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Abstract: Targeted radioimmunotherapy in non-Hodgkin’s B-cell lymphoma (NHL) offers 

an efficacious therapy and minimal toxicity compared to conventional chemotherapy. Iodine 

131 tositumomab (131I-TST) is a murine monoclonal antibody against the CD20 cell surface 

protein and is directly covalently conjugated to 131I, a radioactive β and γ emitter. While initially 

approved for use in relapsed, refractory, or transformed low grade B-cell NHL, investigational 

uses with promising results include autologous stem cell transplant, intermediate grade NHL, 

and the frontline management of indolent NHL. This review summarizes the 131I-TST literature 

on mechanism of action, treatment indications, treatment delivery, efficacy, investigational 

uses, and future prospects.
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Introduction
Non-Hodgkin’s lymphoma (NHL) is a common malignancy in the United States in 

with an estimated 66,000 cases in 2008.1 Low-grade B-cell NHL is an indolent disease 

with a long natural history and median survival of 7 to 10 years. As disease relapses, 

therapeutic options become more toxic and less effective2 and disease occasionally 

will transform into higher grade cases of lymphoma.3 Targeted radioimmunotherapy 

(RIT) has proven to be an effective weapon against low-grade NHL. Iodine 131 

tositumomab (131I-TST) (Bexxar®; GlaxoSmithKline, Brentford, London, UK) was 

approved by the Food Drug Administration in 2003 for use in relapsed, refractory, 

or transformed low-grade NHL. This review will discuss the literature pertaining to 

its use in NHL.

Mechanism of action
The target for TST is CD20, a nonglycosylated 33 to 37 kDa phosphoprotein involved 

with B-cell proliferation and differentiation. CD20 is expressed on the cell surface of 

over 90% of normal and malignant B cells. CD20 has four transmembrane domains and 

appears to function as both a calcium channel and signal transducer.4 CD20 does not 

internalize and remains on the cell surface after anti-CD20 antibody binding making 

CD20 an attractive target for immunotherapy.5

Two of the most notable anti-CD20 antibodies in clinical use are rituximab (RTX) 

and TST. RTX is a chimeric IgG
1
 antibody directed against CD20 with human κ and 

γ1 constant domains and a variable domain derived from a mouse monoclonal parent 

antibody, ibritumomab.6 TST, formerly known as B1, is a mouse IgG
2a
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antibody against CD20.7 Anti-CD20 antibodies appear 

to kill lymphoma cells through a variety of mechanisms. 

These include induction of apoptosis through direct signal 

transduction, complement-mediated cytotoxicity (CDC), and 

antibody-mediated cellular cytotoxicity (ADCC).4

The relative contribution of these different mechanisms 

to cell kill varies depending on the nature of the antibody. 

Independent of IgG isotype, two distinct classes of anti-CD20 

antibodies exist; type I antibodies that redistribute CD20 

into Triton X-100 insoluble lipid rafts, such as RTX, and 

type II antibodies that do not, such as TST. Type II antibodies 

mediate homotypic adhesion more than type I antibodies 

which correlates with their greater ability to induce apoptosis.8 

Redistribution of CD20 into lipid rafts coincides with the 

cross-linking of CD20, while cross-linking of anti-CD20 

antibodies results in the activation of complement.5 TST 

does not activate complement.9 In vitro, apoptosis induction 

appears to require the cross-linking of CD20 by anti-CD20 

antibodies through either antibody-antibody interactions or 

interaction with Fc receptor bearing cells.4 In vitro and in vivo 

data suggest that TST appears to induce apoptosis through 

additional mechanisms independent of the FC region.9 

Furthermore, TST-induced apoptosis does not involve classic 

DNA fragmentation, caspase processing, or association with 

lipid rafts.7,8,10 Transgenic mice models comparing type I and 

type II anti-CD20 antibodies found that type II antibodies 

were superior in duration of B-cell depletion.7 A summary 

of the differences between type I and type II antibodies 

are shown in Table 1. In ADCC, leukocytes bearing the 

Fc receptor play an integral role. Correlation of clinical out-

comes with genetic profiles have shown that patients with 

follicular lymphoma with a high binding affinity FcγRIIIa 

polymorphism have a 90% response rate (RR) to RTX at 

12 months compared to a RR of 51% for those with a low 

binding affinity FcγRIIIa polymorphism.6 Given the current 

laboratory and clinical evidence, the mechanism of action 

for anti-CD20 antibodies depends on both individual genetic 

factors along with cooperation of an intact immune system.

The addition of low-dose-rate radiation to anti-CD20 

antibodies improves response in vitro. Increased cell 

death occurred to a greater extent with the combination 

of TST and low-dose rate external beam radiation therapy 

(EBRT) at 0.3 Gy/hour compared to the combination of 

TST and high-dose-rate EBRT at 2.5 Gy/hour.10 In vitro, 

TST combined with EBRT induces a BCL-2 independent 

method of nonapoptotic cell death. The mechanism 

by which the additional death from TST occurred is 

through the mitogen-activated protein kinase/extracellular 

signal-regulated kinase (MAPK/ERK1/2) pathway.10 

In clinical use, the low dose rate radiation combined with 

TST is provided by radioactive 131I.

Isotopes
When TST is directly covalently conjugated to 131I, 131I-TST 

is better known by its trade name, Bexxar®. 131I is both a β 

and γ emitter. The β-particle has a mean energy of 191.6 keV, 

a maximum energy of 0.61 mEv, and a range in tissue of 

0.8 mm. The principle γ-ray has an energy of 364.5 KeV. The 

physical half-life of 131I is 8.1 days.11, 12 The gamma emission 

allows Bexxar® to be visualized by a gamma camera and is 

integral to individual patient dosimetry required for the deter-

mination of the proper amount of drug to be administered to 

achieve the total body dose prescribed.

