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Background: Melanoma is known as the most aggressive and lethal type of cutaneous

cancer due to its rapid development of drug resistance to chemotherapy drugs.

Methods: In our study, we conducted a variety of studies, including quantitative PCR,

Western blot, and autophagy and apoptosis assays to investigate the involvement of miR-26a

and HMGB1 in modulation of dabrafenib sensitivity in human melanoma cell lines.

Results: Our studies revealed that the expressions of miR-26a and HMGB1 were altered in

two melanoma cell lines after dabrafenib treatment. Additionally, dabrafenib caused autop-

hagy in melanoma and this autophagic process was regulated by miR-26a via modifying

HMGB1 expression. Furthermore, silencing HMGB1-inhibited autophagy induced by dab-

rafenib in melanoma cells. Last, we verified that treatment with a miR-26a mimic and

HMGB1 shRNA could increase the efficacy of dabrafenib in melanoma cells.

Conclusion: Taken together, we showed that miR-26a is involved in the regulation of

dabrafenib efficacy via a HMGB1-dependent autophagy pathway in melanoma cells. These

results shed light on a novel treatment for conventional dabrafenib-based chemotherapy for

melanoma.
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Introduction
Melanoma is a type of cutaneous cancer which arises from melanocytes of the skin or

mucous membranes.1 Although it accounts for a limited percentage of all skin cancers,

melanoma has already become an indisputable crisis to human health worldwide due to

its poor prognosis and high mortality rate. In the last two decades, many efforts have

been put into the discovery of new anti-tumor drugs against melanoma.2–5 Some small-

molecule-targeted therapies have been developed, such as dabrafenib.6,7 Dabrafenib, a

BRAF inhibitors (BRAFi), was clinically approved by the FDA for the treatment of

late-stage melanoma. It selectively causes cell death of melanoma cells bearing the

V600-mutation and improves the overall survival rates of BRAF-mutation melanoma

patients.8 However, the majority of patients will develop drug resistance within several

months after dabrafenib treatment where resistance mechanisms are not yet fully

understood.9,10 Therefore, there is an urgent need for new therapies and medications

that can target this drug resistance.

MicroRNAs (miRNAs), a class of small noncoding RNAs of 19–24 nucleotides

in length, have been verified as post-transcriptional regulators of gene expression
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via binding to complementary sequences in the 3ʹ-untrans-

lated region (3ʹUTR) of target mRNAs, leading to their

degradation.11,12 Recent studies revealed that miRNAs

play important roles in various diseases and cellular

processes.13 For example, in many types of cancers, thou-

sands of miRNAs have been verified as oncosuppressors

and oncogenes, which are largely involved in cancer cell

proliferation, apoptosis, invasion, and metastasis.14,15 One

such miRNA is miR-26a. A large number of studies sup-

port that miR-26a is a pivotal regulator in tumor develop-

ment and contributes to chemosensitivity via many target

transcripts including PTEN, ULK1, NRAS, EZH2,

GSK3β, SMAD1, and high mobility group box 1

(HMGB1).16–20 Among these target transcripts, HMGB1

became a focus of our interest. It is a highly conserved and

ubiquitously expressed nuclear protein that functions as a

regulator in DNA repair, inflammation, cell differentiation,

cell migration, and invasion.21 Additionally, it has been

reported that HMGB1 is a key regulator of autophagy and

plays a critical role in chemotherapy resistance in many

types of cancer cells.22 However, how it regulates the

sensitivity of cells to dabrafenib in melanoma has yet to

be established.

In this study, we sought to investigate the potential

role of miR-26a in sensitizing melanoma cells to dabra-

fenib chemotherapy. We first tested the expression of

miR-26a and HMGB1 in two melanoma cell lines after

treatment with dabrafenib. Second, we explored whether

dabrafenib could cause autophagy in melanoma and

whether this autophagic process was regulated by miR-

26a via modifying HMGB1 expression. Furthermore, we

sought to test whether silencing HMGB1 could inhibit

autophagy induced by dabrafenib in melanoma cells.

Last, we verified that miR-26a and HMGB1 could

increase the efficacy of dabrafenib in treating melanoma

cells. Taken together, our study suggests that miR-26a is

involved in the regulation of melanoma dabrafenib effi-

cacy via a HMGB1-dependent autophagy pathway. These

results shed light on a novel, dabrafenib-based che-

motherapy for melanoma.

