
OR I G I N A L R E S E A R C H

Silibinin attenuates high-fat diet-induced renal

fibrosis of diabetic nephropathy
This article was published in the following Dove Press journal:

Drug Design, Development and Therapy

Kun Liu1,*

Shiju Zhou1,*

Jinyan Liu1,2

Yingying Wang1

Fengxian Zhu1

Man Liu1

1Department of Nephrology, Jining No. 1

People’s Hospital, Jining 272000,

Shandong, People’s Republic of China;
2Department of Nephrology, Jining

Medical University, Jining 272000,

Shandong, People’s Republic of China

*These authors contributed equally to

this work

Aim: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Silibinin is

a flavonoid compound which has medicinal value. Previous studies revealed that silibinin

exhibited an anti-fibrotic effect. However, whether silibinin could attenuate high-fat diet

(HFD)-induced renal fibrosis remains unclear. Therefore, this study aimed to explore the

molecular mechanism by which silibinin regulated renal fibrosis induced by HFD.

Methods: In the present study, human renal glomerular endothelial cells (HRGECs) were

treated with various concentrations of silibinin. Then, cell viability and apoptosis were

measured by MTT assay and flow cytometry, respectively. In addition, HRGECs were exposed

to 100 nM TGF-β1 for mimicking in vitro renal fibrosis. The expressions of collagen I,

fibronectin, and α-SMA were detected by reverse transcription-quantitative polymerasechain

reaction and Western blot. Protein levels of p-IκB and p-p65 were examined by Western blot;

meanwhile, level of NF-κB was measured by immunofluorescence staining. Furthermore,

HFD-induced mouse model of renal fibrosis was established. The mouse body weight, fasting

glucose, kidney weight/body weight, microalbuminuria, kidney histopathology, and fibrotic

area were measured to assess the severity of renal fibrosis.

Results: Low concentration of silibinin (≤50 μM) had no cytotoxicity, while high concen-

tration of silibinin (≥75 μM) exhibited significant cytotoxicity. Additionally, TGF-β1

increased the expressions of collagen I, fibronectin, α-SMA, p-IκB, and p-p65 and decreased

the level NF-κB, while these effects were notably reversed by 50 μM silibinin. Moreover,

both 50 and 100 mg/kg silibinin greatly decreased HFD-induced the upregulation of kidney

weight/body weight, microalbuminuria, and fibrotic area. 100 mg/kg silibinin markedly

reduced collagen I, fibronectin, and p-p65 expressions in mice renal tissues.

Conclusion: Silibinin was able to attenuate renal fibrosis in vitro and in vivo via inhibition

of NF-κB. These data suggested that silibinin may serve as a potential agent to alleviate the

renal fibrosis of DN.

Keywords: silibinin, renal fibrosis, diabetic nephropathy, high-fat diet, TGF-β1, NF-κB

pathway

Introduction
Diabetes mellitus (DM) is a chronic disease characterized by high blood glucose,

which consists of two main forms insulin-dependent DM (type 1) and non-insulin-

dependent DM (type 2).1 Over the past decades, the incidence of type 2 diabetes

mellitus (T2DM) has significantly increased in the world, especially in developing

country.2 The risk factors of T2DM include family history, lack of exercise,

unhealthy diet, overweight, and obesity.3 In addition, high-fat diet (HFD) is asso-

ciated with the disruption of intestinal barrier, immune response, and/or insulin
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resistance state, resulting in the increasing risk of T2DM.4

Therefore, it is necessary to focus on HFD-induced

hyperglycemia.

Patients with T2DM are generally accompanied by

various complications, such as cardiovascular diseases,

diabetic neuropathy, nephropathy, and retinopathy.5

Diabetic nephropathy (DN) is a microvascular complica-

tion of DM, which is the leading cause of end-stage renal

disease. Inadequate glucose control is the most common

reason for the occurrence and development of DN.6 DN is

charactered by podocytes and glomerular enlargement,

interstitial fibrosis or tubular atrophy, microalbuminuria

increase, and decline in glomerular filtration rate.7,8

Importantly, renal fibrosis is one of the prominent features

of DN, which is the main reason for high morbidity and

mortality of DN.9,10 In renal fibrosis, transforming growth

factor-Beta (TGF-β) is a major regulator to promote the

fibrosis.9 Chronic kidney diseases are characterized by the

accumulation of extracellular matrix (ECM) components

in the glomeruli.11 Fibronectin is expressed in the ECM,

the accumulation of which in the glomeruli is associated

with degradation of renal function in patients with DN.12

In addition, type II collagen is one of the main components

of the ECM.13 Fibronectin accretion could lead to an

upregulation of collagen in patients with diabetes.14

Current treatments of DN are targeted on controlling

hyperglycemia and hypertension, as well as inhibiting the

renin-angiotensin system. However, these traditional thera-

pies are not optimal.15,16 Therefore, it is necessary to find

more effective methods and drugs for the treatment of DN.