Antibody alone versus immune 
targeted radiopharmaceutical
With such impressive preclinical data for some monoclonal 

antibodies, one wonders about the effectiveness of TST 

without 131I labeling. A randomized study answering such 

a question has been reported. Seventy-eight RTX naïve 

patients with refractory or relapsed low grade NHL were 

randomized between TST and 131I-TST. Several important 

measures of response favored 131I-TST: overall response 

(OR) of 55% vs 19% (P = 0.002), complete response (CR) 

of 33% vs 8% (P = 0.012), and median time to progression 

(TTP) of 6.3 months vs 5.5 months (P = 0.031). In the TST 

arm, 3 patients achieved CR with 2 patients remaining in 

remission at 48.1 and 56.9 months. Nineteen patients in the 

TST group who either failed to respond or progressed after 

TST served as their own controls. Of these 19, 3 were partial 

responders and 16 never responded to TST. After 131I-TST, 

68% (13/19) of these TST failures had a response, with 

Table 1 Characteristics of type i and type ii anti-CD20 antibodies 
as determined by preclinical experiments

Type I 
antibodies

Type II 
antibodies

examples rituximab Tositumomab

redistribute CD20 into Triton 
X-100 insoluble lipid rafts

+ –

Homotypic adhesion + +++

induction of apoptosis + +++

Complement-dependent 
cytotoxicity

+ –

B-cell depletion in transgenic 
mice models

+ +++
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42% (8/19) achieving CR. Thus 131I conjugation certainly 

improves the efficacy of TST, although some patients appear 

to show impressive responses from the nonradiolabeled 

antibody.13

Rituximab versus tositumomab
Although no head-to head comparisons in randomized trials 

exist or are likely to be performed in the near future, treat-

ment with RTX of a similar group of patients has yielded 

similar results to TST. In relapsed low grade NHL, the 

German Low-Grade Lymphoma Study Group found that 

RTX yielded an OR of 47%, CR of 17%, and median TTP of 

201 days.14 Similarly, a phase II multi-institutional study of 

37 patients with relapsed low-grade NHL treated with RTX 

yielded an OR of 46% with a median TTP of 10.2 months.15 

A phase III multi-institutional study of 166 patients with 

relapsed indolent lymphoma treated with 4-weekly doses of 

RTX gave an OR of 48% and median TTP of 13.0 months.16 

Toxicity from this regimen is predominately acute, with the 

main side effect being infusional reactions including fevers 

and chills. Around 20% of patients have hematological 

abnormalities, mainly thrombocytopenia or leukopenia 

with very few grade III or IV toxicities.14,15 These response 

rates and median TTP for RTX in relapsed low-grade NHL 

are similar to those of the TST arm reported in the random-

ized trial comparing TST to 131I-TST discussed above.13 

Radiolabeling of RTX with 131I has also been reported.17,18 

A phase II study of 91 patients yielded an OR of 76% 

and a CR/complete response unconfirmed (CRu) of 53%. 

Median duration of response (MDR) for all responders 

was 10 months, 20 months for patients with CR/CRu, and 

7 months for patients with partial response (PR). Hema-

tologic toxicity was less than 131I-TST: 4% with grade IV 

thrombocytopenia and 16% with grade IV neutropenia. Five 

patients developed myelodysplastic syndrome (MDS) and 

9% developed elevated thyroid-stimulating hormone (TSH) 

levels. These results and toxicities are comparable to those of 
131I-TST in relapsed or refractory NHL as will be discussed 

later. The estimated cost of in-house iodination was US$1000 

above the cost of RTX. Despite laboratory data suggesting 

superior efficacy of TST over RTX, the clinical response 

rates and clinical outcomes of patients treated with TST are 

similar to those of RTX.

Clinical indications  
and contraindications
131I-TST is FDA approved for the treatment of relapsed or 

refractory low grade CD20+ B-cell NHL, including disease 

refractory to RTX, or transformed NHL. Contraindications 

to treatment include iodine allergy, pregnancy, platelet 

count 100,000/mL, absolute neutrophil count 1500/mL, 

Karnofsky performance status  60, pregnancy, inadequate 

renal or hepatic function, lymphomatous bone marrow 

involvement of greater than 25%, or major seropositivity 

for human anti-mouse antibodies (HAMA). Some studies 

excluded patients who had disease that progressed in field 

within a year after 35 Gy EBRT.13,19,20 Treatment with 

dose attenuated 131I-TST in patients with greater than 25% 

bone marrow involvement has been reported and remains 

investigational.21

Dosing and treatment delivery
Due to wide variations in bioclearance of 131I-TST, dosing is 

individualized for each patient. Although the physical half-

life of 131I is approximately 8 days, the median total body 

effective half-life of 131I-TST in 980 patients as determined 

by gamma camera counts was 67 hours and ranged between 

28 and 115 hours.11 Total body clearance defined as mean 

half-life determined by sodium iodide probe or gamma camera 

are similar.19 The initial step in therapy involves determining 

individual patient bioclearance. First, the patient is injected 

intravenously with a dose of 450 mg TST over 1 hour. This 

cold (nonradioactive) antibody is thought to saturate both 

nonspecific binding sites and CD20 binding sites on normal B 

cells, especially in B cell reservoirs such as the spleen, and thus 

improve tumor localization of the hot (radioactive) antibody.22 

Next, a dosimetric dose of 131I-TST with 5 mCi 131I conjugated 

to 35 mg TST is infused over 20 minutes. Three serial gamma 

camera scans on day 0, days 2 to 4, and days 6 to 7 provide 

information on whole body clearance and biodistribution. 

Because both 131I and TST are cleared by the kidneys, these 

scans must be examined to ensure that abnormal 131I pooling 

does not happen. Abnormal kidney or lung uptake would be 

reasons to abort proceeding to the therapeutic dose although 

this is an extremely rare occurrence. Despite the intuitive 

appeal of using RIT imaging to determine absorbed dose and 

the potential for clinical response, human studies have shown 

extremely poor correlation of imaging intensity and ultimate 

clinical response.23 From the serial gamma scans, individual 

patient clearance can be used to calculate the activity of 131I-TST 

needed for a therapeutic dose. A figure demonstrating the 

principle of the “area under the curve” dosimetric analysis and 

the theoretical reasons for differences in patient bioclearance 

is depicted in Figure 1. Standard dosing is 75 cGy total body 

irradiation24 with dose reductions to 65 cGy for platelet counts 

between 100,000/mL and 150,000/mL19 and dose reductions 
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to 45 cGy for patients with previous autologous stem cell 

transplant (ASCT).25 A typical standard dose without reduc-

tions for thrombocytopenia or previous SCT can range between 

50 and 200 mCi.19, 26 On day 7 to 14, the therapeutic dose is 

administered. Once again, a preceding (cold) dose of 450 mg 

TST is injected over one hour followed by the therapeutic dose 

of 131I in mCi conjugated to 35 mg TST over twenty minutes.

Radiation safety guidelines vary by state. Standard dose 

TST administration is an outpatient procedure. Patients 

should be counseled that the radiopharmaceutical is excreted 

in the urine and appropriate precautions should be taken to 

minimize exposure to others in the first couple of weeks. 