Materials And Methods
Cell Lines And Culture
The melanoma cell lines A375 and MEL624 were purchased

from American Type Culture Collection (ATCC, Manassas,

VA) and cultured in Dulbecco’s modified Eagle's medium

(DMEM) (Invitrogen Life Technologies, Carlsbad, CA,

USA) supplemented with 10% fetal bovine serum (FBS)

(Biomeda, Foster City, CA, USA) and 1% penicillin/strepto-

mycin/glutamine (Gibco/Invitrogen, Carlsbad, CA, USA).

All cell lines were maintained in a humidified incubator

with 5% CO2 at 37°C.

Antibodies And Reagents
Dabrafenib, 3-methyladenosine (3-MA) (#M9218), and

chloroquine (CQ) (#C6628) were purchased from Sigma

(St. Louis, MO, USA). The primary antibodies used in this

study were rabbit anti-cleaved PARP (#5625, 1:1000, Cell

Signaling Technology, Danvers, MA, USA), mouse

anti-β-actin (#3700, 1:3000, Cell Signaling Technology,

Danvers, MA, USA), mouse anti-LC3I/II (NB600-1384,

1:500, Novus, Littleton, CO, USA), mouse anti-p62

(SC-48389, 1:500, Santa Cruz, CA, USA), and rabbit

anti-HMGB1 (ab79823, 1:200, Abcam, Cambridge, MA,

USA). Species-specific secondary antibodies were

obtained from LI-COR Biosciences.

Quantitative PCR
Total RNA was isolated by using Trizol (#15596026,

Invitrogen Life Technologies, Carlsbad, CA, USA)

according to the manufacturer’s instructions and cDNA

was synthesized by using a High-Capacity cDNA

Reverse Transcription Kit (Life Technologies/Applied

Biosystem).

Ten ng cDNAwas then conducted in qPCR using SYBR

green kits (Thermo Fisher) on a 480 real-time PCR machine

(Roche Applied Science, Penzberg, Germany). qPCR

results were calculated using the Δ-Ct method and normal-

ized to the GAPDH as housekeeping gene. The sequences

of the forward and reverse primers used in qPCR were as

follows: primers for HMGB1 (forward: 5ʹ-TATGGCAAA

AGCGGACAAGG-3ʹ, reverse: 5ʹ-CTTCGCAACATCAC

CAATGGA-3ʹ) and GAPDH (forward: 5ʹ-ATCAGCAATG

CCTCCTGCAC-3ʹ, reverse: 5ʹ-CGTCAAAGGTGGAGGA

GTGG-3ʹ).

Autophagy Assays And Apoptosis Assay
GFP-tagged microtubule-associated protein 1 light chain 3

(GFP-MAP1LC3) was used to determine the degree of

autophagy. Briefly, the melanoma cells were seeded into

6-well plates (2×105 cells/well) and transiently transfected

with GFP-MAP1LC3 plasmid using Lipofectamine 2000

(Life Technologies, Carlsbad, CA, USA) according to the

manufacturer’s protocol. These cells were cultured for 24

hrs before different treatments and then fixed in 4%
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paraformaldehyde, and analyzed under Nikon PCM 2000

confocal microscope. Melanoma cells that undergo autop-

hagic process were observed to have significant numbers

of GFP-positive puncta. The degree of apoptosis in mela-

noma cells was measured by Western blot analysis of

cleaved PARP.

Cell Transfection
Short hairpin RNA (shRNA) against HMGB1 (Sigma),

non-target control (NTC) shRNA (Sigma), negative con-

trol miRNA (miR-NC) (Dharmacon), and miR-26a mimic

(miR-26a) (Dharmacon) were transfected into melanoma

cells using Lipofectamine 2000 Transfection Reagent in

accordance with the manufacturer’s instructions. In all

studies, cells were transfected 48 hrs before all treatments.

Western Blot
The methods have been described previously.23,24 In brief,

after each treatment, the whole-cell lysates were prepared

with ice-cold cell lysis buffer and cleared by centrifuga-

tion. The total protein concentration was measured with

the bicinchoninic acid assay Kit (Bio-Rad Laboratories).

