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Abstract: Circadian rhythm disturbances can occur as part of the clinical symptoms of major 

depressive disorder and have been found to resolve with antidepressant therapy. The pineal 

gland is relevant to circadian rhythms as it secretes the hormone melatonin following activation 

of the cyclic adenosine monophosphate (cAMP) signaling cascade and of arylalkylamine 

N-acetyltransferase (AA-NAT), the rate-limiting enzyme for its synthesis. Cyclic AMP is 

synthesized by adenylate cyclases (AC) and degraded by phosphodiesterases (PDEs). Little is 

known about the contribution of the PDE system to antidepressant-induced alterations in pineal 

cAMP signaling and melatonin synthesis. In the present study we used enzyme immunoassay to 

measure plasma melatonin levels and pineal cAMP levels and as well as quantitative real-time 

polymerase chain reaction to measure pineal expression of PDE, AC, and AA-NAT genes 

in rats chronically treated with the prototypic antidepressant fluoxetine. We found elevated 

melatonin synthesis with increased pineal AA-NAT gene expression and daytime plasma mela-

tonin levels and downregulated cAMP signaling with increased PDE and unchanged AC pineal 

gene expression, and decreased content of pineal cAMP. We conclude that chronic fluoxetine 

treatment increases daytime plasma melatonin and pineal AA-NAT gene expression despite 

downregulated pineal cAMP signaling in the rodent.
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Introduction
Multiple central nervous system (CNS) functions are dysregulated in major depressive 

disorder (MDD). Alterations in sleep, food intake, cognition, temperature, and 

neuroendocrine regulation are manifested as clinical symptoms in this chronic, highly 

disabling disorder.1 Clinical symptoms point to several brain areas of relevance to MDD 

pathophysiology including the pineal gland, HPA axis (hypothalamus, pituitary, adrenal 

glands), prefrontal cortex, and hippocampus. Circadian biorhythms have been found to 

occur with each of the above CNS functions.2 Furthermore, MDD and other mood dis-

orders are associated with disruptions in these rhythms that are normalized with chronic 

antidepressant treatment.3,4 MDD symptoms can vary through the 24-hour period, with 

more severe symptoms often occurring in the morning, consistent with a phase advance 

of circadian rhythms.5 Unfortunately, the mechanism by which repeated antidepressants 

operate to restore these circadian rhythm disturbances in MDD remains unclear.

The central clock or pacemaker in the brain, the suprachiasmatic nucleus (SCN), is 

located in the anterior hypothalamus and is responsible for the entrainment of behavioral 

and biochemical circadian rhythms. The SCN receives information from the environment 

in the form of ‘zeitgebers’ or synchronizing signals such as light. Light enters the retina 
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and is encoded by retinal ganglion cells into a message that 

is sent to the SCN via the retinohypothalamic tract. The SCN 

then sends projections via the paraventricular nucleus of the 

hypothalamus to affect the autonomic nervous system, the 

release of hormones from the pituitary, and the release of 

melatonin from the pineal gland. Brainstem raphe nuclei send 

serotonin/5-HT projections to the SCN, therefore the 5-HT 

system has been implicated in circadian rhythm disturbances.6 

The circadian secretion of melatonin by the pineal gland is 

under the influence of the SCN, with higher levels during at 

night (darkness) and lower levels during daytime (light), cor-

responding with the sleep-wake cycle. Levels of melatonin 

can cause a feedback regulation on the activity of the SCN 

by binding to melatonin type-1 and type-2 receptors (MT1 

and MT2) that are present in high concentrations in the SCN. 