We refer you to the radiation safety committee of your hos-

pital for information on medical I-131 radiopharmaceutical 

regulations.

Toxicity
Acute side effects of treatment may include infusional 

reactions such as fever, rigors, hypotension, diaphoresis, 

dyspnea, bronchospasm, and nausea. Infusional reactions 

are more likely to occur during administration of the ‘cold’ 

dose but could potentially occur during administration of the 

radiolabeled antibody.13,26 Prevention of these reactions is 

minimized through the use of anti-pyretics and anti-histamines, 

such as acetaminophen and diphenhydramine, although no 

randomized studies have determined their effectiveness in 

preventing infusional reactions. Infusional reactions should 

be treated by halting the infusion and then restarting at a 

slower rate. Anaphylactic reactions should be treated by 

stopping the infusion and then treating with epinephrine, 

corticosteroids, and anti-histamines.

The most common side effect of 131I-TST is myelosup-

pression, predominately thrombocytopenia and neutropenia. 

In the setting of relapsed disease, nadirs typically occur 4 to 

7 weeks after infusion and take an additional month to resolve. 

Grade 3 to 4 thrombocytopenia, 50,000 platelets/mL, or 

neutropenia, 1000 absolute neutrophil count/mL, occur with 

a frequency of 53% and 63%, respectively. To monitor for 

hematologic toxicity, patients should have weekly blood counts 

for 10 to 12 weeks or until counts return to safe levels.11

Critical Role of Personalized DosingCritical Role of Personalized Dosing
Achieve Equal Area Under CurveAchieve Equal Area Under Curve

Rapid Clearance

• large tumor burden

• large spleen size
• bone marrow involvement

Slow Clearance

• small tumor burden
• small spleen size
• no bone marrow involvement

Treatment
Dose
(mCi)

100

1 2 31 2 3 4 5

75 cGy

Days

50

100

75 cGy

Days

50

Treatment
Dose
(mCi)

Figure 1 Theoretical reasons for variations in clearance which leads to individualized dosing of 131i activity for each patient.
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Because TST is a mouse monoclonal antibody, TST can 

stimulate the immune system to produce human anti-mouse 

antibodies (HAMA) which may preclude the use of future 

monoclonal antibodies. HAMA reactivity usually takes 

6 months after treatment to develop. In relapsed or refractory 

disease, HAMA seroconversion occurs in 10% to 15% of 

administrations,25 while in upfront monotherapy the reported 

rate of HAMA seroconversion is 63%.27

Dehalogenation of 131I results in accumulation of 

radioactive iodine in the thyroid gland and the potential for 

subsequent hypothyroidism, occurring in roughly 15% of 

cases at 5 years.11 Onset of hypothyroidism typically requires 

1 to 2 years. To minimize the risk of hypothyroidism, patients 

are instructed to take Lugol’s solution, potassium iodide, or 

equivalent for a minimum of 24 hours prior to the dosimetric 

dose and continue until 14 days after the therapeutic dose. Health 

care providers who handle 131I may be required to have additional 

radioactive monitoring by their radiation safety officers.

Concerns of serious immunosuppression from 131I-TST 

have not been realized despite depletion of circulating B cells 

for 6 months after therapy. Thirty-one patients treated with 

upfront 131I-TST monotherapy for follicular NHL had serum 

levels of antibodies against rubella, mumps, varicella zoster, 

measles, and tetanus measured at baseline, 1 year after 

therapy, and 2 years after therapy. Few patients lost acquired 

humoral immunity suggesting that routine revaccination of 

patients after 131I-TST is unnecessary.28

Any patient treated with cytotoxic therapy is at increased 

risk for MDS/acute myelogenous leukemia (AML). A study 

investigating the risk of MDS/AML in 995 patients with 

relapsed NHL treated with 131I-TST found that 3.5% of patients 

developed MDS/AML with a median follow-up of 6 years 

from diagnosis and 2 years after 131I-TST. The annualized inci-

dence of AML/MDS was 1.6%/year which is similar to that 

of patients treated with multiple chemotherapy regimens.29 

In a study of 76 patients treated with upfront 131I-TST mono-

therapy for follicular NHL, no patients developed MDS/AML 

with a median follow-up of 7.93 years.30 Distinguishing the 

attributable risk of MDS/AML to chemotherapy or 131I-TST 

is difficult, although it appears that 131I-TST does not signifi-

cantly increase the risk of leukemia.29

131I-TST in relapsed B-cell NHL
In an early phase I/II study from the University of Michigan, 

59 patients with relapsed or refractory B-cell NHL were 

treated with 131I-TST. Fourteen patients had previously 

undergone ASCT, and 17 patients had de novo intermediate/

high risk disease. Fifty percent had responded to their last 

chemotherapy regimen. Response was excellent: 71% 

achieved OR with a median progression free survival (PFS) 

of 12 months and 34% achieved CR with a median PFS 

of 20.3 months. Fourteen patients with transformed NHL 

had similar responses to those with low-grade NHL, but no 

patients with de novo intermediate/high-grade NHL achieved 

CR and only 41% had partial responses.25

In a multicenter, single-arm trial, 47 patients with relapsed 

or refractory B-cell NHL were treated with 131I-TST. Patients 

were required to have failed at least one chemotherapy regi-

men that included an anthracycline or anthracenedione and 

their latest progression must have occurred within one year 

of enrollment. Patients had received a median of four previ-

ous chemotherapy regimens with 47% of patients responding 

to their last regimen. Again, responses were excellent: OR 

was 57% with a MDR of 9.9 months and CR was 32% with 

a MDR of 19.9 months. The response rates for patients with 

transformed and low-grade NHL were similar at 57% and 

60%, respectively. MDR for low-grade NHL was 8.2 months 

and MDR for transformed NHL was 12.1 months.19

Even when faced with poorly responsive disease, 131I-TST 

still offers a potential for long-term disease control. A study 

of 60 patients who had a failed a minimum of two qualify-

ing regimens with the last qualifying regimen (LQR) failure 

within 6 months of study enrollment showed a benefit 

with 131I-TST. LQR included fludarabine or chlorambucil 

monotherapy, cyclophosphamide-based regimens, or variety 

of other combination regimens. Response to LQR was worse 

than those in the two previously mentioned studies, with only 

28% patients achieving a response and only 3% with a CR. 