Samples consisting of 40 μg of protein were resolved on a

denaturing 8–12% SDS-PAGE gel (Bio-Rad) and then

transferred to polyvinylidene fluoride membranes by elec-

troblotting. The membrane was then blocked in PBST

containing 5% dried milk at room temperature for 1 hr,

incubated with primary antibodies at 4°C overnight. Blots

were then incubated with appropriate secondary antibodies

at room temperature for 1 hr the next day. The signals

were detected by ECL reagents. β-Actin protein was used

as an equivalent loading control.

Cell Viability Assay
This method has been described previously.23,24 In brief,

cells were plated at a density of 5×104 cells/well in

96-well plates in 100 μL medium. After each treatment,

cell viability was measured by the Cell Counting Kit-8

(Dojindo, Japan) test in accordance with the manufac-

turer’s instructions.

Statistical Analysis
All data represented in this study are the mean values ±

SEM of at least three separate experiments. P values were

calculated with the appropriate statistical tests using

GraphPad Prism software 7.0. A significant difference

was considered to be present at p<0.05.

Results
Dabrafenib Induces Autophagy Which

Protects Cells From The Cytotoxicity Of

Dabrafenib In Melanoma Cells
A growing interest exists in the protective role of autophagy

during the chemotherapies in cancers. In our study, we first

examined whether dabrafenib would trigger autophagy in

melanoma cells. A375 and MEL624 cells transfected with a

GFP-MAP1LC3 reporter plasmid were treated with dabrafe-

nib (100nM) for 24 hrs. The GFP-LC3 puncta formation was

then observed and assessed under confocal microscopy.

Dense LC3-positive puncta were found when treated with

dabrafenib (Figures 1A and B). In consistence with the

results above, Western blot analysis revealed that autophagic

signaling was significantly activated by dabrafenib in a dose-

dependent manner (Figure 1C–E). To further prove the role

of autophagy in sensitivity of melanoma cells to dabrafenib,

we compared treatments with dabrafenib alone, co-treatment

with dabrafenib and inhibitors of autophagy, 3-MA or CQ.

We found inhibition of autophagy will enhance the cytotoxi-

city of dabrafenib in melanoma cells (Figure 1F and G).

miR-26a Is Downregulated While

HMGB1 Is Upregulated When Treated

With Dabrafenib In Melanoma Cells
miR-26a is known to be downregulated in some types of

cancers including colorectal cancer, cutaneous squamous

cell carcinoma, and retinoblastoma.25–29 We sought to deter-

mine the expression of miR-26a and HMGB1 in melanoma

cells when treated with dabrafenib. A375 and MEL624 cells

were treated with dabrafenib and the levels of miR-26a and

HMGB1were assessed by qPCR. Consistent with the data

above, HMGB1 expression was also found significantly

increased in response to dabrafenib treatment in the protein

level (Figure 4A and B). The results showed that miR-26a

was significantly downregulated (Figure 2A and B) in mel-

anoma cells while HMGB1 was upregulated (Figure 2C

and D) when treated with dabrafenib.

miR-26a Attenuates Autophagy And

Promotes Apoptosis Induced By

Dabrafenib Via Targeting HMGB1
To confirm the inhibitory effect of miR-26a on autophagy

in melanoma, cells were first transfected with control

miRNA or a miR-26a mimic followed by the treatment

with dabrafenib. Overexpression of miR-26a significantly
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Figure 1 Dabrafenib triggers autophagy in melanoma cells. (A) A375 and MEL624 cells transfected with a GFP-MAP1LC3 reporter plasmid were treated with dabrafenib