Melatonin binding to MT1 receptors causes inhibition and 

binding to MT2 receptors results in a phase-shifting effect on 

SCN activity.7 The melatonergic agonist and 5HT2C antago-

nist agomelatine is a chronobiotic that not only resynchro-

nizes dysregulated circadian sleep patterns in MDD, but also 

demonstrates potential as a novel antidepressant, displaying 

superior efficacy versus placebo and similar efficacy versus 

other antidepressant drugs on depressive symptoms in several 

randomized controlled clinical trials thus far.8

The pineal gland can be used as a model system to 

study the effects of antidepressants on circadian rhythms, 

as signaling transduction cascades in the pineal have been 

extensively studied and the activation of these cascades is 

known to result in a well-defined output, the synthesis and 

secretion of melatonin.9 Dense sympathetic innervation 

from the superior cervical ganglion results in release of 

norepinephrine (NE) that binds to β1-adrenergic receptors 

(β1-AR) on pinealocytes. Stimulation of β1-AR leads to 

activation of the adenylate cycase (AC)/cyclic adenosine 

monophosphate (cAMP)/protein kinase A (PKA) signaling 

cascade, increased activity of the rate-limiting enzyme of 

melatonin synthesis arylalkylamine N-acetyltransferase 

(AA-NAT), and subsequently increased melatonin synthesis 

and secretion into the blood.

Treatment with pharmacologic agents, such as 

antidepressants, that chronically increase synaptic NE and/or 

5-HT would be expected to affect the levels of signaling 

cascade intermediates. The amount of extracellular NE 

and 5-HT at the synapse and the duration of β1-AR and 

5HT
2
R stimulation could therefore influence pinealocyte 

metabolism and melatonin synthesis and secretion. However, 

the consequences of chronically increased extracellular NE or 

5-HT on pinealocyte metabolism remain unknown.9 Attenuated 

activation of intracellular signaling pathway might occur as a 

compensatory mechanism to stabilize pinealocyte metabolism 

and circadian rhythms. The compensatory decrease of the 

signaling cascade has been hypothesized to occur as a result of 

either receptor downregulation or decreased synthesis of second 

messenger intermediates. However, increased degradation of 

cyclic nucleotides could also regulate pinealocyte metabolism 

in response to antidepressants. Therefore, phosphodiesterases 

(PDEs) could play a role in mediating effects of chronic 

antidepressant treatment to restore dysregulated circadian 

rhythms by modulating levels of cyclic nucleotide intermediates 

in signaling transduction cascades.

The regulation of cyclic nucleotide levels occurs through 

the balance of production by cyclase enzymes and degradation 

by PDE enzymes. As second messengers in intracellular 

signaling transduction cascades, cyclic nucleotides can have 

important downstream consequences on gene expression and 

resultant neuronal responses. By modulating levels of cyclic 

nucleotides such as cAMP, the activity of PDE enzymes 

could potentially influence melatonin secretion, one such 

neuronal response in the pineal gland. In the present study, we 

have used enzyme immunoassay and quantitative real-time 

PCR to investigate changes in plasma melatonin, AA-NAT 

expression, PDE and AC expression, and cAMP levels in the 

pineal gland to determine the effects of chronic antidepressant 

treatment on the cAMP signaling and melatonin synthetic 

transduction cascades in the pineal gland.

Materials and methods
Animals and drug treatment
Virus- and antibody-free adult, male Sprague Dawley rats 

(150–200 g; Harlan, Indianapolis, IN) were housed two 

per cage at 24 °C with lights on from 06:00 to 18:00 hours 

in a stress-free environment for at least five days before 

the initiation of experimental procedures. Ten rats were 

randomly assigned to each experimental group: 1) control 

(0.9% saline) or 2) fluoxetine (selective serotonin reuptake 

inhibitor). All animals received daily (at 10:00 am) 0.5 mL 

intraperitoneal (i.p.) injections of either 0.9% saline (Hospira 

Inc., Lake Forest, IL) or 5.0 mg/kg fluoxetine (Eli Lilly, 

Indianapolis, IN) dissolved in 0.9% saline for eight weeks. 

The 5.0 mg/kg dose for fluoxetine is based on previous 

reports.10 We have previously utilized the chronic time course 

of eight weeks daily i.p. antidepressant injections and do not 

report any indication of inflammation or stress as a result 

of the injections. Furthermore, eight weeks daily treatment 

with 5 mg/kg fluoxetine i.p. has been reported to decrease 

expression of the corticotropin-releasing hormone gene in the 
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perviventricular nucleus of the hypothalamus, an effect that 

was not seen at two weeks.10 Therefore, eight weeks treatment 

was chosen as clinically antidepressants are effective after 

3–6 weeks.10 Animals were euthanized by decapitation and 

the pineal gland was dissected out, flash frozen, and stored 

at -80 °C. Animals received their last treatment 24 hours 

before termination of experiments and were sacrificed 

during the daytime, between 10:00 am and 12:00 pm. We 

selected this light cycle timepoint, corresponding to four to 

six hours after the dark/light transition, to study the effect 

of antidepressant treatment at the nadir of circadian cycles 

for melatonin synthesis and cAMP signaling to increase the 

likelihood of detecting significant differences. This experi-

mental protocol was approved by the University of Miami 

Institutional Animal Care and Use Committee.

