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Statins induce cell apoptosis through a modulation

of AKT/FOXO1 pathway in prostate cancer cells
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Background: In recent years, statins have been frequently investigated in neoplasms.

However, the potential roles of statins on prostate cancer cells and the underlying mechan-

isms have not been fully elucidated. In current study, we explored the effect and molecular

mechanism of statins on cell proliferation and apoptosis in prostate cancer cells.

Methods: Prostate cancer cell were treated with gradient doses of simvastatin and fluvas-

tatin for 24–72 h. Cell proliferation was analyzed by using MTS assay and colony formation.

Cell apoptosis was measured by Hoechst staining, flow cytometry and caspase-3 activity.

Western blotting was used to evaluate the proteins levels.

Results: Both simvastatin and fluvastatin produced a dose- and time-dependent inhibition of

cell viability and colony formation while a promotion of cell apoptosis as evident with

increases in caspase-3 activity, cleaved-caspase-3, cleaved-caspase-8 and cleaved-PARP

levels in PC3 cells. Similar statin effects were observed in DU145 prostate cancer cells.

Furthermore, statins produced a time- and dose-dependent reduction of phosphorylated-AKT

and phosphorylated-FOXO1 levels in PC3 cells, and pretreatment of cells with an AKT

phosphorylation inhibitor, MK2206, potentiated statins’ effect.

Conclusion: Statins decrease cell proliferation and induce cell apoptosis, probably mediated

via a downregulation of AKT/FOXO1 phosphorylation in prostate cancer cells, which may

have a potential benefit in prostate cancer prevention and therapy.
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Introduction
Prostate cancer (PCa) remains to be the most commonly diagnosed noncutaneous

malignancy and the second leading cause of cancer-associated mortality among

men in Western countries.1 Based on the Cancer Statistics report, there will be

about 174,650 new cases and 31,620 deaths in 2019, which represent 20% of all

cancer cases and 10% of cancer-related deaths among American men,

respectively.2 The treatment of early stage PCa uniquely depends on androgens

for proliferation, and the blocking of androgen receptor pathway could greatly

produce tumor regression. However, the majority of PCa cells in later stages

always inevitably progress to androgen-independent, and no curative therapy is

existing for this intractable disease.3 With the advance and improvement of

prostate cancer screening approaches, most of the prostate cancer could be

diagnosed at an early stage, but it remains as a primary cause of cancer-related

death in men of industrialized countries. In particular, there is no curative treat-

ment available in current upon progression to androgen-independent metastatic

disease.4,5 Although advanced chemotherapy allows patient outcome greatly
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improved,4,6 effective mechanism-based therapeutic

methods that can obtain long-term improvements in

patient outcomes remains lacking.7

The 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-

CoA) reductase inhibitors, commonly known as statins, are

the most prescribed lipid-lowering drugs in clinic on account

of their demonstrated safety and efficacy in prevention and

treatment of hyperlipidemia and cardiovascular diseases.8,9

Beyond their potent inhibitory effects on cholesterol bio-

synthesis, statins appear to have pleiotropic effects in cancer.

Previous epidemiologic studies have consistently demon-

strated a beneficial role of statin use after diagnosis across

the continuum of prostate cancer.10,11,12,13,14 Ameta-analysis

reported that the use of statins was associated with a 22%

decreased risk of metastases (relative risk, 0.78; 95% CI,

0.68–0.87) and a 24% decreased risk of all-cause mortality

(relative risk, 0.76; 95% CI, 0.63–0.91) among patients with

prostate cancer.15 In a study of 11,772 men with nonmeta-

static prostate cancer, Yu et al supported the findings of the

meta-analysis and made an important observation that the

effect of postdiagnostic statin use on prostate cancer mortal-

ity was more pronounced among men who had been taking a

statin before diagnosis (HR, 0.55; 95% CI, 0.4–0.74) com-

pared with those who were only taking statins postdiagnosis

(HR, 0.76; 95% CI, 0.66–0.88).10 Other studies conducted in

men with advanced prostate cancer found that those who

were taking a statin at the time of the initiation of andro-

gen-deprivation therapy had a longer time to progression

compared with nonusers of statins.11,16 Taking together, all

of these studies have demonstrated that statin used after

diagnosis may decrease PCa risk and PCa progression. In

addition, statins have also been reported to modulate the cell

growth, apoptosis, and inflammation.17,18 However, the

molecular mechanisms of these statin effects in PCa cells

are not fully understood.