Patients included in this trial were running out of options 

as the median number of previous chemotherapy regimens 

was four and by trial definition they had to have failed within 

6 months of their LQR. Response rates to 131I-TST in this 

patient population were impressive: OR of 65% and CR of 

20%. Even in transformed disease, where prognosis is espe-

cially poor, 131I-TST had an OR of 39%. The MDR for patients 

was 6.5 months for all 131I-TST responders. For patients in 

CR after 131I-TST, MDR had not been reached with a median 

follow-up of 47 months. In this study where a patient’s 

response to their LQR served as his own control, 131I-TST 

clearly outperformed conventional chemotherapy.26

Given these impressive responses in heavily pretreated 

patients, one wonders if 131I-TST given earlier in the natural 

history of a patients NHL might lead to higher response 

rates and prolonged remissions. An open label phase II study 

from the United Kingdom attempted to answer this question. 

Forty-one patients with recurrent indolent and transformed 
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B-cell NHL and had progressed after one or two previous 

chemotherapy regimens were treated with 131I-TST. The OR 

of 76% and CR of 49% were better than the previous studies 

of patients who were more heavily pretreated. The overall 

MDR was longer at 1.3 years. The most striking difference 

is in the 49% of patients who achieved CR: their MDR had 

not yet been reached with 11 patients still in remission at 

2.6 to 5.2 years at the time of publication. Again, OR for 

indolent NHL and the 7 patients with transformed NHL 

was similar at 77% and 71%, respectively.20 It appears as 

though earlier treatment with 131I-TST yields better results 

with 131I-TST, although the optimal treatment strategy to 

maximize longevity and minimize toxicity in patients with 

indolent NHL remains to be determined.

One feature that all of the above mentioned studies have 

in common is that they all excluded patients who received 

prior immunotherapy. Because advanced stage follicular 

lymphoma is an indolent, apparently incurable disease, 

the goal of therapy is to provide effective treatment while 

minimizing toxicity. Since RTX approval for B-cell NHL, 

RTX therapy is considered standard of care in the frontline 

management of this disease (National Comprehensive 

Cancer Network guidelines). We have already discussed 

how RIT appears to provide greater benefit than immuno-

therapy alone. Given some of the obvious similarities in 

mechanism of action between immunotherapy and RIT, one 

wonders whether patients who are no longer susceptible to 

immunotherapy may still respond to RIT. Indeed, such a 

trial has already been reported. A multicenter phase II TST 

trial included 40 patients with indolent, follicular large 

cell, or transformed B-cell NHL who had progressed after 

RTX. Patients had been heavily pretreated with a median 

of four prior regimens. Twenty-four patients had failed to 

respond to RTX and an additional 11 had response durations 

less than 6 months after RTX. Despite their failure to RTX 

treatment, response to 131I-TST was excellent with an OR 

of 65% and CR of 38%. Responders had a median PFS of 

24.5 months with some patients remaining in remission at 

3.4, 3.7, and 4.0 years at the time of the report. Curiously, 

previous response to RTX had no impact on either response 

or duration of response with 131I-TST. We have previously 

noted that the clinical efficacy of unlabeled TST is inferior 

to 131I-TST. Also mentioned earlier was the difference in 

mechanism of action in vitro between RTX and TST, with 

TST unable to activate complement and instead having a 

greater ability to activate apoptotic pathways through CD20 

binding. Therefore, one should not be surprised that 131I-TST 

therapy is effective in disease refractory to RTX.31

A summary of the responses of 131I-TST in relapsed, 

refractory, or transformed low-grade B-cell NHL is given 

in Table 2. An integrated analysis of these trials containing 

250 patients has examined factors predictive of long-term 

duration of response. For all 250 patients, 5-year PFS was 

17% after a median follow-up of 5.3 years. A durable 

response was defined as a TTP greater than one year. 

Eighty-one patients achieved a durable response with a 

MDR of 45.8 months, and 44% of durable responders were 

still in remission at 2.5 to 9.5 years. In complete responders, 

the MDR was not reached. Multivariate analyses found 

the following factors to predict for failure to achieve CR: 

absence of response to last chemotherapy, elevated lactate 

dehydrogenase (LDH), and bulky disease greater than 5 cm. 

Factors predictive of a shorter duration of response included 

elevated LDH, age greater than 65 years, and no response to 

last chemotherapy. However, the durable response population 

did include patients with these poor prognostic factors.32

One might consider the effectiveness of 131I-TST after pre-

vious treatment with 131I-TST. Kaminski has reported retreat-

ment of thirty-two patients with 131I-TST. The initial OR, CR, 

and MDR were 94%, 56%, and 13.6 months, respectively. 

After a median of 21 months, patients were given an additional 

dose of 131I-TST. Dosing was the standard 75 cGy total body 

with a dose reduction to 65 cGy for platelet counts between 

100,000/mL and 150,000/mL. Patients who had grade IV 

hematologic toxicity during their previous treatment had dose 

reduction by an additional 10 cGy. After the second treat-

ment, OR, CR and MDR were 56%, 25%, and 15.2 months, 

respectively. Although response rates were poorer on second 

treatment, some patients still responded and even had long-

term control. Hematologic toxicity was similar to initial 

treatment. Five patients, who had been treated with between 

2 and 8 chemotherapy regimens, developed MDS/AML.33

Although patients receiving 131I-TST in relapsed or refrac-

tory disease have a poor prognosis, 131I-TST does not preclude 

the use of subsequent therapy. As 131I-TST therapy becomes 

integrated earlier into the treatment paradigm for indolent 

NHL, conventional salvage regimens once given prior to 
131I-TST may instead be given later. If 131I-TST achieves 

improved responses compared to conventional regimens 

but precludes additional therapy because of bone marrow 

suppression, overall survival after 131I-TST may remain 

unchanged or even become worse. In one review of patients 

treated on six trials, relapses occurred in 68 of 155 patients 

treated with 131I-TST. Blood counts before and after 131I-TST 

were similar with the exception of platelets which had 

decreased from a median of 193,000/mL to 130,000/mL. 
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After 131I-TST, 65% of patients went on to receive additional 

chemotherapy including regimens of anthracyclines, 

platinum, fludarabine, and SCT. Of the 35% who did not 

receive additional chemotherapy for a variety of reasons, 88% 

had hematologic parameters permitting additional therapy. 