(100 nM) for 24 hrs. Confocal images showing GFP-LC3 puncta formation induced by dabrafenib treatment. (B) The percentage of cells showing accumulation of GFP-LC3

puncta. (C) Western blot analysis of LC3-I/II, p62, and β-actin proteins after dabrafenib treatment at the indicated concentrations in A375 (left panel) and MEL624 (right

panel) cells. (D) LC3-I/II and (E) p62 levels were quantified. (F) A375 and (G) MEL624 cells were treated with dabrafenib at the indicated concentrations for 24 hrs with or

without 3-MA (2 mM) or CQ (2.5 µM). Inhibition of autophagy sensitizes melanoma cells to dabrafenib. ***p < 0.001 compared with control group.
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diminished the GFP-LC3 puncta formation induced by

dabrafenib treatment (Figure 3A–C). Meanwhile, we

assessed the apoptosis levels in melanoma cells by mea-

suring cleaved PARP levels via Western blot (Figure 3D

and E). Cleaved PARP levels were robustly elevated in

miR-26a-overexpressing cells. Moreover, protein levels of

HMGB1 were found decreased in miR-26a-overexpressing

cells correspondingly (Figure 3D). Taken together, these

results demonstrate that miR-26a is a negative regulator of

autophagy in dabrafenib-based chemotherapy in mela-

noma and this effect is possibly modulated by HMGB1.

HMGB1 Deficiency Impairs Autophagy

And Augments Apoptosis Signaling In

Melanoma Cells
To gain further insight into autophagy regulated by

miR-26a in dabrafenib-based chemotherapy in melanoma,

we performed a series of studies using shRNA-mediated

HMGB1-deficient melanoma cells. We observed reduced

levels of LC3II in response to dabrafenib in

HMGB1shRNA-expressing cells relative to controls

expressing NTC shRNA (Figure 5B–D).

Correspondingly, GFP-LC3 puncta formation induced by

dabrafenib treatment was also found attenuated by

HMGB1 deficiency (Figure 5E–G). As anticipated, dabra-

fenib treatment elicited significantly higher levels of

cleaved PARP in HMGB1-deficient cells relative to con-

trols (Figure 4C and D). Therefore, we determined that

HMGB1 is a key regulator of the miR-26a-mediated drug

efficacy via autophagy pathways.

miR-26a Sensitizes Melanoma Cells To

Dabrafenib While HMGB1 Attenuates

Dabrafenib Cytotoxicity In Melanoma
Based on the results above, we would expect that miR-26a

would augment dabrafenib cytotoxicity while HMGB1 has

Figure 2 Expression of miR-26a and HMGB1 in melanoma cells. A375 (left panel) and MEL624 (right panel) cells were treated with dabrafenib (100 nM) for 24 hrs. miR-26a

levels were then assayed by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) in (A) A375 and (B) MEL624 cells. HMGB1 mRNA levels were also

detected in (C) A375 and (D) MEL624 cells by qRT-PCR. miR-26a was downregulated in melanoma cell lines while HMGB1 expression was upregulated when treated with

dabrafenib. ***p < 0.001 compared with control group.
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the opposite effect. Cells transfected with miR-NC, miR-26a

mimic, NTC shRNA, or HMGB1 shRNAwere treated with

dabrafenib at 100nM for 24 hrs. We then assessed cell

viability by CCK8 test and found that melanoma cells trans-

fected with the miR-26a mimic and HMGB1 shRNA were

more sensitive to the dabrafenib chemotherapy in compar-

ison to control groups (Figure 6). These results indicate that

miR26a possibly sensitizes dabrafenib-induced anti-tumor

activity via HMGB1.

Discussion
Melanoma is known as the most aggressive and lethal

type of cutaneous cancer. In the last two decades, a

large number of chemotherapeutic drugs have been

developed including BRAF inhibitors such as dabrafe-

nib. However, melanoma of advanced stages still has

poor prognosis and high mortality rates due to adaptive

or acquired drug resistance. Our study demonstrated the

underlying mechanisms of miR-26a-mediated chemo-

Figure 3 miR-26a inhibits autophagy and induces apoptosis in melanoma cells in response to dabrafenib via a HMGB1-dependent pathway. Melanoma cells were first

transfected with a GFP-MAP1LC3 reporter plasmid and control miRNA or a miR-26a mimic. These cells were then treated with dabrafenib (100 nM) for 24 hrs. (A)

Confocal images showing GFP-LC3 puncta formation induced by dabrafenib treatment. The percentage of cells showing accumulation of GFP-LC3 puncta in (B) A375 and

(C) MEL624 cells. (D) Western blot analysis of cleaved PARP, HMGB1, and β-actin proteins after dabrafenib treatment in A375 (left panel) and MEL624 (right panel) cells.

