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Abstract: Cholesterol homeostasis is critical and necessary for the body’s functions.

Hypercholesterolemia can lead to significant clinical problems, such as cardiovascular dis-

ease (CVD). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and low–density

lipoprotein cholesterol receptor (LDLR) are major points of control in cholesterol home-

ostasis. We summarize the regulatory mechanisms of HMGCR and LDLR, which may

provide insight for new drug design and development.
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Introduction
Cholesterol plays a key role in the regulation of the body’s essential functions. It is

both one of the basal components of biological membranes and a precursor of a

variety of physiologically active substances, such as bile acid, vitamin D, steroid

hormones, ubiquinol and heme A, which are intermediate products of mevalonic

cholesterol biosynthesis and exhibit pleiotropic effects on numerous diseases and

energy metabolism.1–6 The main source of the body’s cholesterol is from mevalonic

biosynthesis (de novo synthesis), particularly in the liver, where up to 1 g cholesterol

can be synthesized, and in the extrahepatic tissues such as the small intestines and

adrenal glands.7–11 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is

the rate-limiting enzyme in the de novo synthesis of cholesterol and serves as a key

regulatory enzyme controlling endogenous cholesterol synthesis.11,12

About 500 mg of total cholesterol is consumed each day in the bile acid synthesis

pathway in the liver for lipid digestion and absorption, and 400–500 mg of dietary

exogenous cholesterol is absorbed from the intestines each day.3,9,10 Additionally,

hepatic cholesterol is transported in the blood by lipoproteins and utilized by peripheral

tissues (Figure 1).13 The serum cholesterol is mainly metabolized through the low-

density lipoprotein cholesterol (LDL-c) receptor (LDLR) pathway.14 In the peripheral

tissues, LDLR on the cell surface membranes binds to plasma LDL-c particles trans-

porting liver cholesterol, and LDL-c is then taken in by endocytosis and cleared.12,15

Hypercholesterolemia can lead to significant clinical problems such as cardio-

vascular disease (CVD), and hypocholesterolemic agents significantly reduce the

risk of CVD events.16–22 Therefore, as key regulatory points in cholesterol meta-

bolism, HMGCR and LDLR have been studied as targets for treating CVD and

dyslipidemia in recent decades.23,24 In this review, we summarize the regulatory

mechanisms of HMGCR and LDLR, which may provide insights for new drug

design and development.
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Regulatory mechanism of HMGCR
The human HMGCR gene (GeneID: 3156) is located on

chromosome 5q12,25 and it encodes three isoforms (iso-

forms 1, 2 and 3) that are produced by alternative splicing

and may lead to different responses to treatment with statin

(an HMGCR inhibitor).26 HMGCR isoform 1 has been

extensively investigated and is a membrane-bound glyco-

protein comprising 888 amino acids that regulates mevalo-

nate, which is an initial control point in the endogenous

biosynthesis of cholesterol in the liver and small intestine.27

The activity and amount of HMGCR are regulated at multi-

ple levels and through multiple mechanisms, such as nega-

tive feedback regulatory mechanisms mediated by sterols

and nonsterol metabolites derived from mevalonate, post-

translational modification, degradation and hormone

regulation.11,27–33 Different regulatory pathways interact

to control cholesterol homeostasis (Figure 2).

Negative feedback regulation
Negative feedback regulation is the most important way to

control cholesterol synthesis. The cholesterol synthesis

process is very complex, involving over 30 enzymatic

reactions. HMGCR, the primary rate-limiting enzyme in

the process, is a known target of feedback regulation

whose concentration directly influences the amount of

cholesterol synthesized.34 An increase in the concentration

of cholesterol or 25-hydroxycholesterol (25-OH choles-

terol) suppresses the synthesis of HMGCR and leads to a

marked decrease in HMGCR; furthermore, cholesterol

accelerates HMGCR degradation by facilitating HMGCR

ubiquitination. These two mechanisms result in a synergis-

tic effect, ultimately leading to a decrease in both the

HMGCR concentration and cholesterol biosynthesis to

decrease the concentration of cholesterol.28,30,31,35 The
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Figure 1 Schematic diagram of cholesterol metabolic pathway in the body.

Figure 2 Control point of HMGCR.