Enzyme immunoassays (EIA)
Melatonin concentration in the plasma was determined using 

a competitive enzyme immunoassay kit (IBL Hamburg, 

Hamburg, Germany). Samples, standards, and controls 

were extracted, eluted, evaporated, and reconstituted; 

the test procedure was then performed as outlined in the 

manufacturer’s protocol. The concentration of melatonin is 

expressed as pg/mL.

Cyclic AMP levels in the pineal gland were determined 

using a direct, competitive enzyme immunoassay kit (Assay 

Designs, Ann Arbor, MI). Pineal glands were homogenized 

in 10 volumes of 0.1 M HCl and centrifuged 600 × g 

at room temperature. The supernatant was acetylated to 

improve signal detection and samples were run in duplicate. 

The concentration of cAMP is expressed as pmol/mL.

Quantitative real-time RT-PcR
Total RNA was isolated from pineal gland using RNeasy 

Lipid Mini Kit, quantified using a Nanodrop ND-1000 

spectrophotometer (Thermo-Fisher Scientific, Waltham, 

MA) and reverse transcribed to cDNA using Omniscript RT 

Kit (Qiagen, Hilden, Germany), random hexamer primers, 

and 250 ng RNA. Based on the results of a pilot study in 

which we surveyed all of the PDEs expressed in the pineal 

gland, we selected to follow up the results for PDE -4B, and 

-8B genes. PDE primers were designed in different exons 

to amplify cDNA using Primer Express software (Applied 

Biosystems, Foster City, CA). PDE4B (NM_017031) primers 

were: forward (5′-GTGACGAGCTCCGGTGTTC-3′) and 

reverse (5′-GCCGATACAACTCCAAGGACTT-3′).11 

PDE8B (NM_199268)  p r imers  were :  fo rward 

(5′-GAAGCCGTGTGCAGGTCAAT-3′) and reverse 

( 5 ′ - A AC C AC AG C C AG G AT C AC T G T- 3 ′ ) .  AC 1 

(NM_001107239) primers were: forward (5′-CCCCGGAA-

CATGGATCTCTATTA-3′) and reverse (5′-TGTTGTTGC-

CATCCAGTTCTATG-3′). AA-NAT (U40803) primers 

were: forward (5′-GAAGGGAGACAGCAGTTC-3′) and 

reverse (5′-GTCCTGGTCTTGCCTTTG-3′).12 Beta-Actin 

(NM_031144) primers were: forward (5′- GACCCA-

GATCATGTTTGAGACCTT-3′) and reverse (5′-AGAG-

GCATACAGGACAACACA-3′). A standard curve of 

pooled, serially diluted cDNA was run for each target gene 

and for a housekeeping gene, rat β-Actin, using the 7900HT 

Fast Real-Time PCR System (Applied Biosystems). cDNA 

samples were diluted 1:250 and run in triplicate for both 

rat β-Actin and the gene of interest. The three SYBR cycle 

threshold (Ct) values were averaged for each sample, and 

the RNA input for the target gene was calculated from the 

standard curve. Fold changes in pineal gland target gene 

expression was expressed as a ratio to β-Actin expression 

for each sample.

Statistical analysis
The data were analyzed using Student’s t-test with the 

significance level set at p  0.05.

Results
Enzyme immunoassays
The levels of plasma melatonin were increased by chronic 

fluoxetine (+39%; p  0.05; t = 2.818, df = 17) (Figure 1b). 

Pineal gland cAMP levels were decreased by chronic fluox-

etine (-50%; p  0.01; t = 3.229, df = 13) (Figure 2b).

Quantitative real-time RT-PcR
Chronic treatment with fluoxetine increased the gene for 

the rate-limiting enzyme of melatonin synthesis, AA-NAT 

(+393%; p  0.001; t = 4.440, df = 17) (Figure 1a).