The AKT kinase is activated by hormones, growth fac-

tors, and chemical drugs, and it regulates the cell prolifera-

tion and survival.19–21 The forkhead transcription factor

family, FOXO (forkhead box, O class), are downstream

targets of AKT and include several subclasses, such as

FOXO1, FOXO3, FOXO4, and FOXO6. AKT kinases

could phosphorylate FOXO proteins and decrease their tran-

scriptional activity through promoting the process of their

redistribution to the cytoplasm.22 FOXO transcription factors

play a vital function in cell apoptosis and survival in variety

of cell types.23 The AKT/FOXO1 pathway plays an impor-

tant role in chemoresistance since it is related to cell prolif-

eration, migration, angiogenesis and apoptosis.24 In the

present study, we studied the anti-proliferative and pro-apop-

totic effects of statins and explored the potential molecular

pathway(s) involved in statin actions in prostate cancer cells.

Materials and methods
Chemicals
Simvastatin and fluvastatin were purchased from Sigma-

Aldrich (St. Louis, MO, USA). The compounds were dis-

solved in dimethylsulfoxide (DMSO) and stored at −20 °C

until use. The final concentration of DMSO in cell cultures

was less than 0.1% (v/v), which did not influence cell

growth. MK2206 was obtained from Selleck Chemicals

(Houston, TX, USA).

Cell culture and cell viability assay
The PC3 and DU145 human prostate cancer cell lines were

obtained from the American Type Culture Collection

(ATCC) (Rockefeller, Maryland, USA). The PC3 prostate

cancer cells were cultured in RPMI-1640 medium (BI,

Kibbutz Beit Haemek, Israel) supplemented with 10%

fetal bovine serum (FBS, BI), 2 mM glutamine (BI),

100 U/ml penicillin (BI) and 100 μg/ml streptomycin (BI)

at 37 °C in a 5% CO2 atmosphere. The MTS assay was

performed to detect viable cell numbers using a cell pro-

liferation assay Kit from Promega (Madison, WI, USA).

For the MTS assay, PC3 and DU145 cells were seeded in

96-well plates at 3×103 cells/wells (six wells per group),

cultured for 24 h in the growth media, and then treated with

different concentrations of statins (0, 0.02, 0.2, 1, 2, 5, 10

and 20 μM) for 24, 48 and 72 h. The absorbance(A) at

490 nm was detected using a microplate reader.

Cell colony formation assay
Briefly, 1×103 cells/well were initially seeded in a six-well

plate. 48 hrs later, the cells were treated with various

concentrations of statins as indicated in each experiment

and the treatment medium was refreshed every two days.

At day 7 of treatment, when the colonies were visible by

naked eyes, the cells were fixed with 4% paraformalde-

hyde (Sigma-Aldrich) for 30 min, stained with 1% crystal

violet for 20 min and then counted. The colony numbers

were quantified using Image J software. All experiments

were repeated three times.

Nuclear staining with Hoechst 33258
Cells were cultured and treated as described above.

Briefly, at the end of experiments, cells were fixed with
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4% paraformaldehyde (Sigma-Aldrich) for 15 min, stained

with 4 μg/ml Hoechst 33,342 (Beyotime Biotechnology,

Shanghai, China) for 20 min, and then analyzed under a

fluorescent microscope.

