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Abstract: Autophagy is a lysosomal degradation pathway to clear long-lived proteins,

protein aggregates, and damaged organelles. Certain microorganisms can be eliminated by

an autophagic degradation process termed xenophagy. However, many pathogens deploy

highly evolved mechanisms to evade autophagic degradation. What is more, series of

pathogens have developed different strategies to exploit autophagy to ensure their survival.

These bacteria could induce autophagy and/or prevent autophagosomes fusion with lyso-

somes through secreted effector proteins or utilizing host components, thereby maintaining

the localization of the bacteria within the autophagosomes where they replicate. Here, we

review the current knowledge of the mechanisms developed by the bacteria to benefit from

autophagy for their survival.
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Introduction
Autophagy was first described as a response to starvation by the liver, with the term

“autophagy” derived from the Greek words for “self” and “eating”. It involves the

sequestration and transport of complete regions of the cytoplasm, including both

soluble proteins and entire organelles within double-membrane vacuoles called

autophagosomes, to the lysosomal system for degradation and recycling by lysoso-

mal hydrolases.1 Autophagy is the lysosomal degradation process which regulates

levels of long-lived proteins and organelles.1 The general autophagy is bulk autop-

hagy which appears to randomly sequester cytosolic content, while selective autop-

hagy requires cargo adaptors specifically enrich forming autophagosomes for

certain cargos. So far, selective autophagy has given rise to terms such as mito-

phagy, ribophagy, aggrephagy, lipophagy, endoplasmic reticulum (ER)-phagy, and

pexophagy according to the engulfed material.2

Autophagy pathways can be broken down into five basic phases: initiation,

elongation, closure, maturation, and degradation.3 Autophagy is regulated at the

molecular level by a family of dedicated genes called autophagy-related (ATG)

genes.4 The first ATG gene was identified in yeast by Ohsumi in 1993.5 To date, at

least 37 ATGs were identified.6 Among them, one subset has been referred to as the

“core” autophagic machinery as they are required for autophagosome formation in

all autophagy subtypes.7 These core ATGs can be subdivided into four subgroups:

1) the ATG1/ULK1 complex, composed of ATG1/ULK1, ATG13, ATG101 and

FIP200; 2) the class III PI3K complex, composed of Vps34, Vps15, ATG6/Beclin1

and ATG14; 3) two ubiquitin-like protein conjugation systems which consist of
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ATG12, ATG5, ATG16L1, ATG8/LC3, ATG7, ATG10,

ATG3 and ATG4; and 4) two transmembrane proteins,

ATG9 (and associated proteins ATG2 and ATG18/WIPI2)

and VMP1.7,8 The first and second subgroups of core

ATGs regulate the initiation phase of autophagy, the third

subgroup involves in autophagosome formation and mem-

brane elongation, and the fourth subgroup is important for

autophagosome formation and maturation.2,8

In 2005, Levine defined xenophagy as a process that host

cells direct the cell’s digestive machinery to the breakdown

of invading microorganisms to address the risk of pathogen

invasion.9 Autophagy is the first line of host innate immune

system to eliminate invasive pathogens, however, pathogens

have evolved countermeasures to either evade or reconfigure

the autophagy pathway for their own survival.10

Furthermore, autophagy or autophagy-related proteins also

could be exploited by the pathogens. Studies have demon-

strated that some viruses, such as poliovirus (PV), hepatitis C

virus (HCV), dengue virus (DENV), human immunodefi-

ciency virus (HIV), hepatitis B virus (HBV) and so on,

could use autophagy for their replication, assembly and

release.11–13 In 2011, Ogawa et al reviewed the strategies of

some bacteria to manipulate autophagy for their own benefit,

however, many bacterial effectors and host factors which

were involved in the utilization of host autophagy by patho-

gens were identified during these years.10 Understanding

how bacterial pathogens achieve this at the molecular level

will provide new potential targets for therapeutic interven-

tion. In this review, we will focus on the bacterial pathogens

and summarize the current knowledge of the mechanisms

developed by the bacteria to hijack autophagy for their own

benefit.