Chronic fluoxetine increased the expression of two 

cAMP-specif ic PDEs, PDE4B (+140%; p  0.001; 

t = 4.077, df = 17) and PDE8B (+68%; p  0.01; t = 3.219, 

df = 18). Expression of the predominant adenylate cyclase 

isoform, AC1, was unchanged (p  0.05; t = 0.1768, 

df = 16) (Figure 2a).

Discussion
In the present study, we provide evidence of increased daytime 

melatonin synthesis in the rodent following eight weeks sustained 

treatment with the prototypic antidepressant fluoxetine. In order 

to understand the effect of chronic treatment with fluoxetine on 

the melatonin synthetic cascade, we measured expression of the 
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AA-NAT gene in the pineal gland and found five-fold increased 

expression of AA-NAT following chronic fluoxetine. We then 

measured blood plasma melatonin using enzyme immunoas-

say to determine the consequences of increased AA-NAT 

gene expression in the pineal gland. We predicted that plasma 

melatonin levels would be elevated following chronic fluoxetine 

because of the findings of increased transcription of the gene 

for the rate-limiting enzyme of melatonin synthesis, AA-NAT. 

Plasma melatonin levels were increased following chronic fluox-

etine. We took blood samples during the light cycle, when plasma 

melatonin levels are usually at their nadir, and were able to detect 

an increase. Our finding of increased plasma melatonin is in 

contrast with one study that found melatonin unaltered following 

chronic imipramine (IMI)13 and other studies that have found 

chronic treatment (10 days to three weeks) with monoamine 

oxidase inhibitors,13,14 IMI,15,16 desipramine,17 and venlafaxine18 

decreased or attenuated increases in plasma or pineal melatonin, 

its precursors, and/or melatonin synthetic enzyme activity. We 

administered fluoxetine, a selective serotonin reuptake inhibitor, 

chronically for eight weeks, whereas other studies administered 

tricyclic antidepressants for 10 days to three weeks; therefore, 

differences in duration of treatment and/or mechanism of action 

at the synapse could account for this discrepancy. Other factors 

such as diet and animal age can impact tryptophan metabolism 

and therefore the effect of fluoxetine. As our animals received the 

same standard chow diet and were of similar age, it is unlikely 

these parameters influenced the effect of fluoxetine.