A medicinal plant Silybum marianum was commonly

used as a hepatoprotective medication to treat jaundice and

enlarged liver and spleen.17 Silibinin (Silybin) (Figure 1A),

a non-toxic polyphenolic flavonoid, is the main biologically

active component extracted from S. marianum.18 It was

reported that silibinin has anti-inflammation, antifungal,

antioxidant, and anti-cancer effect.19–22 In addition, pre-

vious study had revealed that silibinin could be beneficial

for T2DM because of its inhibitory effect on glucose-6-

phosphatase and gluconeogenesis.23 Moreover, silibinin

ameliorates DN via preventing kidney injury, oxidant stress,

and activating AKT pathway.24 However, the effect of

silibinin on renal fibrosis of DN remains unclear. In the

present study, we explored the effect of silibinin on renal
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Figure 1 Cytotoxicity of silibinin on HRGECs. (A) Silibinin chemical structure. (B) HRGECs were treated with 0, 25, 50, 75, and 100 μM silibinin for 72 hrs, and cell viability

was determined by MTT assay. (C) HRGECs were treated with 0, 50, 75, and 100 μM silibinin for 72 hrs, and cell apoptosis was analyzed by flow cytometry. (D) The

quantification of percentage of apoptotic cells. Each sample was tested in triplicate. *P<0.05 compared with control group;**P<0.01 vs 0 μM group.

Abbreviation: HRGECs, human renalglomerular endothelial cells.
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fibrosis in vitro and in vivo, and investigated the underlying

molecular mechanism.

Materials and methods
Cell culture
Human renal glomerular endothelial cells (HRGECs) were

obtained from American Type Culture Collection (ATCC,

Manassas, VA, USA). The cells were cultured in RPMI-

1640 medium (Thermo Fisher Scientific, Inc., Waltham,

MA, USA) supplemented with 10% fetal bovine serum

and 1% penicillin/streptomycin (All from Gibco, Thermo

Fisher Scientific, Inc., Waltham, MA, USA) and main-

tained in an incubator at 37°C with 5% CO2. To establish

in vitro renal fibrosis model, HRGECs were seeded into

six-well plates. When cell confluence reached nearly 80%,

the cells were treated with 100 nM recombinant human

TGF-β1 (Pepro Tech, Rocky Hill, NJ, USA) for 48 hrs.

Cell viability
Cell viability was analyzed by using MTT assay (Beyotime,

Shanghai, China). The cells were seeded in 96-well plates at

the density of 2×103 cells/well. After treatment of silibinin

(0, 25, 50, 75, and 100 μM) for 72 hrs, 10 μL MTT solution

was added into each well and incubated for another 4 hrs.

Then, the cells were added with 100 μL Formazan dissol-

ving solution. The absorbance of cell was determined at 570

nm using a microplate reader (Thermo Fisher Scientific,

Inc., Waltham, MA, USA).

Cell apoptosis
Cell apoptosis was determined by flow cytometry using

FITC Annexin V Apoptosis Detection Kit I (BD

Biosciences, Franklin Lakes, NJ, USA). Briefly, after treat-

ment with various concentrations of silibinin (0, 50, 75, and

100 μM) for 72 hrs, the cells were harvested (1×106 cells/

mL), washed twice with PBS and resuspended in Binding

Buffer. 5 μL FITC Annexin V and 5 μL PI were incubated

with 100 μL cell solution at room temperature for 15 mins in

the dark. The staining cells were analyzed by flow cytometry

using Gallios instrument (Beckman Coulter, Miami, FL,

USA). The percentage of apoptotic cells was quantified.