Anaplasma phagocytophilum
A. phagocytophilum is a Gram-negative obligate intracel-

lular bacterium that causes human granulocytic anaplas-

mosis. After invasion of the host cells, A.

phagocytophilum replicates in a membrane-bound com-

partment contains autophagy-related proteins LC3 and

Beclin1 but is endosomal or lysosomal markers are absent.

Induction of autophagy facilitates Anaplasma infection

while inhibition of autophagy arrests its growth.14 The

secreted effector Anaplasma translocated substrate 1

(Ats-1) stimulates autophagy nucleation by interacting

with Beclin1 therefore facilitates autophagosome forma-

tion and subsequently promotes its own growth by using

the nutrients contained in the autophagosomes (Table 1,

Figure 1).15,16

Brucella
Bacteria of the genus Brucella, contains six classic species,

are the causative agent of brucellosis, a worldwide zoonosis

with significant health and economic consequences.17 The

internalized bacterium Brucella abortus traffics from the

endocytic compartment to the ER to form Brucella-contain-

ing vacuole (rBCV), where the bacterium proliferates.18,19

Taguchi et al showed that the formation of rBCVrequired the

autophagy protein ATG9,WIPI1 and rBCV conversion into a

compartment with autophagic features (aBCV) accompany

Brucella replication.20,21 The formation of aBCV required

the autophagy-initiation proteins ULK1, Beclin1, ATG14L

and PI3K but independent of the proteins involve in autop-

hagosome membrane elongation such as ATG5, ATG16L1,

ATG7, ATG4B, and LC3B. aBCV formation completes the

Brucella intracellular cycle and promotes subsequent cell-to-

cell spreading.21,22 Further, B. abortus induces autophagy

and prevents Brucella-containing phagosomes fusion with

lysosomes.22–24 Similar to B. abortus, B. melitensis infection

triggers autophagosome formation, and autophagy favors B.

melitensis survival.25,26 Deletion of host autophagy system

ULK1, ATG9 and Beclin1 resulted in striking disruption of

B. melitensis intracellular trafficking and replication.27 Thus,

Brucella selectively co-opts autophagy-initiation complexes

to subvert host clearance and facilitate the bacterium persist

and replicate within aBCV, eventually promote infection.

Coxiella burnetii
C. burnetii, the causative agent of human Q fever, is a

highly infectious Gram-negative bacterium. Coxiella

hijacks the autophagosomes and redirect the nutrient by-

products of the autophagolysosomes toward microbial

replication rather than for the use by the host cell.28–30

After infection, C. burnetii establishes large acidic

vacuoles containing multiple replicating bacteria that

were labeled with autophagy protein LC3.31 Induction of

autophagy by starvation or overexpression of LC3, Rab24

or Beclin1 promotes the formation of Coxiella-replicative

vacuoles.32,33 The clathrin heavy chain (CLTC), a scaf-

folding protein of clathrin-coated vesicles, facilitating the

fusion of autophagosomes with the Coxiella-containing

vacuoles (CCVs) (Table 1, Figure 1).34 Intracellular

Coxiella has two morphologically, compositionally and

functionally distinct forms: the metabolically dormant,

less replicating and environmentally stable small cell var-

iants (SCVs) and the metabolically active, replicating and

more fragile large cell variants (LCVs).35 It is believed
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that the differentiation from SCV to LCV is triggered by a

nutrient-rich environment as induction of autophagy

increases the number of LCVs in HeLa cells.36

Moreover, the CCVs acquire certain lysosomal character-

istics, the low pH conditions favorable to Coxiella replica-

tion, while increasing the phagolysosomal pH inhibited the

multiplication of the bacteria.37–39 The Coxiella effector

proteins Cig2 and CvpB facilitate CCVs fusion with

autophagosomes. Cig2 promotes fusion of the CCVs with

autophagosomes by continuously maintaining LC3 on the

CCVs membranes which delays autophagosome matura-

tion and promotes constitutive fusion between autophago-

some and CCVs (Table 1, Figure 1).40,41 CvpB can bind

phosphatidylinositol 3-phosphate (PI3P) and perturb the

activity of the phosphatidylinositol 5-kinase PIKfyve,

thereby enriching PI3P on CCVs membranes which pro-

mote the recruitment of autophagosomal machinery to

mediate homotypic fusion of CCVs (Table 1, Figure 1).42

Furthermore, autophagy can repair damaged membranes

of CCVs to maintain the membrane integrity therefore

promote bacteria replication.43

Chlamydia trachomatis
C. trachnomatis is an obligate intracellular bacterial patho-

gen which is associated with several human diseases, such as

trachoma, pneumonia, and atherosclerosis.44C. trachnomatis

replicates within amembrane-bound compartment (the inclu-

sion) which is not associated with autophagosomes.