Having found an upregulation of melatonin synthesis, we 

then investigated whether chronic fluoxetine alters expression 

of upstream cAMP signaling cascade elements in the pineal 

gland, such as the PDE and cyclase genes. We found that 

chronic treatment with fluoxetine increased the expression of 

two cAMP-specific PDE genes, PDE4B and PDE8B, while 

the expression of the cAMP-specific synthetic enzyme, AC1, 

was unchanged. Despite evidence that the PDE4 inhibitor 

rolipram displays antidepressant effects both in humans19,20 and 

rodents,21,22 PDE4 gene and protein expression is paradoxically 

increased after chronic antidepressant and electroconvulsive 

shock treatment in the cortex and hippocampus of rodents.23 

In contrast to our findings of increased expression of cAMP-

specific PDE isoforms, PDE4B and PDE8B, in the rat pineal 

following chronic treatment with fluoxetine, another study 

found that two weeks’ treatment with 3 mg/kg fluoxetine 

via osmotic minipump decreased pineal PDE4B mRNA as 

measured by ISH.24 The animals in the present study were 

euthanized four to six hours into the light cycle (from 10:00 

to 12:00); therefore, we have measured PDE gene expression 

during the light phase. PDE activity exhibits circadian rhythms 

in the rat pineal with highest levels during the dark phase and the 

lowest levels during the light phase.25 The circadian rhythmic-

ity of PDEs in the rat pineal also demonstrates sex differences, 

with two peaks of activity in male rats (from 2:00–4:00 am and 

again at 4:00 pm) versus only one peak (from 2:00–4:00 am) in 

females and castrated male rats.26 PDE4B mRNA demonstrates 

a specific circadian rhythm, with peak levels at night in the rat 

pineal four hours into the dark phase that progressively decline 

into the light phase. PDE4B2 levels are five-fold greater at night 

versus the day.27 As we did not measure PDE gene expres-

sion at different circadian timepoints, we cannot specifically 

comment on chronic antidepressant induced alterations in the 

Figure � Effect of chronic FLX treatment on a) AA-nAT gene expression levels in the pineal gland and b) plasma melatonin levels. AA-nAT gene expression results are 
expressed as mean ± SEM for FLX as percentage of SAL (n = 9–10 animals/group). Melatonin enzyme immunoassay results are expressed as mean ± SEM concentrations of 
plasma melatonin (in pg/mL) of rats treated chronically with SAL and FLX (n = 9–10/group).
Note: Asterisks indicate significant between-group differences (*p  0.05, ***p  0.001) using Student’s t-test.
Abbreviations: AA-NAT, arylalkylamine N-acetyltransferase; FLX, fluoxetine; SAL; saline-treated control; SEM, standard error of mean.
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circadian rhythms of PDEs in the pineal gland. However, our 

finding of increased PDE4B expression during the day sug-

gests that chronic fluoxetine treatment has altered the activity 

of the PDE system during its nadir, possibly causing a shift in 

the circadian rhythm.

To determine the consequence of altered PDE expression 

following chronic treatment with fluoxetine, we assayed the 

content of cAMP in the pineal gland using a competitive 

enzyme immunoassay. Since we found increased expression 

of cAMP-specific PDEs and unchanged expression of 

the cAMP-specific adenylate cyclase following chronic 

treatment, we predicted that cAMP levels would be decreased 

in the pineal gland chronically. Indeed, chronic fluoxetine 

was found to decrease pineal cAMP levels to half of the val-

ues seen in the saline group. These results are in agreement 

with our recent report of downregulated cAMP signaling in 

rats chronically treated with imipramine in which we found 

increased PDE, decreased AC, decreased cAMP levels, and 

unchanged cGMP levels.28 Similarly, in the pineal gland, con-

gruent findings of increased PDE expression, unchanged AC, 

and decreased cAMP levels suggest that repeated treatment 

with fluoxetine decreases cAMP signaling in the rat pineal. It 

is unclear why cAMP signaling was downregulated despite an 

upregulation of melatonin synthesis as indicated by increased 

pineal AA-NAT expression and plasma melatonin levels. It 

is possible that the downregulation of cAMP signaling might 

occur as a compensatory adaptation to bring the increased 

melatonin synthetic cascade back to baseline levels.

Several lines of evidence in rodents point to an influence 

of SSRIs such as fluoxetine on circadian rhythms. Fluoxetine 

inhibits light-induced phase advances in circadian wheel run-

ning behavior, alters clock gene expression in the SCN, and 

decreases REM sleep.29–32 Our finding of chronic fluoxetine 

induced increases in daytime plasma melatonin is consistent 

with the idea that antidepressants might normalize the phase 

advance in circadian rhythms that occurs with MDD by caus-

ing a shift in the pattern of melatonin secretion. As circadian 

secretion of the hormone melatonin peaks at night and declines 

during the day, it is possible that chronic antidepressant treat-

ment induces increases in daytime melatonin that could in 

turn affect sleep-wake cycles. The behavioral consequences 

of increased daytime melatonin are unclear, but possibly 

point to an improvement in the quality of sleep by decreasing 

early morning awakening, a common complaint in MDD. For 

example, melatonin supplements have been widely reported to 

have a sleep promoting effect when taken during the day, and 

therefore are used as a treatment for jet lag syndrome.33

In summary, chronic fluoxetine increased pineal 

AA-NAT expression and elevated daytime plasma melatonin 

despite decreased pineal cAMP content and increased pineal 

PDE gene expression. We conclude that repeated fluoxetine 

treatment increases melatonin synthesis in the rodent and 

alters pineal cAMP signaling.
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Figure � Effect of chronic FLX treatment on a) PDE and Ac gene expression and 
b) cAMP levels in the rat pineal gland. Gene expression results are expressed as 
mean ± SEM for FLX as percentage of saline-treated control (SAL) (n = 9–10 animals/
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Abbreviations: Ac, adenylate cyclases; AMP, adenosine monophosphate; 
FLX, fluoxetine; SAL; saline-treated control; PDE, phosphodiesterase; SEM, standard 
error of mean.
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