Abbreviations: HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; SRE, Sterol regulatory element; ER, endoplasmic reticulum; SREBP, sterol regulatory element

binding protein; SCAP, SREBP cleavage activating protein; AMPK, AMP-activated protein kinase; PKC, Protein kinase C; CaMK, Ca2+/calmodulin-dependent protein kinase;

ERAD, ER-associated degradation; 25-OH cholesterol, 25-hydroxycholesterol; RNF145, ring finger protein 145.
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suppression of HMGCR synthesis is associated with a type

of nuclear transcription factor termed sterol regulatory

element-binding proteins (SREBPs).36

SREBPs, including SREBP-1a (GeneID: 6720) and

SREBP-1c (GeneID: 6720), which are produced from the

same gene by alternative splicing, and SREBP-2 (GeneID:

6721), are key lipogenic transcription regulators. SREBP-

1a is a potent activator of all SREBP-responsive genes,

and SREBP-1c activates genes involved in fatty acid and

triglyceride synthesis. SREBP-2 preferentially regulates

genes involved in the cholesterol synthesis pathway.

SREBP-2 activates the transcription of genes by binding

sterol regulatory element 1 (SRE-1; 5ʹ-ATCACCCCAC-3ʹ)

in the LDLR and HMGCR promoters.36

SREBP-2 is initially formed as a 125 kDa precursor in

the endoplasmic reticulum (ER), and its nuclear mature

form (68 kDa) can enter the nucleus to activate the tran-

scription of target genes only after proteolytic processing

(which involves removal of its carboxyl terminus in the

Golgi apparatus). In the Golgi apparatus, SREBP can

interact with SREBP cleavage activating protein (SCAP).

SCAP can combine with a pair of ER membrane protein

insulin-induced genes (Insig1 and Insig2) to form the

SREBP/SCAP/Insig complex. This complex becomes

fixed on the ER after combining with Insig.36–38 SCAP

(GeneID: 22937) contains 1279 amino acids and possesses

a sterol-sensing domain (SSD);39 cholesterol can bind to

the SSD of SCAP and thus change the conformation of

SCAP. The SREBP/SCAP complex is retained in the ER

when the sterol concentration is high, leading to the sup-

pression of SREBP-mediated transcription and HMGCR

product. When the cholesterol in cells is depleted, SCAP

dissociates from the SREBP/SCAP/Insig complex and

SREBP enters the Golgi complex to be processed, and

the synthesis of cholesterol subsequently increases due to

SREBP-mediated transcription.38,40–42 There is an obvious

distinction between 25-OH cholesterol and cholesterol in

the feedback regulation of cholesterol synthesis, and a

recent study demonstrated that 25-OH cholesterol inhibits

the synthesis of cholesterol by binding to Insig, not SCAP,

although cholesterol is thought to bind to SCAP.38 Recent

evidence demonstrated that sulfation of 25-OH cholesterol

might inhibit lipid synthesis and inflammatory responses,

and it may be a target for CVD prevention.43,44

Mevalonate-derived products participating in the feed-

back regulation of cholesterol synthesis are closely asso-

ciated with the ER-associated degradation (ERAD) of

HMGCR and can act synergistically with sterols to

augment HMGCR degradation by facilitating both the

ubiquitination of HMGCR and its dislocation out of the

ER, which is involved in the geranylgeranylation of pro-

teins (geranylgeranyl pyrophosphate (GGPP).45 The pre-

vention of geranylgeranylation may be another mechanism

by which statins lower cholesterol.46,47

Posttranslational modification of HMGCR
Importantly, the posttranslational modification of HMGCR

influences its regulatory function, which depends on cel-

lular energy conditions. Two forms of HMGCR exist:

phosphorylated (inactive) and dephosphorylated (active)

forms.33,48–50 The phosphorylation of human HMGCR at

serine 872 by AMP-activated protein kinase (AMPK)