Reverse transcription-quantitative

polymerase chain reaction
Total RNA was extracted by using TRIzol reagent

(Invitrogen, Thermo Fisher Scientific, Inc.). RNA integrity

was measured by agarose gel electrophoresis. Then, the

reverse transcription was conducted by using PrimeScript

1st Strand cDNA Synthesis Kit (Takara, Dalian, China).

PCR reactions were carried out by SYBR Premix Ex Taq

II (Takara, Dalian, China) with Applied Biosystems 7500

Real-Time PCR System (Applied Biosystems; Thermo

Fisher Scientific, Inc.). The specific primers used were

Collagen I F: 5ʹ-CGACGGGAGCAGCATTAGCA-3ʹ, R:

5ʹ-GCGCAGGGGCAAAATTCGAG-3ʹ; Fibronectin F: 5ʹ-

CGGGAGCCTCGAAGAGCAAG-3ʹ, R: 5ʹ-GTAAAGCG

CGCACACACTCG-3ʹ; α-SMA, F: 5ʹ-CTGTGGAACCA

GCCTTGCCA-3ʹ, R: 5ʹ-TTTGGTGCAGCCCAGTGG

AG-3ʹ; GAPDH, F: 5ʹ-TCATCCCTGCATCCACTGGT-

3ʹ, R: 5ʹ-CTGGGATGACCTTGCCCA-3ʹ. The PCR con-

ditions were as follows: 95°C for 30 s, followed by 40

cycles of 95°C for 5 s and 60°C for 34 s. The relative

expression of gene was calculated using 2−ΔΔCt method by

normalizing to GAPDH expression.

Western blot
The cells were lysed using RIPA lysis buffer (Beyotime,

Shanghai, China) on the ice. The concentration of the

protein was quantified using the BCA Protein Assay Kit

(Beyotime, Shanghai, China). A total of 30 μg of protein

was separated by SDS-PAGE and transferred onto PVDF

membranes (Beyotime, Shanghai, China). After blocking

with 5% skim milk, the membranes were incubated with

primary antibodies (anti-Collagen I: ab34710, 1:1,000;

anti-Fibronectin: ab2413, 1:1,000; anti-α-SMA, ab5694,

1:1,000; anti-p-IkB, ab133462, 1:10,000; anti-p-p65,

ab86299, 1:2,000; anti-GAPDH, ab181602, 1:10,000,

Abcam, Cambridge, MA, USA) at 4°C overnight, and

then incubated with secondary antibodies (Goat Anti-

Rabbit IgG: ab205718, 1:2,000, Abcam, Cambridge, MA,

USA) at room temperature for 1 hr. The bands of proteins

were visualized using BeyoECL Plus (Beyotime,

Shanghai, China) and examined using IPP Image-Pro

Plus software. GAPDH was used as the internal control.

Immunofluorescence staining
After exposure to TGF-β1 and silibinin, the cells were

fixed with 4% paraformaldehyde for 20 mins, permeabi-

lized with 1% Triton X for 20 mins. After blocking with

5% skim milk, the cells were incubated with antibody

against NF-κB (ab131546, 1:200, Abcam, Cambridge,

MA, USA) at 4°C overnight. On the second day, the

cells were incubated with goat-anti-rabbit IgG H&L sec-

ondary antibody, ab150077, 1:1,000, Abcam, Cambridge,

MA, USA for 50 mins at 37°C, then incubated with DAPI
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for 10 mins at 37°C in the dark. Immunofluorescence was

visualized under fluorescence microscope (Olympus,

Tokyo, Japan).

Immunohistochemistry staining
The paraffin tissue sections were cut to 4 μm thick. After

deparaffinizing with xylene and eluting with 100%, 95%

75%, and 50% alcohol, the sections were boiled with 0.01

M sodium citrate buffer for 8 mins. After blocking with

10% normal goat serum for 1 hr, the sections were incu-

bated with anti-collagen I (ab34710, 1:200, Abcam,

Cambridge, MA, USA) overnight at 4°C, and incubated

with secondary antibody (Goat Anti-Rabbit IgG:

ab205718, 1:2,000, Abcam, Cambridge, MA, USA) for

30 mins at room temperature. Finally, the sections were

stained with DAB, counterstained with hematoxylin.