However, after inhibition of autophagy, the chlamydial inclu-

sion size and progeny infectivity were decreased,

Table 1 Effectors And Host Targets Involve In Bacterial Exploitation Of Autophagy

Bacteria Effector Host

target

Outcome Reference

A. phagocytophilum Ats-1 Beclin1 Stimulates autophagy nucleation 15

C. burnetii –

Cig2

CvpB

CLTC

–

PIKfyve

Facilitates the fusion of autophagosomes with CCVs

Facilitates the fusion of autophagosomes with CCVs

Facilitates the homotypic fusion of CCVs

34

40,41

42

C. trachomatis pORF5 HMGB1 Induces mitophagy and inhibits apoptosis to generate enough nutrients for

bacterial survival

H. pylori VacA

VacA

VacA

LRP1

mTORC1

–

Prevents autophagosome-lysosome fusion

Induces autopahgy

Decreases the level of cathepsin D

55

56

54

L. pneumophila DrrA/SidM,

LidA, RalF

– Inhibit the immediate delivery to lysosomes 62

L. monocytogenes LLO NLRX1 Induce mitophagy and decrease the production of mtROS 65

M. tuberculosis SapM, PknG,

PtpA

– Prevents phagosomes fusion with lysosomes 68–70

M. avium – Cholesterol Inhibits phagosomes maturation and fusion with lysosomes 71

P. gingivalis PG0717

LPS

–

–

Induces autophagy

Induces autophagy

75

79

Pst HopM1 – Activates proteaphagy 83

S. marcescens ShlA – Induces autophagy 93

S. aureus –

Hla

TMEM59

–

Facilitates recruitment of ATG16L1 and promotes LC3 labelling of S.

aureus-containing phagosomes

Induces autophagy

95

96

UPEC – Ferritin Increased iron availability for UPEC 104

Y. pseudotuberculosis _ VAMP7 Promotes LC3 recruitment to Y. pseudotuberculosis-containing

autophagosomes

109
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morphology of chlamydial forms was aberrant suggest a

potential supportive role of host autophagy in the pathogen-

esis of Chlamydia.44 In autophagy-deficient ATG5(-/-) fibro-

blasts, the growth of C. trachnomatis was increased, but in

the presence of Bafilomycin A1, an inhibitor of vacuolar

ATPase (vATPase), the growth was inhibited indicates that

there should be at least two types of vATPase-bearing orga-

nelles that one defends against chlamydiae, while the other

supports chlamydial growth.45 It was also showed that lyso-

somal degradation products were transferred to chlamydiae

suggest that products generated within lysosomes contribute

to the intracellular survival of C. trachnomatis.46 Moreover,

Lei et al demonstrated that C. trachnomatis plasmid-encoded

protein pORF5 up-regulated the expression of high mobility

group box 1 (HMGB1) which induces mitophagy and inhi-

bits apoptosis of host cells (Table 1, Figure 1).47 These

findings suggest that C. trachnomatis could manipulate host

cell death to usurp enough nutrients generated via autophagy

for their survival and replication.

Francisella tularensis
F. tularensis is a Gram-negative, highly infectious, facul-

tative intracellular pathogen that causes tularemia.48 After

phagocytosed by host cells, Francisella escaped from the

phagosome and underwent replication in Francisella-con-

taining vacuoles (FCVs). FCV is a large, juxtanuclear,

LC3- and LAMP1-positive vacuole whose formation is

dependent on autophagy.49 Optimal intracellular bacterial

growth requires autophagy that induces autophagic degra-

dation of cellular proteins, thereby generating a surplus of

amino acids to support intracellular growth of F. tularensis

in macrophages as well as mouse embryo fibroblast

(MEFs), but this process is independent of ATG5.50

Helicobacter pylori
H. pylori infection is associated with the development of

chronic gastritis, peptic ulcer and gastric cancer. After inter-

nalization of human macrophage and gastric epithelial cells,

autophagy was induced and H. pylori replicates in a double-

layer vesicle which is characteristic of autophagosome.51,52

The secreted effector protein, vacuolating cytotoxin (VacA)

