenteric lymph nodes.113,114

Thus, it seems that exosomes could be active natural nano-

carriers for delivering innately anti-inflammatory biological

components for the treatment of IBD.

Other Delivery Routes
Although rectal delivery is recommended as the first-line

treatment for patients with mild to moderate distal colitis,

rectal administration of drugs to treat IBD is less favorable

than oral administration or IV injection.115–117 Despite this,

many antisense oligonucleotide (ASO) medications have

been successfully delivered by rectal administration in pre-

clinical and clinical IBD studies. For example, researchers

used rectal administration of galactosylated low molecular-

weight chitosan (gal-LMWC) and TNF-α ASO to deliver

the latter into activated colonic macrophages, significantly

reducing colonic TNF-α in mice with 2,4,6-trinitrobenzene

sulfonic acid (TNBS)-induced colitis.118 Moreover, admin-

istration of signal transducer and activator of transcription 3

(STAT3) ASO by rectal enema effectively inhibited STAT3

expression and phosphorylation in the inflamed colonic

mucosa of colitis models and significantly attenuated the

intestinal inflammation.119 Despite the recognized advan-

tages of rectal administration, such as low systemic drug

exposure, however, rectal therapies are generally unpopular

and remain underused. This may reflect issues with poor

drug retention, limited medication adherence to enema

treatments, and problems with leakage and bloating.18,120

Dovepress Yang and Merlin

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
8883

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


In general, the selection of the delivery route used to treat

IBD depends on the individual disease stage. Injectable

administration of drugs is particularly useful for IBD treat-

ment when the inflammation has spread to extra-intestinal

locations, such as the eyes, joints, and skin. When inflamma-

tion is only present in the GI tract, oral and/or rectal drug

delivery would be a better solution, as they may reduce the

systemic bio-distribution of the delivered drug.

Conclusion And Prospects
NP-mediated DDSs have been widely developed for the

treatment of chronic inflammatory diseases, such as IBD.

The delivery of an NP-encapsulated drug to the inflamed

intestine has two prominent benefits: 1) an NP-loaded drug

may offer similar or better efficacy at a lower concentration

than the same drug delivered in a conventional formulation

(e.g., tablets, capsules, or emulsions);28 2) NPs may improve

the pharmacokinetics of the loaded drug, reducing its sys-

temic bio-distribution, toxicity, and/or dosing frequency. For

NP-based drug delivery in the treatment of IBD, the utilized

targeting strategies are typically based on the physiological

changes exhibited by the inflamed tissues.116 Compared to

healthy intestine, inflamed intestine demonstrates alterations

in pH, the colon-transit time, receptor expression, angiogen-

esis, and other microenvironmental factors. These differ-

ences between infected and healthy intestine can be

exploited to improve the targeting function of NP-based

drug delivery. Many single-factor (enzyme-, pH-, time-,

pressure-, receptor-, ultrasound-, etc.) triggered NP delivery

systems have been developed for the treatment of IBD.16,21

However, none of these single factor-triggered NP systems

has proven able to easily cure the disease.

Recently, the study of IBD nanomedicine has turned to use

multi-responsive NP systems to target the disease. Multi-

responsive NP systems may be comprised of multi-responsive

materials with complex structures, or they may take advantage

of known NP systems that naturally have multi-responsive

functions. Construction of multi-responsive materials and

NPs with complex structures require extensive chemical mod-

ification and particle structure optimization, and the toxicity of

each component must be carefully evaluated. At present, we

know very little about the dispositions and metabolisms of

these synthetic materials after drug delivery. The existing

pharmacokinetic (PK) studies of NP-based DDSs have mainly

focused on the carried drug; the PKs of the NP materials have

been largely ignored.121,122 A hot topic in the field of complex

NP design is the development of dual-function (i.e., having

both diagnostic and therapeutic abilities) NP-based delivery

systems. Some complex NP-based delivery systems have been

fabricated to deliver multiple drugs, with the goal of producing

synergic efficacy or performing multimodal imaging.123,124

These new and more sophisticated nanosystems might be the

future of NP-mediated IBD treatment and diagnosis. However,

toxicity should be carefully evaluated for these multi-func-

tional NPs: the therapeutic NPs warrant long-term safety

evaluations while the diagnostic NPs need to be tested for

the safety of their acute administration.

The biomedical field has witnessed an exponential

increase in the number of studies focused on exosomes and

their diagnosis and treatment of diseases.73,125 Such progress

has also extended to the area of NP-mediated IBD therapy.

Exosomes are nano-sized spherical vesicles that are secreted

by plant or animal cells. The lipid compositions differ dras-

tically between plant- and animal cell-derived exosomes, but

both exhibit equally powerful cell-specific targeting func-

tions. For instance, ginger-derived lipid vesicles can specifi-

cally target IECs and deliver CD98 siRNA to reduce colonic

CD98 gene expression,102 while exosomes from antigen-

presenting DC cells could activate both regulatory and helper

Tcells.126 It has been suggested that these naturally occurring

NPs could shift the current paradigm of NP drug delivery

from using synthetic polymeric NPs to using natural NPs.

The development of 16s ribosomal RNA sequencing has

allowed researchers to increasingly clarify the structures of

various gut microbiota. Efforts to identify the antigenic var-

iation of the microbiota in IBD, specifically the major bac-

terial species at the site of inflammation, could help

researchers design microbiome-targeted NP delivery

systems.75 For instance, the surface properties of NPs could

be tuned to target pathogenic bacteria or probiotics to

improve the microbiota structure of the patient, thereby help-

ing increase the efficacy of IBD treatment by altering the

microbiota metabolome.127 Several commensal enteric bac-

teria (Clostridia and Bacteroides) convert undigested fibers

to short-chain fatty acids (SCFAs), including acetate and

butyrate, which are energy substrates for colonic epithelial

cells and regulatory factors of the adaptive immune system.

These SCFAs were found to stimulate the proliferation of

Foxp3+IL-10-producing colonic Tregs, which help to protect

the colon against colitis.128,129 Therefore, microbiome-tar-

geted NPs could be designed to elevate the population of

these probiotics. Given the complex etiology of IBD, gaining

a better understanding of the gut microbiota network, the

microbiota metabolome, and their immunology will help us

understand IBD pathophysiology and facilitate the design of

novel drug delivery systems to target IBD.
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