Regarding as Masson staining, paraffin sections were

stained with Masson composite staining solution, washed

with 0.2% acetic acid solution and 5% phosphotungstic

acid solution. After stained with bright green staining

solution, the tissues were washed with 0.2% acetic acid

solution, dehydrated in absolute alcohol. Finally, the tis-

sues were sealed with neutral gum. The results were

imaged with a microscope (Olympus, Tokyo, Japan).

Mouse model and silibinin treatment
Adult male C57BL/6J mice (6–8 weeks) were selected for

this study. Every four mice housed in a cage under regular

conditions (12 hrs light/dark cycles) with free access to water

and food. Mice were fed two different diets. Randomly

selected mice (n=36) fed HFD diet (60% fat, 20% protein,

and 20% carbohydrate) for 30 weeks were used to establish

hyperglycemia model, and other 12 mice were fed standard

diet for 30 weeks. In the next 6 weeks, these mice were

divided into four groups: control group (standard diet,

n=12); HFD group (HFD diet, n=12); HFD+50 mg/kg silibi-

nin (n=12); and HFD+100 mg/kg silibinin (n=12). Mice in

HFD+50 mg/kg silibinin and HFD+100 mg/kg silibinin

groups were treated with 50 or 100 mg/kg/day silibinin

dissolved in distilled water, while mice in control and HFD

groups were treated with equal volume of distilled water.

After treatment, bodyweight of each mouse was detected.

Fasting glucosewasmeasured by using a glucometer (Roche,

Basel, Switzerland). Microalbuminuria was determined by

mouse microalbuminuria ELISA Kit (Boyao, Shanghai,

China). The kidney of each mouse was dissected, and kidney

weight/bodyweight and area of fibrosis was examined. Renal

fibrosis was measured by staining renal sections withMasson

staining.25 The area of fibrosis was quantified by measuring

the ratio of blue staining area to total glomerular area. The

animal experimental protocol was approved by the Ethics

Committee of Jining No.1 People’s Hospital. National

Institutes of Health guide for the care and use of laboratory

animals was strictly followed by us.

Statistical analysis
Statistical analysis was performed by using GraphPad

Prism software (version 7, La Jolla, CA, USA). The data

were presented as mean ± standard deviation (SD) of at

least three independent experiments. One-way ANOVA

followed by Tukey’s test was Student’s t-test was per-

formed to analyze difference among groups. P-value less

than 0.05 was considered as a significant difference.

Results
The cytotoxic effect of silibinin on

HRGECs
To investigate the cytotoxic effect of silibinin on HRGECs,

MTT assay was performed. As shown in Figure 1B, As

compared to 0 μM group, 25 and 50 μM silibinin did not

affect cell viability, while 75 and 100 μM silibinin signifi-

cantly inhibited cell viability (75 μM: P<0.05; 100 μM:

P<0.01). To assess the effect of silibinin on cell apoptosis,

flow cytometry was used. The data demonstrated that 75 or

100 μM silibinin evidently increased apoptosis of HRGECs,

compared with 0 μM group (P<0.01, Figure 1C and D).

These data suggested that high concentration of silibinin

(≥75 μM) had significant cytotoxicity via inducing apopto-

sis. Therefore, the nontoxic concentration of 50 μM was

selected for further analysis.

Silibinin reversed TGF-β1-induced fibrosis

of endothelial cells in vitro
Next, in order to establish cell fibrosis in vitro model,

HRGECs were treated with 100 nM TGF-β1, and the

expression of fibrotic markers was measured by qPCR

and Western blot. As indicated in Figure 2A–E TGF-β1
treatment greatly upregulated the mRNA and protein

levels of collagen I, fibronectin and α-SMA compared

with the control group (P<0.01). In contrast, 50 μM sili-

binin markedly attenuated the upregulation of collagen I,

fibronectin and α-SMA induced by TGF-β1 (P<0.01).

These results indicated that silibinin could reverse TGF-

β1-induced fibrosis of endothelial cells in vitro.
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Silibinin reversed TGF-β1-induced fibrosis

of HRGECs via inhibition of the NF-κB
pathway in vitro
The present study further detected the effect of silibinin on

p-IκB, p-p65 levels in order to explore the role of NF-κB

pathway during TGF-β1-induced renal fibrosis. As illu-

strated in Figure 3A–C, TGF-β1 induced an increased

phosphorylation of IκB and p65 (P<0.01), while silibinin

attenuated these elevations (P<0.01). In addition, immuno-

fluorescence data demonstrated that TGF-β1 induced NF-

κB nuclear translocation was notably inhibited by silibinin

(Figure 3D). These data suggested silibinin reversed TGF-

β1-induced fibrosis of HRGECs via inhibition of the NF-

κB pathway in vitro.