reduces its enzymatic activity, and the dephosphorylation

of HMGCR by protein phosphatase restores its enzymatic

activity.48,51 Metformin, the most widely used hypoglyce-

mic drug that acts by activating AMPK, can regulate lipid

metabolism.52–54 Protein kinase C (PKC) and Ca2+/calmo-

dulin-dependent protein kinase (CaMK) are also involved

in the phosphorylation of HMGCR, but the specific phos-

phorylated residue in HMGCR has not been identified.55,56

The ubiquitination of HMGCR mainly influences its

stability and facilitates its degradation to regulate choles-

terol production. When cellular sterol accumulates,

HMGCR binds to Insig1 and gp78, which is an E3 ubiqui-

tin ligase, and interacts with ATPase valosin-containing

protein (VCP/p97) in the ER to facilitate the ubiquitination

(at lysine 248) and ERAD of HMGCR by the cytosolic

26S proteasome,31,57,58 while Ufd1, a gp78 cofactor,

enhances and accelerates the ERAD of HMGCR.35 In

liver-specific gp78 knockout mice, SREBP was decreased

and this was accompanied by elevated levels of Insig1/2,

leading to decreased cholesterol synthesis. However, the

degradation of HMGCR was decreased, suggesting that

gp78 may play an important role in the degradation of

SREBP.59 Small-molecule compounds have shown a ben-

eficial therapeutic effect in dyslipidemia by inhibiting the

SREBP pathway, which suggests that SREBP may be a

new drug target in the future.60,61 Ring finger protein 145

(RNF145) is a ubiquitin ligase involved in the degradation

of HMGCR that was recently identified based on small-

scale short hairpin RNA (shRNA) screening, and its

cysteine 537 residue is critical for its function.62

Glycosylation is also involved in the negative regulation

of HMGCR activity, which induces HMGCR localization

to the ER.63 Therefore, another way to control cholesterol
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metabolism is by influencing the level of posttranslational

modification of HMGCR.

Hormone regulation and genetic

polymorphisms
The HMGCR promoter region contains a cyclic AMP

response element (CRE) and an estrogen response element

(ERE) in addition to a sterol regulatory element (SRE).

These elements are involved in the regulation of HMGCR

transcriptional activity.64,65 Cellular cholesterol levels are

vital for the regulation of glial cell development and mye-

lination by neuregulin, and the control of cholesterol

synthesis by neuregulin was shown to be partly mediated

by a CRE sequence in the HMGCR promoter.64 Estrogen

transactivated HMGCR expression via binding to the ERE

(AGTCCcatCGACC) in the HMGCR promoter, which

induced an elevation in the total cholesterol and LDL-c

levels in the newborns of pregnant women with high

estradiol levels.65

Studies have shown that genetic polymorphisms of

HMGCR are associated with its function and phenotype.

Akadam-Teker et al have demonstrated that the total cho-

lesterol and LDL-c levels are higher among male coronary

heart disease patients aged <55 years carrying the

HMGCR CC genotype (rs3761740) than those carrying

CA + AA genotypes, which indicates an association

between HMGCR polymorphisms and CVD.66 However,

the A allele of the HMGCR genotype increased the risk of

Alzheimer’s disease (AD) in an Italian study.67

Conversely, the rs3761740 variant of HMGCR was not

associated with AD in a Swedish case-control study.68

Another HMGCR polymorphism (rs3846662) may

increase the mRNA and protein levels of HMGCR by

affecting alternative splicing, and thereby contribute to

the onset and progression of AD.69–72 Additionally, gene

polymorphisms affect the cholesterol-lowering response to

statin treatment.73–75

Regulatory mechanism of LDLR
LDLR, which is the receptor for LDL-c, plays a critical role

in cholesterol transport and clearance from the plasma to the

cytoplasm, and its functional insufficiency can lead to famil-

ial hypercholesterolemia (FH) and increase the risk of

CVD.76–80 LDLR functioning is regulated through various

means, such as genetic variants, feedback regulation asso-

ciated with gene transcription, posttranslational modifica-

tions and degradation (Figure 3). LDLR knockout mice are

a well-established model of atherosclerosis that aid clinical

research into the treatment of human atherosclerosis.53,81–84

Genetic variants
The LDLR gene (Gene ID: 3949), located on chromosome

19p13.2, encodes six isoforms produced by alternative

splicing. The canonical sequence (isoform 1) contains

860 amino acids but undergoes glycosylation in the ER

and is changed into a mature 839 amino acid form in the

Golgi apparatus, which is then transported to the cell

membrane.78,85,86 LDLR includes an extracellular domain

(amino acids 22–788), a transmembrane domain (amino

acids 789–810) and a cytoplasmic domain (amino acids

Figure 3 Control point of LDLR.