Apoptosis levels in melanoma cells were analyzed by measuring cleaved PARP levels via Western blot. Cleaved PARP levels (E) were elevated while HMGB1 expression was

decreased in miR-26a-overexpressing cells. ***p < 0.001 compared with control group.
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resistance regulation to dabrafenib via a HMGB1-depen-

dent autophagy pathway for the first time.

Recent interest has focused on understanding the mole-

cular basis of drug resistance to BRAFi in melanoma cells.

It is a complex process that involves a large amount of

genes and the pathways. Our group has recently focused on

the roles of miRNAs in melanoma drug resistance as they

are major post-transcriptional regulators and their dysregu-

lation is observed in a wide range of human diseases,

cancers in particular. miR-26a is one such example. miR-

26a was found downregulated in a variety of cancers

including hepatocellular carcinoma (HCC), breast cancer,

anaplastic thyroid cancer, nasopharyngeal cancer, colon

cancer, and melanoma.30–35 In addition, miR-26a was also

implicated in chemotherapy resistance in HCC, breast can-

cer, lung cancer, and gastric cancer through different target

transcripts.16,36–38 In the present study, we searched and

tried several putative targets of miR-26a that are previously

documented in other studies including EZH2, PTEN (data

not shown), and HMGB1.18,39,40 miR-26a was found to

inhibit HMGB1 expression and protect cardiomyocytes

against ischemia-reperfusion injury and inflammatory

injury.41,42 In our current study, we found that miR-26a

was downregulated while HMGB1 was upregulated post-

dabrafenib treatment in two melanoma cell lines.

HMGB1 is well established as a key regulator of

autophagy and apoptosis. Autophagy is a cellular process

of self-digestion of cytoplasmic components through

which cells can maintain cellular homeostasis.43 Recent

studies have revealed that autophagy is also an adaptive

response to certain stresses including chemotherapies and

radiation therapies.44 However, the exact roles of miR-

26a/HMGB1 and autophagy in determining the sensitivity

of melanoma cells to dabrafenib remain enigmatic. Our

results demonstrated that dabrafenib caused autophagy in

melanoma and this autophagic process was regulated by

miR-26a via modifying HMGB1 expression. We further

determined that silencing HMGB1 inhibited dabrafenib-

induced autophagy in melanoma cells. We also verified

that treatment with a miR-26a mimic or HMGB1 shRNA

could increase the efficacy of dabrafenib treatment in

melanoma cells.

In sum, our studies identified that miR-26a is involved

in the regulation of dabrafenib sensitivity in melanoma via

Figure 4 HMGB1 deficiency promotes apoptosis signaling in melanoma cells in response to dabrafenib. Melanoma cells were first transfected with NTC shRNA or HMGB1

shRNA. These cells were then treated with dabrafenib (100 nM) for 24 hrs. (A) HMGB1 levels were detected by Western blot and (C) apoptosis was assayed by measuring

cleaved PARP. (B) HMGB1 and (D) cleaved PARP levels were quantified. **p < 0.01, ***p < 0.001 compared to control group.
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Figure 5 HMGB1 deficiency inhibits autophagy induced by dabrafenib in melanoma cells. Melanoma cells were first transfected with NTC shRNA or HMGB1 shRNA. (A)

Verification of shRNA-mediated knockdown of HMGB1 by Western blot. (B) Western blot analysis of LC3-I/II, p62, and β-actin proteins after dabrafenib treatment (100nM)

for 24 hrs in A375 (left panel) and MEL624 (right panel) cells. (C) LC3-I/II and (D) p62 levels were quantified. (E) Confocal images showing GFP-LC3 puncta formation

induced by dabrafenib treatment. The percentage of cells showing accumulation of GFP-LC3 puncta in (F) A375 and (G) MEL624 cells. Results showed that dabrafenib-

induced autophagy signaling was diminished in HMGB1-deficient melanoma cells. ***p < 0.001 compared to control group.
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a HMGB1-dependent autophagy pathway. These findings

may provide new insight into how autophagy regulates the

BRAFi resistance in melanoma cells. Therefore, miR-26a/

HMGB1 might be a promising therapeutic target for dab-

rafenib-based melanoma therapy.
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