can induce autophagy through binding to the low-density

lipoprotein receptor-related protein-1 (LRP1) or through

inhibition of mTORC1, but prevent autophagosome-lyso-

some fusion and decrease the level of cathepsin D thus impair

the catalytic activity of lysosome (Table 1, Figure 1).53–56

Figure 1 Exploitation of autophagy pathway by bacterial pathogens. After the invasion of the host cell, vacuoles containing intracellular bacteria fuse with autophagosomes

or recruit autophagy machinery to form autophagic vacuoles favor the bacteria replication. Several bacteria have evolved different effector proteins that induce autophagy to

form autophagosomes or promote bacteria-containing vacuoles fuse with autophagosomes or facilitate the recruitment of autophagy machinery to bacteria-containing

vacuoles (green), thereby promoting the replication of bacteria. Some bacteria secrete effector proteins that impair the functions of lysosomes or inhibit bacteria-containing

autophagosomes fuse with lysosomes (red) to block the lysosomal degradation of the bacteria. Furthermore, cholesterol of host cells prevents M. avium-containing
autophagosomes fusion with lysosomes (blue), CLTC promotes C. burnetii-containing vacuoles fusion with autophagosomes, HMGB1 and NLRX1 induce mitophagy thus

promote survival of C. trachomatis and L. monocytogenes respectively, TMEM59 and VAMP7 facilitate the recruitment of autophagy proteins to the S. aureus and Y.
pseudotuberculosis-containing vacuoles, respectively (violet), and UPEC benefits from ferritinophagy.
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The cholesterol-α-glucosyltransferase (CGT) of H. pylori

also could trigger autophagy, and restrain autophagosome

fusion with lysosomes to impair macrophage clearance of

the bacteria (Table 1, Figure 1).57 Zhang et al demonstrated

that gastric epithelial cells infected with H. pylori resulted in

impaired lysosomal acidification and retrograde trafficking

of mannose-6-phosphate receptors (MPRs). Inhibition of

autophagosome formation and lysosomal functions promote

intracellular survival of H. pylori.58 However, the induction

of autophagy in turn limits the multiplication of H. pylori

thereby conferring protection to host cells against H. pylori

infection.51 In the early stage of infection of murine bone

marrow derived-dendritic cells (BMDCs), H. pylori transi-

ently replicates in autophagosomes, but in the late stage, H.

pylori was degraded by autophagolysosomes.59

Legionella pneumophila
L. pneumophila, a Gram-negative bacterium, is an intracellular

bacterial pathogen responsible for an acute form of pneumonia

called Legionnaire’s disease. L. pneumophila could activate

the autophagy pathway by a mechanism that does not require

phagocytosis of the bacteria.60 After invasion, L. pneumophila

resides within vacuoles whose biogenesis resembles autop-

hagy, escapes the toxic phagosome-lysosome pathway,61 and

perturb and delay the maturation of autophagosomes into

autophagolysosomes.60,62 It has been demonstrated that the

effector proteins such as DrrA/SidM, LidA and RalF prolong

the association time of the Legionella-containing vacuoles

with the ER and inhibit the immediate delivery to lysosomes

(Table 1, Figure 1).62 Remarkably, Legionella continues to

replicate within acidic lysosomal vacuoles.63 The replication

of Legionellawas inhibited when autophagosome formation is

impaired, or vacuoles acidification and fusion with lysosomes

is blocked.63,64 Thus, it seems that L. pneumophila persist in

immature autophagosomal vacuoles for a period that is suitable

for them to differentiate into an acid-resistant, replicative form.