Silibinin inhibited HFD-induced renal

fibrosis of mice in vivo
To investigate the anti-fibrosis role of silibinin in vivo,

HFD-induced renal fibrosis of mice model was

established. The result indicated HFD significantly

increased body weight of mice, compared with control

group (P<0.01), while silibinin had no effect on body

weight of mice (Figure 4A). Similarly, HFD resulted in

upregulation of fasting glucose (P<0.01); however,

neither 50 mg/kg nor 100 mg/kg silibinin affected fast-

ing glucose in HFD mice (Figure 4B). Additionally,

kidney weight/body weight and microalbuminuria of

HFD mice were greatly increased, which were markedly

reduced in HFD +50 mg/kg silibinin (kidney weight/

body weight: P<0.05; microalbuminuria: P<0.01) and

HFD+100 mg/kg silibinin groups (kidney weight/body

weight: P<0.01; microalbuminuria: P<0.01, Figure 4C

and D). Furthermore, the data of HE staining demon-

strated that the status and area of fibrosis in kidneys

were markedly increased in HFD mice, while fibrosis

area induced by HFD was notably reversed by silibinin

(50 mg/kg: P<0.05; 100 mg/kg: P<0.01) (Figure 4E–G).

All these results suggested that silibinin inhibited HFD-

induced renal fibrosis of mice in vivo.
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Figure 2 Silibinin reversed TGF-β1-induced fibrosis of endothelial cells in vitro. (A) The mRNA levels of collagen I, fibronectin, and α-SMA were measured by RT-qPCR,

when HRGECs incubation with 100 nM TGF-β1 or/and 50 μM silibinin for 72 hrs. (B) The protein expression of collagen I, fibronectin, and α-SMA was examined by

Western blot. GAPDH was used as an internal control. The relative protein expression of (C) collagen I, (D) fibronectin, and (E) α-SMA normalized to GAPDH was

quantified. Each sample was tested in triplicate. **P<0.01 vs control group; ##P<0.01 vs TGF-β1 group.

Abbreviations: RT-qPCR, reverse transcription-quantitative polymerase chain reaction; HRGECs, human renal glomerular endothelial cells.
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Silibinin reversed HFD-induced

upregulation of collagen I, fibronectin, and

p-p65 in vivo
Finally, the expression of collagen I, fibronectin, and p-p65

was measured in mice kidneys. Immunohistochemistry

results demonstrated that collagen I expression was

increased under HFD condition, while 50 or 100 mg/kg

silibinin decreased its expression significantly (Figure 5A).

The data of Western blot consistent with immunohistochem-

istry (100 mg/kg: P<0.01; Figure 5B and C). Additionally,

the protein expression of fibronectin and p-p65 was upre-

gulated in the HFD group, which was downregulated by 50

or 100 mg/kg silibinin (P<0.01; Figure 5B, D, and E).

These results further demonstrated that silibinin reversed

HFD-induced upregulation of collagen I, fibronectin, and

p-p65 in vivo via inhibition of the NF-κB pathway.

Discussion
In the present study, we explored the effects of silibinin on

DN. We found that silibinin reduced the expression of

main markers of fibrosis, represented by collagen I, fibro-

nectin, and α-SMA in TGF-β1 treated HRGECs.

Additionally, silibinin also decreased kidney hypertrophy

and renal fibrosis status in HFD-induced renal fibrosis of

mice. Moreover, silibinin downregulated the protein levels

of p-IκB, p-p65, and NF-κB. These results suggested that

silibinin plays an important role in renal fibrosis of DN

through inactivation of the NF-κB pathway.
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Figure 3 Silibinin suppressed TGF-β1-induced renal fibrosis via inhibition of the NF-κB signaling pathway. (A) HRGECs were treated with 100 nM TGF-β1 or/and 50 μM
silibinin for 72 hrs, and the expressions of p-IκB and p-p65 in cells were detected by Western blot. GAPDH was used as a loading control. The relative protein expression of (B)
p-IκB and (C) p-p65 was quantified. (D) Immunofluorescence analysis of NF-κB. Each sample was tested in triplicate. **P<0.01 vs control group; ##P<0.01 vs TGF-β1 group.