Thus, the majority of patients who receive 131I-TST can still 

receive additional therapy after relapse.34

Dose escalation with autologous 
stem cell transplant
After failing multiple chemotherapy regimens, a common 

alternative for treatment of low-grade NHL is high dose 

systemic therapy followed by ASCT. The goal of therapy is 

to eradicate all malignant cells while preserving the patient’s 

own ability to regenerate blood cells through the reinfusion 

of one’s own procured stem cells once the cytotoxic period 

has passed. In a carefully monitored environment accus-

tomed to the perils of ASCT, patients can achieve responses 

unattainable by conventional dosing.

One of the earliest reports of the use of 131I-TST was 

with autologus bone marrow support at the University of 

Washington/Fred Hutchinson Cancer Research Center 

(UW/FHCRC). Twenty-four patients with B-cell NHL 

were treated on a dose escalation study with 131I conjugated 

to either TST, another anti-CD20 antibody called 1F5, or 

an anti-CD37 antibody named MB-1. Dosing was patient 

specific, with dose limits based on critical normal organs 

rather than the total body equivalent dose. In comparison to 

total body external beam irradiation (TBI) where all body 

structures receive a similar radiation dose, this strategy 

allowed a ten-fold increase of tumor to total body dose 

and 2- to 3-fold increase of tumor to critical organ dose.35 

A follow-up phase II study investigating only high dose 
131I-TST in 25 patients with B-cell NHL confirmed that 

27 Gy was the maximally tolerated dose (MTD) that could 

be delivered to either the lung or kidneys. Splenomegaly 

and tumor burden greater than 500 mL predicted for an 

unfavorable biodistribution precluding the administration 

of the therapeutic dose. Activity of 131I ranged from 345 to 

785 mCi which gave estimated tumor doses of 27 to 92 Gy. 

In comparison, a total body dose of 75 cGy from 131I-TST 

corresponds to an average tumor dose of 10 Gy.25 Two 

patients died prior to neutrophil counts reaching 500/µL, 

one of lymphoma and one of sepsis.36 With a median 

follow-up of 42 months, 29 patients treated at UW/FHCRC 

with high dose 131I-TST yielded impressive results: OR 

of 86%, CR of 79%, 4-year OS of 68%, and 4-year PFS 

of 42%. Long-term toxicity included 63% incidence of 

Table 2 Summary of major published trials of 131i-Tositumomab for relapsed, refractory, or transformed low-grade B-cell non-Hodgkin’s 
lymphoma (NHL)

Study design N OR (%) CR 
(%)

PFS (TTP) [MDR] 
(months)

Phase i/ii single center trial; prior 
stem cell transplant allowed; includes 
17 patients with de novo intermediate/
high-grade NHL; no prior rTX25

59 71 34 12 for all responders

Phase ii multicenter nonrandomized 
trial; at least one prior anthracycline or 
anthracenedione based chemotherapy 
regimen with disease progression within 
1 year; no prior rTX19

47 57 32 5.3 [9.9]

Phase iii multicenter nonrandomized 
trial; at least two prior chemotherapy 
regimens with either no response or 
relapse within 6 months of completing 
their last regimen; no prior rTX26

60 65 20 8.4 for all responders [6.5]

Phase ii open label single arm trial; 
only 1 or 2 previous chemotherapy 
regimens; no prior rTX20

41 76 49 0.8 years [1.3 years]

Multicenter randomized trial comparing 
131i-TST to unlabeled TST; no prior rTX13

78 55 33 (6.3) [not reached]

Mutlicenter phase ii trial; failure after 
prior rTX31

40 65 38 10.4 [24.5]

Abbreviations: Or, overall response; Cr, complete response; PFS, progression-free survival;  TTP, median time to progression for all patients in study; MDr, median duration 
of response in responders; rTX, rituximab; 131i-TST, 131i tositumomab.
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elevated TSH, seroconversion of HAMA in 35%, and 

no cases of MDS/AML. No patients were transfusion 

dependent at year 1.37

Building on this prior experience, the UW/FHCRC 

performed another phase I/II trial to evaluate the potential 

gain of substituting 131I-TST for TBI in their ASCT program. 

Fifty-two patients were treated with 131I-TST followed by 

etoposide (60 mg/kg) and cyclophosphamide (100 mg/kg). 

Stem cells were not replenished until forty-eight hours after 

infusion of etoposide and cyclophosphamide at which time 

total-body radioactivity levels were below 0.02 mSv/h at 

1 m. Critical organ dosimetry for each individual patient 

determined the activity of 131I to be infused; the MTD 

was 25 Gy to the lungs or kidneys. At two years, PFS 

and OS were estimated to be 83% and 68%, respectively. 

Four treatment-related fatalities occurred. Major long-term 

complications included hypothyroidism in 56%, 1 case of 

MDS, and 4 patients who developed pneumonitis at 2 to 

8 months that subsequently responded to outpatient cortico-

steroids. When compared to a group of 105 patients treated 

at UW/FHCRC during the 1990s with an ASCT after eto-

poside, cyclophosphamide, and TBI, patients treated with 

the 131I-TST regimen had significantly improved 2-year OS 

and PFS. On multivariate analysis designed to compensate 

for confounding factors, the hazard ratios for OS and PFS 

for the 131I-TST regimen compared to the TBI regimen were 

both 0.3 (P = 0.004, P = 0.002).38

A multivariate analysis performed at UW/FHCRC 

compared ASCT regimens of high dose radioimmunotherapy 

(HD-RIT) to conventional high dose therapy (C-HDT), includ-

ing chemotherapy or chemotherapy and TBI, in relapsed FL. 

The 27 patients treated HD-RIT had worse international 

prognostic scores, yet outcomes were improved compared 

to the 125 patients treated with C-HDT. The estimated 

5-year OS and 5-year PFS for HD-RIT were 67% and 48%, 

respectively, and for C-HDT were 53% and 29%, respectively. 

One hundred-day treatment-related mortality was higher for 

C-HDT at 11% than for HD-RIT at 3.7%. The long-term 

risks of MDS/AML were equivalent between the two groups. 

HD-RIT provided both safer and more effective therapy than 

C-HDT in this nonrandomized retrospective review.39

Mantle cell lymphoma is an aggressive form of NHL. 

Applying the previous protocol of 131I-TST followed by eto-

poside and cyclophosphamide to 16 patients with relapsed 

mantle cell NHL, excellent results were obtained at the 

UW/FHCRC. Toxicity was comparable to the previous 

study. With a median follow-up of 19 months, estimated 

3-year OS and PFS were 93% and 61%, respectively. 