Caspase 3 activity assay
The detection of Caspase 3 activity was performed using a

Caspase 3 activity assay Kit from Beyotime Biotechnology

(Shanghai, China) according to the manufacturer’s instruc-

tion. The cells were plated at a density of 2×105 per well in

6-well plates, harvested at the end of statin treatment as

indicated in each experiment and lysed in a lysis buffer. The

lysis was centrifuged at 16,000× g for 15 min and the

supernatant was obtained. For caspase 3 assay, 100 μg of

protein lysis was incubated with 100 μl of reaction buffer

and 10 μl of colorimetric tetrapeptides and Z-DEVD-pNA

at 37 °C for 120 min, and the optical density at 405 nm for

liberated p-nitroaniline (pNA) was obtained using a multi-

well plate reader.

Cell apoptosis assay by annexin v staining
Annexin V-FITC staining was carried out using an

Annexin V-FITC Apoptosis Detection Kit from Beyotime

Biotechnology (Shanghai, China) according to the manu-

facturer’s instruction. Briefly, at the end of experiment, the

cells were harvested, washed once in cold PBS, and sus-

pended in 1× binding buffer. The cells were then stained

with PI and Annexin V-FITC solution for 15 min in the

dark, and analyzed by flow cytometry within 1 h (FC500,

Beckman Coulter, Istanbul, Turkey).

Western blot analysis
Western blot analysis was conducted as previously

described.25 Briefly, protein extracts from harvested

experimental cells were prepared using a lysis buffer

from Beyotime Biotechnology (Shanghai, China). Thirty

micrograms of protein extracts were loaded to a 12% SDS-

PAGE, electrophoretically separated and transferred to

polyvinylidene membranes (Beyotime Biotechnology,

Shanghai, China). After incubating the membrane with

5% non-fat milk blocking buffer at room temperature for

1 hr, the membrane was incubated with a primary antibody

overnight at 4 °C. After the incubation with a horseradish

peroxidase-conjugated secondary antibody (1:2500,

Promega, Madison, WI, USA) at room temperature for

1 hr, the signal was obtained by using an ECL Western

blotting system (Promega, Madison, WI, USA), visualized

and quantified using the Bio-Rad ChemiDoc MP system.

The primary antibodies against AKT (catalog # 4691p,

1:1000), phospho-AKT(Ser457) (catalog # 4060p,

1:2000), FOXO1 (catalog # 2880p, 1:1000) and phospho-

FOXO1 (Ser256) (catalog # 9461p, 1:1000) were obtained

from Cell Signaling Technology (Beverly, MA, USA).

Antibodies specifically against BAX, BCL-2, caspase-3,

caspase-8, poly (ADP-ribose) polymerases (PARP) were

obtained from Abcam (Abcam, London, UK). β-actin
(Sigma Chemical Co., St. Louis, MO, USA) was used as

the loading control.

Statistical analysis
Each experiment was performed at least three times, and

data were expressed as mean ± SEM. Statistical analyses

were performed using SPSS 23.0 software (SPSS, Inc,

Chicago, IL, USA). One-way ANOVA was applied to

determine the difference among multiple groups, and the

Student’s t-test was adopted to compare the statistical

significance between two groups. A p-value less than

0.05 was considered to be statistically significant.

Results
Simvastatin and fluvastatin greatly decrease

viable cells in PC3 cells
To assess the effects of statins on cell growth in human

prostate cancer PC3 cells, the MTS and colony formation

assay were performed. Treatment with either simvastatin or

fluvastatin in PC3 cells produced a concentration- and time-

dependent decrease in viable cells (Figure 1A, B) and colony

formation (Figure 1C-E). The viable cells were decreased

noticeably at 1 μM of simvastatin and reached a more than

80% reduction at 20 μMwhen treated for 72 hrs (Figure 1A).

Colony formation was decreased more than 95% at 10 μM
simvastatin treatment (Figure 1C, D). Similar effects were

obtained when cells were treated with fluvastatin (Figure 1B,

C and E). These results indicate that statins have an anti-

proliferative or pro-apoptotic effect in PC3 cells.