Abbreviation: HRGECs, human renal glomerular endothelial cells.
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With the development of the society, HFD is common.

However, HFD seriously threaten human health, such

as causing gastrointestinal diseases,26 obesity27, and

hyperinsulinemia.28 Obesity is a key factor in the develop-

ment of DN. There is no effective treatment for DN. Previous

studies have reported that some compounds as able to pre-

vent DN. For example, thymol afforded protection against

HFD-induced DN.29Myrciaria cauliflora extracts are benefit

to DN through inhibiting Ras/PI3K/AKT pathway and sup-

pressing kidney fibrosis-related protein.30 In addition,

Ramulus mori polysaccharides exerts antioxidant effect to

protect kidney injury and improve the renal function of

diabetic rats.31 Silibinin is a kind of flavonoid compound,

which has biological activities and medicinal value.

Researches have revealed that the effectiveness of silibinin

in diabetic complications including neuropathy, hepatopathy,

cardiomyopathy, nephropathy, and so on.32 Silibinin could

protect high glucose-induced podocyte injury through pre-

venting oxidant stress.33 Moreover, silibinin prevents kidney

injury, attenuates oxidant stress, decreases serum insulin

level to ameliorate DN.24 Besides, some researches have

revealed that silibinin delays the process of fibrosis, includ-

ing but not limited to intestines,34 lung35, and liver.36 In the

present study, silibinin was shown to attenuate renal fibrosis

in vitro. 50 μM silibinin downregulated TGF-β1-induced

upregulation of the expression of collagen I, fibronectin,

and α-SMA. Moreover, silibinin decreased HFD-induced

the ratio of kidney weight to body weight, microalbuminuria,

and the area of renal fibrosis. These results all demonstrated

that silibinin is able to attenuate renal fibrosis in vitro and in

vivo.

NF-κB transcription factor regulates various compo-

nents such as pro-inflammatory cytokines, chemokines,

adhesion molecules, and inducible enzymes to adjust the

immune response.37 Activation of NF-κB signaling pathway

involved in the development of inflammation, atherosclero-

sis, Alzheimer’s disease, and human cancers.38 Silibinin

inhibits the progression of several diseases through this

pathway. Silibinin inhibits lipopolysaccharide-induced lung

injury, exerts anti-inflammatory effect through suppressing

NF-κB signaling pathway.39 In addition, silibinin suppresses

colorectal cancer growth and progression through the NF-

κB pathway against chronic inflammation.40 Previous stu-

dies reported that NF-κB signaling pathway is involved in

chronic kidney disease, which mediated inflammation and

renal fibrosis.41 Such as protein kinase CK2α and sphingo-

sine kinase 1 ameliorate diabetic renal inflammatory fibrosis

through the NF-κB pathway.42,43 In the present study, sili-

binin decreased the upregulation of phosphorylation of IκB

and P65 induced by TGF-β1. In addition, Silibinin
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Abbreviation: HFD, high-fat diet.

Dovepress Liu et al

Drug Design, Development and Therapy 2019:13 submit your manuscript | www.dovepress.com

DovePress
3123

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


prevented an increase in NF-κB activity. Meanwhile, silibi-

nin suppressed the protein level of p-p65 in vivo. These

findings suggested that silibinin inhibits renal fibrosis via

inhibition of NF-κB. Three major glomerular cell types are

involved in the fibrotic process including podocytes or

visceral epithelial cells, mesangial cells, and endothelial

cells.11 However, this study focused only on the role of

silibinin on endothelial cells. Therefore, further studies are

needed to clarify the role of silibinin on podocytes or

visceral epithelial cells and mesangial cells.

Conclusion
This study for the first time to demonstrate that silibinin

attenuated renal fibrosis of DN in vitro and in vivo via inhibi-

tion of NF-κB. These findings indicated that silibinin might

serve as an effective agent for delaying the treatment of DN.

Abbreviations
DM, diabetes mellitus; DN, diabetic nephropathy; HFD,

high-fat diet; HRGECs, human renal glomerular

endothelial cells; NF-κB, nuclear factor kappa beta;

TGF-β1, transforming growth factor-Beta 1.
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