Three patients were alive without disease progression at 

4 years. Again, these results compare favorably to historical 

controls.40

Finally, researchers at the UW/FHCRC have used high 

dose 131I-TST in 24 patients older than 60 years old with 

relapsed or refractory B-cell NHL. The MTD was determined 

to be 27 Gy to critical organs. Results were excellent: OR 

67%, CR/CRu 54%, 3-year OS of 59%, and 3-year PFS of 

51%. Two patients developed MDS/AML, 10 patients devel-

oped hypothyroidism, and 2 patients developed grade III 

pneumonitis at 3 and 12 months after ASCT that responded 

to outpatient corticosteroids. Most importantly, there were 

no treatment-related deaths compared to the 5% to 10% 

expected from conventional chemotherapy ASCT regimens 

in this age group.41

Not all investigators have attempted ultra-high dose 
131I-TST as the primary preparation for ASCT regimens 

utilizing RIT. The University of Nebraska added standard-

dose 131I-TST to their BEAM (carmustine, etoposide, 

cytarabine, melphalan) regimen for relapsed NHL. The 

23 patients on this phase I protocol had aggressive 

chemotherapy resistant NHL: grade III follicular lymphoma, 

DLBCL, or mantle cell lymphoma. 131I-TST was given on 

day −12, BEAM given on days −6 to −1, and stem cells were 

infused on day 0. The MTD of 131I-TST was found to be 

75 cGy. Toxicity was similar to patients previously treated 

with BEAM, and no patients died within the first 100 days 

of transplant. Response was excellent: 57% CR/CRu and 

65% OR. The 3-year event-free survival was 39% and 

3-year OS was 55%. In a similar group of patients treated 

with previous regimens, expected 3-year survival rates are 

10% to 20%. These impressive results have encouraged the 

authors to begin a phase II study at their institution.42

Results of ASCT protocols for patients with B-cell 

NHL treated with 131I-TST are listed in Table 3. An ongo-

ing phase III study by the National Heart, Lung, and Blood 

Institute compares two ASCT conditioning regimens in 

relapsed diffuse large B-cell NHL (DLBCL): rituximab 

plus BEAM chemotherapy versus 131I-TST followed by 

BEAM chemotherapy. The primary end-point in this study 

is PFS. Results of this study should help determine the role 

of 131I-TST in ASCT for relapsed DLBCL.

Treatment after autologous stem 
cell transplant
Patients who receive ASCT typically have high burdens 

of refractory disease. After ASCT, their bone marrow 

reserve becomes depressed and restricts the use of further 
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cytotoxic therapy. The initial studies in relapsed, refractory, 

or transformed NHL largely excluded patients with prior 

SCT with exception of the Michigan phase I/II study that 

included 14 patients.25 The 131I-TST for patients with previous 

ASCT was found to be 45 cGy total body equivalent dose. 

Response rate for these 14 patients was 50% with a median 

PFS of 4.7 years. For patients who have received prior ASCT, 

dose-reduced 131I-TST is a viable option with a chance for 

response and even long-term control.

131I-TST in the frontline 
management of B-cell NHL
Because RIT requires the cooperation from the immune 

system and 131I-TST used earlier in the course of a patient’s 

disease provides better outcomes, one wonders about the 

efficacy of 131I-TST in a patient untainted by previous 

chemotherapy or immunotherapy. A phase II trial at the 

University of Michigan treated 76 patients with stage III 

or IV grade I to II follicular lymphoma (FL) with 131I-TST 

as initial management.27,30 Response was excellent: 75% 

CR, 95% OR, and median PFS of 6.1 years. With a median 

follow-up of 7.93 years, 8-year PFS was 50%, 8 and 

10-year OS were 86%, and median PFS for complete 

responders was 9.2 years. Hematologic toxicity was less 

than that in relapsed disease: no patients developed grade IV 

thrombocytopenia, 17% developed grade III thrombo-

cytopenia, and 34% developed grade III/IV neutropenia. 

No patients developed MDS/AML. HAMA developed in 

63% of patients. While HAMA seroconversion did not 

predict for PFS, the 23 patients with HAMA greater than 

five times the lowest level of detection had a significantly 

worse 5-year PFS of 35% compared to the other patients at 

70% (P = 0.003). Both bone marrow involvement and bulky 

disease greater than 5 cm were negative predictors of CR, 

while only bone marrow involvement negatively predicted 

for PFS. Fifty-six percent of patients had a diagnosis of 

follicular lymphoma for over 1 year prior to enrollment; 

critics would argue that these patients had indolent disease 

and would have responded favorably to any therapy. 

Nevertheless, responses in this trial were excellent and 

deserve further consideration.

An alternative to monotherapy with 131I-TST in the upfront 

management of FL is the use of conventional chemotherapy 

followed by consolidation 131I-TST. Ninety patients with 

bulky stage II or stage III-IV FL were enrolled on SWOG 

S9911 which was a single-arm phase II study of 6 cycles of 

CHOP (cyclophosphamide, hydroxydaunomycin, oncovin, 

and prednisone) followed by consolidation 131I-TST.43 After 

CHOP × 6, 39% of patients achieved radiologic CR. After 
131I-TST, CR improved to 69% and the OR was 91%. At a 

median follow-up of 5 years, 5-year OS was 87% and 5-year 

PFS was 67%. Compared to historical controls of patients 

treated with CHOP on 2 prior SWOG trials, patients treated 

with consolidation 131I-TST had an absolute improvement of 

23% in both OS and PFS (Figures 2 and 3). The incremental 

benefit of 131I-TST over RTX will be determined by Intergroup 

Study S0016 that has randomized 500 patients with bulky 

stage II-IV FL between CHOP-R × 6 and CHOP × 6 followed 

Table 3 results of autologous stem cell transplant protocols involving 131i tositumomab in non-Hodgkin’s lymphoma

Center N Histology Chemo 131I-TST OR CR Outcome

washington37 29 66% LG,  
34% iG

None 27 Gy to lung or kidney 86% 79% 4-year PFS 42%

washington38 52 65% FL  
G1-2, 8%  
FL G3  
12% MC,  
16% DLBCL

Ce 25 Gy to lung or kidney 87%a 77%a 2-year PFS 68%

washington40 16 MC Ce 25 Gy to lung or kidney 82%b 73%b 3-year PFS 61%

Nebraska42 23 61% DLBCL,  
17% FL G3,  
22% MC

BeAM 75 cGy total body 65% 57% 3-year eFS 39%

washington41 24 38% DLBCL,  
33% MC,  
25% FL,  
4% MZ

None 25–27 Gy to lung or kidney 67% 54% 3-year PFS 51%

aexcludes 18 patients with no measurable disease after the mobilization regimen; bexcludes 5 patients with no measurable disease after the mobilization regimen.
Abbreviations: 131i-TST, 131i tositumomab; Or, overall response; Cr, complete response; LG, low grade; iG, intermediate grade; PFS, progression-free survival; FL, follicular 
lymphoma; G, grade; MC, mantle cell lymphoma; DLBCL, diffuse large B cell lymphoma; Ce, cyclophosphamide and etoposide; BeAM, carmustine, etoposide, cytarabine, melphalan; 
eFS, event-free survival; MZ, marginal zone lymphoma.
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by consolidation 131I-TST. Enrollment has completed and we 

eagerly await results.