Subsequently, the adapted progeny continues to replicate

within autophagolysosomes.62

Listeria monocytogenes
L. monocytogenes is Gram-positive bacterium causes

enteritis, occasionally causes listeriosis. After infection of

host cells, L. monocytogenes could secrete several effector

proteins such as internalins, listeriolysin O (LLO), ActA

and so on to evade killing by autophagy.10 Recently,

Zhang and colleagues found that the bacterial effector

LLO and host factor nucleotide-binding leucine-rich

repeat-containing family member X1 (NLRX1) could

induce mitophagy. Increased mitophagy decreased the pro-

duction of mitochondrial reactive oxygen species (ROS)

which controls L. monocytogenes infection, thereby facil-

itating its survival (Table 1, Figure 1).65

Mycobacterium
Mycobacterium tuberculosis causes tuberculosis which is

one of the major causes of death from an infectious disease

worldwide. In human lymphatic endothelial cells (LECs),

M. tuberculosis was observed within autophagosomes, and

autophagy promotes the growth of the bacterium in resting

LECs.66 In human alveolar epithelial cells, M. tuberculo-

sis-containing compartments surrounded by double mem-

branes and labelled with autophagy marker LC3, inhibition

of the autophagy impaired intracellular bacteria replication

and improved host cell viability, and the bacteria-contain-

ing compartment fusion with lysosomes appears to be

inhibited, suggesting that autophagy is involved in traffick-

ing of M. tuberculosis bacilli and is required for its

survival.67 It has already demonstrated that the secreted

effector proteins, acid phosphatase M (SapM), the M.

tuberculosis eukaryotic-like serine/threonine-protein

kinase G (PknG) and the protein tyrosine phosphatase

(PtpA) could prevent mycobacteria-containing phago-

somes fusion with lysosomes (Table 1, Figure 1).68–70

The cholesterol, a component of host cell plasma mem-

brane, could prevent M. avium-containing phagosomes

maturation and fusion with lysosomes in mouse bone

marrow-derived macrophages (BMDMs) (Table 1,

Figure 1).71 Similar phenotypes were observed in mouse

macrophages cell line Raw 264.7 infected with closely

relative to M. tuberculosis, M. marinum.72 Furthermore,

in the model organism Dictyostelium discoideum, autop-

hagy is required for nonlytic ejection of M. marinum.

Autophagic machinery was recruited at the distal pole of

ejecting bacteria, disruption of autophagy causes the host

cells to become leaky and die during ejection suggest that

autophagy maintains the integrity of plasma membrane

and promotes cell-to-cell transmission of M. marinum.73

Porphyromonas gingivalis
P. gingivalis is a Gram-negative bacterium causes period-

ontitis. It is also linked to several systemic chronic dis-

eases such as rheumatoid arthritis, diabetes, and cancer.74

After internalization by host cells, the lipoprotein PG0717

of P. gingivalis activates autophagy (Table 1, Figure 1),

then the bacterium evades the endocytic pathway to lyso-

somes and instead traffics to autophagosome, thereby
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establishing a replicative niche in an ATG7-dependent

manner.75–77 When autophagy is inhibited in HCAEC

and human gingival epithelial cells (GECs), the bacterium

enter the endocytic pathway to lysosomes thus the viability

of intracellular P. gingivalis is reduced.77,78 Recently, stu-

dies showed that lipopolysaccharide (LPS) from P. gingi-

valis can induce autophagy by suppressing PI3K/Akt/

mTOR signaling pathway in human gingival fibroblasts

(HGFs) (Table 1, Figure 1) and enhance the co-localiza-

tion of bacterium with autophagosomes in human-cultured

keratinocyte cells (HaCaT).79,80 Remarkably, P. gingivalis

is an asaccharolytic pathogen, thus the bacterium traffic

through the autophagic pathway can acquire essential

nutrients from the autophagosomes, and also evade cell

defense.60

Pseudomonas syringae pv. tomato DC3000
Autophagy plays an important role in maintaining a func-

tional immune system in plants.81,82 Recently, Hofius and co-

workers demonstrated that autophagy has both pro- and

antibacterial functions upon infection of Arabidopsis thali-

anawith Pseudomonas syringae pv. tomatoDC3000 (Pst).83

Autophagy was activated after infection with Pst and

NEIGHBOR of BRCA1 (NBR1), a cargo receptor-mediated

autophagic degradation limited the growth of Pst.84 In turn,

as proteasome acts as a hub for plant immunity,85 Pst

employs the effector protein Hrp outer protein M1

(HopM1) to suppress proteasomal activity and activate

autophagic degradation of proteasomes (proteaphagy),

thereby enhancing its pathogenicity (Table 1, Figure 1).83,85

Salmonellaenterica Serovar Typhimurium
It has been demonstrated that the ATG16L1 knock-out or