Abbreviations: LDLR, low–density lipoprotein cholesterol receptor; SREBP, sterol regulatory element binding protein; IDOL, inducible degrader of the LDLR; PCSK9,

proprotein convertase subtilisin/kexin type 9; LXR, Liver X receptors; R1, repeat 1 sequence; R2, repeat 2 sequence; R3, repeat 3 sequence; ERα, estrogen receptor α.
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811–860). Natural variants and mutations of the LDLR

gene have been reported to influence its function and

were involved in FH, which was characterized by high

plasma LDL-c levels, dyslipidemia and CVD.87–90 For

example, a single-nucleotide variation (rs767618089) of

the LDLR gene at position 300 in the protein sequence

of the extracellular domain did not affect LDLR expres-

sion but resulted in a reduction in LDL-c binding activity

and LDL-c uptake.91 A mutation at position 828 in the

cytoplasmic domain did not affect binding activity but

reduced LDLR internalization.92 To date, more than 2000

LDLR genetic variants have been described, and many

have not been demonstrated to have pathological

significance.87,93,94 Interestingly, there is a decreased risk

of type 2 diabetes in patients with FH,95,96 but these

findings need to be investigated for the further prevention

of diabetes.

Feedback regulation and SREBP-2
LDLR expression is controlled by the negative feedback reg-

ulation of intracellular cholesterol via the SREBP-2 pathway

due to an SRE-1 sequence in the LDLR promoter.36,97–101

When the cellular sterol level is low, LDLR expression is

transcriptionally stimulated by nuclear SREBP and the speci-

fic transcription factor Sp1, which binds to the cis-acting

element (repeat 3 sequence, R3) of the LDLR promoter with

a synergistic effect.102,103 Sp1 phosphorylation at Thr453 and

Thr739 is critical for Sp1 binding to the LDLR promoter to

stimulate LDLR expression.103 Additionally, Sp1 is required

for the increase of LDLR transcription by 17β-estradiol, in
which 17β-estradiol binds to the estrogen receptor α (ERα)/
Sp1 complex to trans-activate LDLR promoter activity in

HepG2 cells.104,105 The heterogeneous nuclear ribonucleopro-

tein K (hnRNP K) protein, a heterogeneous nuclear ribonu-

cleoprotein, controls LDLR transcriptional activity by

specifically interacting with R3 in the LDLR promoter,

which is also the binding site of Sp1, though the relationship

between hnRNP K and Sp1 remains unknown.101

Posttranslational modification of LDLR
The regulation of LDLR also involves histone modifications

and extensive posttranslational modifications that influence

the stability or activity of nucleic acids and functional pro-

teins. PKC induced the phosphorylation of histone H3 Ser10

at the LDLR promoter and stimulated the expression of

LDLR.106 In addition, the level of histone acetylation at the

LDLR promoter affected its transcriptional activity.101

N- and O-glycosylation play crucial roles in protein

processing from the Golgi apparatus to the ER, which

influences membrane protein folding and stability, cell

signal transduction, ligand binding, immunological

defense and organ development.107–109 The ligand-binding

domain of LDLR is O-glycosylated, which increases its

affinity for LDL-c by ∼5-fold.108,109

The ubiquitination of a lysine residue is related to

the degradation of LDLR depending on inducible degra-

der of the LDLR (IDOL), which is an E3 ubiquitin

ligase, in a liver X receptor (LXR)-induced regulatory

manner. IDOL catalyzes the polylysine 63-linked ubi-

quitination of LDLR, thereby promoting LDLR lysoso-

mal degradation and decreasing LDL-c clearance, and

this regulatory process is not dependent on the SREBP-2

pathway.110–114 Studies of IDOL-knockout mice have

reported an improvement in metabolic dysfunction,

including a decrease in circulating cholesterol, triglycer-

ide and glucose levels and hepatosteatosis and fat mass;