An open-label phase II single center study of 35 patients 

with newly diagnosed stage III to IV small lymphocytic, 

follicular, or monocytoid B-cell NHL involved treatment 

with 3 cycles of fludarabine followed by consolidation 
131I-TST. After fludarabine, OR was 89% and CR was 9%. After 
131I-TST, OR was 100% and CR was 86%. With a median 

follow-up of 58 months, estimated 5-year PFS was 56% and 

median PFS was not reached but will be at least 4 years. 

Two interesting caveats to this study included bone mar-

row involvement as well as HAMA reactivity. The authors 

thought that bone marrow tumor debulking could decrease 

the hematologic toxicity of 131I-TST. Before fludarabine, 

26 patients had bone marrow involvement and 6 of these 

patients had greater than 25% bone marrow involvement. 

After fludarabine, 7 of 18 assessed patients continued to 

have bone marrow involvement. Five of the 6 patients with 

greater than 25% bone marrow involvement had disease 

regress to less than 25% involvement, allowing them to 

receive full standard dose 131I-TST. The sixth patient received 

dose-reduced 131I-TST at 45 cGy total body. After 131I-TST, 

only 2 patients continued to have bone marrow involvement. 

While patients still had bone marrow suppression from 
131I-TST, fludarabine did remove the exclusion criteria of 

25% bone marrow involvement in 5 out of 6 patients. Finally, 

the authors postulated that pretreatment with fludarabine 

could potentially improve outcomes through immunosup-

pressing the production of HAMA. HAMA are known to 

be associated with an unpleasant flu-like syndrome and 

potentially interfere with the therapeutic activity of 131I-TST. 

In this study, the rate of HAMA formation was 6% which is 

lower than the 10% conversion in relapsed disease and 63% 

conversion in initial monotherapy.44

Finally, a phase II, open-label multicenter study has been 

reported in abstract form. In this trial, 30 patients with newly 

diagnosed bulky stage II or stage III/IV FL were treated 

with 6 cycles of CVP (cyclophosphamide, vincristine, and 

prednisone) followed by consolidation 131I-TST. All patients 

initially responded to CVP × 6, with 50% achieving CR. After 
131I-TST consolidation, an additional 9 patients converted from 

PR to CR giving a final CR of 80%. At a median follow-up of 

2.3 years, median PFS was not reached and 77% of patients 

remained in remission. Grade IV neutropenia and thrombocy-

topenia occurred in 33% and 23% of patients, respectively. One 

patient developed AML, and no patients developed HAMA.45
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Figure 2 Comparison of progression-free survival (PFS) of 90 patients with bulky stage ii to stage iv follicular non-Hodgkin’s lymphoma treated with 6 cycles of cyclophosphamide, 
doxorubicin, vincristine, and prednisone (CHOP) chemotherapy followed by tositumomab i-131 (radioimmunotherapy [riT]) with the PFS of 356 similar patients treated on 
previous Southwest Oncology Group studies of CHOP without anti-CD20 antibodies (historical CHOP). Five-year estimates of PFS for each regimen are shown. reprinted 
with permission from Press Ow, Unger JM, Braziel rM, et al. Phase ii Trial of CHOP chemotherapy followed by tositumomab/iodine-131 tositumomab for previously untreated 
follicular non-Hodgkin’s lymphoma: five-year follow-up of Southwest Oncology Group Protocol SW9911. J Clin Oncol. 2006;24(25):4143–4149.43 Copyright © 2006 American 
Society of Clinical Oncology.
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A summary of the phase II studies investigating the upfront 

management of FL with 131I-TST, either as monotherapy or 

consolidation therapy after conventional chemotherapy, is 

summarized in Table 4. None of the studies listed in Table 4 

have incorporated RTX into the induction regimen. RTX 

therapy is now considered standard of care in the frontline 

management of most types of B-cell CD20+ lymphoma. Induc-

tion therapy with RTX-containing cytotoxic chemotherapy 

regimens followed by consolidation therapy with RIT may 

yield superior results. Theoretically, treatment with RTX prior 

to RIT may reduce the incremental benefit of 131I-TST because 

of similarities in mechanism of action discussed previously. 

Furthermore, residual RTX remains in patients’ serum for 

three to six months after treatment and could potentially 

block CD20 binding sites.46 Preclinical studies using human 

lymphoma cell lines, patient-derived specimens, and mouse 

xenograft models have shown that prior RTX therapy reduces 

CD20 binding, tumor-specific localization, and tumor control 

for 131I-TST.46 Despite this preclinical data, 131I-TST has been 

shown to be clinically effective in RTX-refractory relapsed 

low grade B-cell NHL as discussed previously.31 Future clini-

cal studies should help determine whether inclusion of RTX in 

induction chemotherapy regimens abrogates the incremental 

therapeutic gain of consolidation 131I-TST found in the studies 

listed in Table 4.

Diffuse large B-cell lymphoma
The Michigan phase I/II study included 17 patients with de 

novo intermediate/high grade NHL. No patients achieved 

CR and 41% achieved PR suggesting that 131I-TST may have 

some activity in higher grade NHL.25 Because the toxicity 

from 131I-TST is low and does not overlap temporally with 

conventional chemotherapy, 131I-TST could potentially 

improve outcomes as part of a multimodality combination 

regimen. Several of the ASCT protocols mentioned previ-

ously included patients with DLBCL and showed improved 

outcomes compared to historical controls (Table 3). SWOG 

protocol S0433 is a phase II study for DLBCL. Patients with 

bulky stage II to IV DLBCL will receive CHOP-R followed 

by 131I-TST. Longer follow-up and randomized trials should 

determine the role of consolidation RIT in DLBCL.