T300A variant confers protection from cellular invasion by

S. typhimuriunm in HCT116 cells, re-expression of wild-

type ATG16L1 not T300A variant in ATG16L1 knock-out

cells facilitates Salmonella invasion into the cells.86 Since

ATG16L1 was recruited to the entry sites of Shigella

flexneri, the ATG16L1 T300A variant may be less effi-

ciently recruited to the plasma membrane, therefore reduce

Salmonella invasion.87 Interestingly, Yu and colleagues

found that depletion of autophagy components such as

ATG5, LC3 and/or p62 inhibits the replication of cytosolic

Salmonella but not affect the Salmonella invasion ability

in HeLa cells suggest that autophagy facilitates Salmonella

replication.88 Later, Kreibich et al demonstrated that, simi-

lar to Coxiella, autophagy proteins promote repair of

Salmonella-containing vacuole (SCV) membrane damaged

by the Salmonella type three secretion system 1 (T3SS-1)

in an unknown mechanism, thereby allowing compartment

maturation and subsequent expression of type three secre-

tion system 2 (T3SS-2), which together promote intracel-

lular survival.89–91 These findings suggest that Salmonella

uses the autophagic process to its advantage and survives

in cells.

Serratia marcescens
S. marcescens is a Gram-negative bacterium which is com-

monly involved in hospital-acquired infections (HAIs).

After internalized by epithelial cells, Serratia replicates

inside a large membrane-bound compartment which dis-

plays autophagic-like characteristics.92 However, the autop-

hagic-like vacuoles are non-acidic and have no degradative

properties suggest that Serratia utilizes autophagosomes for

survival and proliferation by preventing the vacuoles fusion

with lysosomes.92 Interestingly, the pore-forming toxin

ShlA secreted by Serratia can induce autophagy prior to

bacterial internalization which may pave the way for sub-

sequent proliferation inside the autophagosomes (Table 1,

Figure 1).93

Staphylococcus aureus
S. aureus can invade epithelial cells and then transit to an

autophagosome-like vacuole which is characterized by

double membrane and colocalization with LC3.94 In this

process, human transmembrane protein TMEM59 which

mainly localized in late endosomes/lysosomes may per-

form an in situ autophagic function that facilitates the

recruitment of ATG16L1 and then promotes LC3 labelling

of S. aureus-containing phagosomes.95 After the invasion

of epithelial cells, S. aureus inhibits the bacteria-contain-

ing autophagosome maturation and fusion with lysosomes

dependent on accessory gene regulator (Agr) system.

Activation of autophagy by the inducer rapamycin signifi-

cantly increases the intracellular load of S. aureus. In

contrast, the growth of intracellular S. aureus was drasti-

cally impaired upon treatment with the autophagy inhibitor

wortmannin. Similar results were obtained using atg5-

deficient MEFs suggest that autophagy is indispensable

for S. aureus replication.94 The virulence factor pore-form-

ing toxin α-hemolysin (Hla) can trigger autophagy hence

promote bacterial replication (Table 1, Figure 1).96 After

replication, S. aureus eventually escape from autophago-

somes into the cytoplasm and induce apoptosis-like cell

death.94 Therefore, the autophagy machinery is essential

for S. aureus replication and host cell killing.

Xiong et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Infection and Drug Resistance 2019:123210

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Uropathogenic Escherichia coli
(UPEC)
UPEC causes a frequent and important disease in humans,