these effects suggest that the inhibition of IDOL may be

a future therapeutic strategy to combat dyslipidemia

and/or CVD.115,116

Proprotein convertase subtilisin/kexin

type 9 (PCSK9) regulatory pathway and

LDLR degradation
PCSK9, a secretory serine protease, is involved in the

degradation of LDLR.117–119 Ten phosphorylated serine

residues have been identified on LDLR based on high-

throughput screening using mass spectrometry, but it is

not clear whether these phosphorylated serine residues

are related to PCSK9.120,121 PCSK9 facilitated LDLR

degradation in lysosomes by binding to ligand-binding

repeats in the LDLR extracellular domain and led to a

dramatic increase in plasma LDL-c, which was reversed

by the loss of PCSK9 function and other anti-PCSK9

strategies.118,119 Alirocumab and evolocumab, novel

PCSK9 inhibitors, exhibited a beneficial effect and

improved dyslipidemia without an increase in diabetes

risk in clinical studies.24,122–127 PCSK9 is also a down-

stream protein of SREBP-2 because of the SRE

sequence in the PCSK9 promoter.128 A recent study

showed that triciribine, a specific AKT inhibitor, inhib-

ited PCSK9 expression by SREBP-2 transcriptional reg-

ulation accompanied by a decrease in HMGCR

expression. In addition, triciribine induced LDLR

mRNA stability and increased LDLR protein levels in
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a phosphorylated AKT-extracellular signal-regulated

kinase (ERK)-dependent manner. Therefore, triciribine

exerts beneficial and overlapping hypocholesterolemic

effects, which make it an attractive potential drug target

for hypercholesterolemia prevention.129

LDLR gene transcription was activated by the proin-

flammatory cytokine oncostatin M (OM), which induced

a 3.8-fold maximal increase in LDLR mRNA levels in

HepG2 cells, and this effect was mediated by the Janus

kinase (JAK)-signal transducer and activator of transcrip-

tion (STAT) and mitogen-activated protein kinase 1

(MEK1)/ERK-PCSK9 pathways.130–132 OM downregu-

lated PCSK9 transcription, which was accompanied by

an elevation in LDLR and a significant decrease in

plasma total cholesterol.130 The next works need to elu-

cidate whether these findings have an important implica-

tion for future drug development. Studies demonstrated

that an OM-induced complex involving CCAAT/enhan-

cer binding protein (c/EBP), cAMP-responsive element

binding protein (CBP) and early growth response gene 1

(Egr1) was required to bind to the sterol-independent

regulatory element (SIRE) in the PCSK9 promoter and

suppress PCSK9 expression.133–135 Different transcrip-

tional factors were recruited and interacted as a complex

to regulate downstream gene expression, and the complex

also involved PKC or other regulators, demonstrating

complex regulation.136

Perspectives
Intracellular cholesterol homeostasis depends on the

balance between supply, including the intestinal intake

of dietary cholesterol and its intracellular synthesis,

and demand, including the bile acid pathway, the

synthesis of steroid hormones and the clearance of

cholesterol by the low-density lipoprotein (LDL)-LDL

receptor (LDLR) pathway. Hypercholesterolemia, an

imbalanced and pathologic state of cholesterol home-

ostasis, is a major risk factor for cardiovascular disease

(CVD), which is the leading cause of mortality

worldwide.14,137 Up to now, the ezetimibe and bile

acid sequestrants as second-line cholesterol lowering

agents were used to inhibit the cholesterol intake

from the intestine. Up to now, the ezetimibe and bile

acid sequestrants as second-line cholesterol lowering

agents were used to inhibit the cholesterol intake

from the intestine.138,139 The 3-hydroxy-3-methylglu-

taryl coenzyme A reductase (HMGCR) and proprotein

convertase subtilisin/kexin type 9 (PCSK9) inhibitors

(statins, alirocumab and evolocumab) have been widely

used to treat hypercholesterolemia in clinical settings.

These four classes of cholesterol-lowering agents acts

in different ways (Figure 4), but clinical studies

demonstrated that these drugs need to be improved to

achieve more effective outcomes.140,141 Therefore, for

hypercholesterolemia and CVD prevention, further

Figure 4 Schematic diagram of the hypercholesterolemia and current therapeutic drug. PCSK9 inhibitor: proprotein convertase subtilisin/kexin type 9 inhibitor.

Abbreviations: LDL, low–density lipoprotein; LDLR, low–density lipoprotein cholesterol receptor.
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research is necessary to develop specific agents tar-

geted at the HMGCR and LDLR regulatory pathway.
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