Future directions: measuring 
outcomes
The International Working Group (IWG) response criteria 

for malignant lymphoma were revised in 2007 to reflect 
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Figure 3 Comparison of the overall survival (OS) of 90 patients with stage ii to iv follicular non-Hodgkin’s lymphoma treated with 6 cycles of cyclophosphamide, doxorubicin, 
vincristine, and prednisone (CHOP) chemotherapy followed by tositumomab i-131 (radioimmunotherapy [riT]) on the current trial (S9911) with the OS of 356 similar 
patients treated on previous studies with CHOP without anti-CD20 antibodies (historical CHOP). Five-year estimates of OS for each regimen are shown. reprinted with 
permission from Press Ow, Unger JM, Braziel rM, et al. Phase ii Trial of CHOP chemotherapy followed by tositumomab/iodine-131 tositumomab for previously untreated 
follicular non-Hodgkin’s lymphoma: five-year follow-up of Southwest Oncology Group Protocol SW9911. J Clin Oncol. 2006;24(25):4143-4149.43 Copyright © 2006 American 
Society of Clinical Oncology.
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improvements in response analysis from the development 

of radiologic and pathologic technologies: positron emis-

sion tomography (PET), immunohistochemistry, and flow 

cytometry. PET eliminated the previous category of CRu.47 

None of the trials mentioned in this review utilized PET in 

response evaluation. The new IWG guidelines could poten-

tially alter the scoring of response rates as well as change 

treatment management. In 131I-TST, correlation of FDG PET 

with clinical responses suggests that declines in FDG uptake 

predicts for prolonged clinical remissions.48,49 Incorporation 

of PET imaging in future trials could help determine their 

utility.

Molecular response data obtained from the polymerase 

chain reaction (PCR) of bone marrow aspirates or peripheral 

blood was not included in the new IWG response criteria.47 

The classic cytogenetic translocation associated with 

follicular lymphoma is t(14:18) which involves juxtaposition 

of the BCL-2 gene next to the immunoglobin heavy chain 

locus.50 In low-grade NHL, several investigators have 

incorporated PCR for the BCL-2 gene rearrangement into 

clinical protocols. In the Michigan initial monotherapy study, 

bone marrow PCR analysis was available at baseline from 

73 patients, 39 of which were positive for the BCL2 gene 

rearrangement. Of the 20 patients with the rearrangement 

at baseline and were in CR at six months, 16 had converted 

to PCR negative and 13 of these patients remained in CR 

with a median follow up of over 5 years. In contrast, 3 of the 

4 patients who were in CR at 6 months but did not become 

PCR negative had relapsed.27 In SWOG S9911, bone marrow 

specimens were assessed for the BCL-2 rearrangement using 

PCR. Sixty-five of the 90 patients had detectable levels of the 

BCL-2 rearrangement at baseline. Of the patients with data 

available for analysis, 18% converted to PCR negative status 

after CHOP while an additional 63% converted to PCR nega-

tive status after 131I-TST. PCR remission was not correlated 

with clinical outcomes such as PFS or OS, although the power 

to detect a difference was low.43 In the study of fludarabine 

followed by 131I-TST, 13 patients had positive bone marrow 

PCR for the BCL-2 translocation. After 131I-TST, 10 of the 

13 patients had negative bone marrow PCR at 12 months 

and their 5-year PFS of 70% was significantly better than the 

3 patients who were not PCR negative at twelve months.44 

Just as radiologic and bone marrow cytology CR to 131I-TST 

predicts for prolonged remissions, these data on molecular 

responses also suggest that molecular CR may be a positive 

prognostic sign after treatment with 131I-TST. Incorporation 

of molecular response in future trials could help answer this 

question.

Unanswered questions  
and new opportunities
131I-TST clearly shows dramatic disease control activity 

against low grade B cell lymphoma. However, in an era where 

other biologically active targeted therapies such as RTX have 

been shown capable of almost single handedly increasing 

disease control rates for the same group by 5% to 10% when 

added to various conventional chemotherapy regimens,51 

one must ask whether the small but perhaps significant 

incremental risks posed by high dose radiopharmaceutical 

exposure are justified. Certainly, as long as RIT agents such 

as 131I-TST and 90Y-ibritumomab tiuxetan remain one set 

of effective options among many palliative therapies, their 

use will remain subject to individual beliefs and opinions 

shaped by mixtures of medicoscientific data, economic 

incentives and disincentives,52 and various training biases. 

Arguments that the palliative effectiveness of these agents 

far exceeds any other single agent with similar low toxicity 

levels are unlikely to be persuasive enough to change strongly 

reinforced beliefs.

Hochster recently reported on the impact of post-

chemotherapy maintenance therapy using 2 years of cyclic 

RTX therapy.53 They found that 3-year OS was increased 

significantly compared to observation, prompting observa-

tions by other commentators that perhaps serial approaches 

to lower the tumor load using various effectors strategies 

may be able to bring the level of clonogenically active tumor 

deposits down to a minimal level at which ablative therapy 

such as SCT or RIT could produce permanent control (true 

Table 4 Phase ii studies investigating the use of 131i tositumomab in the initial management of low grade B-cell NHL

Center Patients Regimen CR after chemo CR after 131I-TST 5-yr PFS

Michigan27 76 stage iii-iv 131i-TST N/A 75% 59%

iowa, Michigan, Cornell45 30 bulky stage ii-iv CvP × 6 + 131i-TST 50% 80%

Cornell44 35 stage iii-iv Fludarabine × 3 + 131i-TST 9% 86%

SwOG S991143 90 bulky stage ii-iv CHOP × 6 + 131i-TST 39% 69% 67% 

Abbreviations: Cr, complete response;  PFS, progression-free survival; 131i-TST, 131i tositumomab; CvP, cyclophosphamide, vincristine, prednisone; CHOP, cyclophosphamide, 
hydroxydaunomycin (doxorubicin or adriamycin), oncovin (vincristine), and prednisone.
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biological cure).54 While this hypothetical strategic path to 

cure is still a future target, it does not seem illusory based 

on the recent positive datasets. If 131I-TST finds itself a core 

part of a truly curative regimen for disseminated low grade 

lymphoma, then this may signal good news not only for 

patients with low grade follicular lymphoma but also those 

with more aggressive varieties of lymphoma in which the 

cellular circuitry might be similarly affected by judicious and 

creative application of the principles derived from the multi 

decade study of the therapeutic potential of well targeted 

immune-cell radiotherapy.55
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