urinary tract infection (UTI). UPEC colonize the bladder

and persist within the bladder epithelium as membrane-

enclosed quiescent intracellular reservoirs (QIRs) that can

seed recurrent UTI.97 The autophagy gene ATG16L1 plays

an important role in inflammatory disease and intestinal

cell abnormalities, however, studies showed that

ATG16L1 deficiency confers protection in vivo to the

host against both acute and latent uropathogenic E. coli

(UPEC) infection,97–99 suggesting that UPEC can use

autophagy to provide potential nutrient sources or a pro-

tected environment for their survival.100 ATG16L1 defi-

cient mice cleared UPEC more rapidly and thoroughly

which is associated with increased recruitment of innate

immune cells to the infected bladders and a robust proin-

flammatory response,99 and this process is independent of

the pathogen sensor nucleotide-binding oligomerization

domain containing 2 (NOD2) but is dependent of IL-

1β.101,102 Recent studies have demonstrated that T300A

variant in ATG16L1 increases the expression level of

small secretory RAB GTPases, such as RAB11A,

RAB27B and RAB33B that are important for UPEC

expulsion, thereby limiting the UPEC persistence in

urothelium.103 Mechanistic studies revealed that UPEC

shuttles with ferritin-bound iron into the autophagosomal

and lysosomal compartments within the urothelium, autop-

hagic degradation of iron-bound ferritin (ferritinophagy)

led to increased iron availability for UPEC (Table 1,

Figure 1), then triggered bacterial overproliferation and

host cell death. Inhibition of autophagy or inhibition of

iron-regulatory proteins, or chelation of iron reversed the

bacterial overgrowth and promoted host cell survival sug-

gests that UPEC exploit ferritinophagy for their own

survival.104

Yersinia pestis
Y. pestis is a Gram-negative bacterium and causes plague.105

Y. pestis can survive and replicate in phagosomes of murine

macrophages.106 It has been demonstrated that Y. pestis-con-

taining vacuoles colocalized with autophagy protein LC3,

further, the Y. pestis-containing vacuoles failed to acidity

below pH 7 in mouse BMDMs. These findings suggest that

Y. pestis could avoid xenophagy by preventing vacuole

maturation to the autolysosome, thus promotes its survival

in autophagosomes.84 However, the replication of bacterium

was not decreased in ATG5-deficient BMDMs suggest that

autophagy is not required for Y. pestis survival in

macrophages.84 It is possible that the bacteria only recruits

the membrane to enlarge the Y. pestis-containing vacuoles

into a spacious compartment or interferes normal process of

autophagy to promote cell death thus escape from the

macrophage.107 The connection between autophagy and Y.

pestis still need to be addressed in future work.

Yersinia pseudotuberculosis
Y. pseudotuberculosis is a Gram-negative enteropatho-

genic bacterium that causes mesenteric lymphadenitis.

After ingestion, the bacterium activates autophagy and

replicates within autophagosomes in mouse BMDMs

and HeLa cells.108,109 The vesicle-associated membrane

proteins (VAMPs) play pivotal roles in the membrane

traffic during the internalization of Y. pseudotuberculo-

sis. VAMP7 promotes LC3 recruitment to Y. pseudotu-

berculosis-containing autophagosomes (YCVs) (Table 1,

Figure 1).109 Like Y. pestis, Y. pseudotuberculosis also

prevents YCVs mature to autophagolysosomes.

However, different to Y. pestis, autophagy is required

for Y. pseudotuberculosis survive, Y. pseudotuberculosis

traffics to lysosomes for degradation upon autophagy

inhibition.108

Conclusions
The role of autophagy in host defense against bacteria has

investigated in depth. Generally, autophagy is antipatho-

genic, however, several bacterial pathogens have evolved

countermeasures to hijack the autophagic pathway for

their own profit. In most cases, these bacteria actively

induce autophagy and/or block autophagosome fusion

with the lysosome through secreted effector proteins,

then use the autophagosome as a replicative niche for

their growth (Figure 1). Interestingly, several bacteria

could utilize the host components such as cholesterol,

TMEM59 and VAMP7, thereby favoring the survival of

some bacteria. The role of autophagy in enhancing repli-

cation of these pathogens is unknown, but nutrient acqui-

sition and escape from cell defense are two likely

explanations for these phenotypes. Remarkably, the role

of autophagy in microbial infection may depend on the

type of invading microbe and the cell type. In an era of

increasing antibiotic resistance, understanding how patho-

gens interact with and manipulate the host autophagy path-

way to achieve this will hopefully provide a basis for

combating infection and increase our understanding of
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the role and regulation of autophagy. Considering the

variety of mechanisms that developed by different patho-

gens, we need to correctly use autophagy modulators in

eliminating bacterial pathogens and it is necessary to

determine an effective strategy in the clinical treatment.
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