Simvastatin and fluvastatin induce cell

apoptosis in PCa cells
To determine whether the growth inhibitory effects of

simvastatin and fluvastatin are attributed to the induction

of apoptosis in PC3 cells, Hoechst 33258 staining and

caspase-3 activity assay were performed. As shown in

Figure 2A and B, treatment with statins, simvastatin and

fluvastatin, for 48 h produced a concentration-dependent

decrease in cell number and obvious morphological
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changes including chromatin condensation and apoptotic

body formation, characteristics of cell apoptosis. Similar

time- and dose-dependent inhibition of cell viability and

promotion of cell apoptosis were observed in DU145

(Figure 3A, B) and PC3 (Figure 3C, D) PCa cells treated

with simvastatin or atorvastatin, respectively, using MTS

assay and Hoechst staining.

To characterize further the statin-induced cell apoptosis

in PC3 cells, flow cytometric analysis with Annexin V-FITC

and PI double staining was carried out. Both simvastatin and

fluvastatin produced a significant induction of cell apoptosis

in PC3 cells in a dose-dependent fashion as shown in

Figure 2C-F. Furthermore, treatment with either simvastatin

or fluvastatin significantly induced casepase-3 activity

(Figure 2G-J) and the cleavage of caspase-3, caspase-8 and

PARP (Figure 4A-D) in a dose- and time-dependent manner

without significant alterations in BCL-2, BAX (Figure 4E, F)

and CHOP (Figure 4G, H) expression in PC3 cells. On the

other hand, treatment with simvastatin in PC3 cells produced

a marked induction of FAS-L protein expression at doses

ranging from 0.2 to 10 μM (Figure 4G, H). These data

collectively suggest that statins induced cell apoptosis may

involve in death receptor apoptotic pathway but not the ER-

stress or mitochondrial apoptotic pathway.
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Statins inhibit AKT and FOXO1

phosphorylation in PC3 cells
To investigate the molecular mechanism by which statins

affect cell apoptosis, we hypothesized that statin-induced

apoptosis in PC3 cells is associated to the AKT/FOXO1

pathway, a vital molecular pathway in cancer development

and progression, and investigated the change of molecules

related to the AKT/FOXO1 signaling pathway using

Western blot analysis. Treatment with statins in PC3 cells

significantly decreased the levels of phosphorylated AKT,

phosphorylated FOXO1 and the ratios of phosphorylated

to total proteins in a time- and dose-dependent manner as

shown in Figure 5. When cells were treated with 5 μM of

simvastatin or fluvastatin, both phosphorylated AKT and

FOXO1 were significantly decreased at 24 h (Figure 5A-

D). The levels of both phosphorylated AKT and FOXO1

were significantly decreased when cells were treated for

36 hrs at doses ranging from 2 μM to 10 μM of simvastatin

(Figure 5E, F) or fluvastatin (Figure 5G, H). Moreover, as

phosphorylation of FOXO1, a transcriptional factor down-

stream AKT pathway, leads to FOXO1 move out of

nucleus, we assessed both the nuclear and cytosolic levels

of FOXO1 upon statin treatment. As shown in Figure 6,

treatment with statins, either simvastatin or fluvastatin, in

PC3 cells resulted in a dose-dependent increase in nuclear

FOXO1 while a decrease in cytosolic FOXO1 level, sug-

gesting that a decrease in FOXO1 phosphorylation, pre-

sumably due to a reduction in AKT phosphorylation, leads

to a nuclear retention of FOXO1.

Inhibition of AKT/FOXO1

phosphorylation potentiates statin

actions
To provide further evidence that changes in phosphoryla-

tion of AKT and/or FOXO1 are associated with statin

actions, we studied the influence of a specific AKT phos-

phorylation inhibitor, MK2206, on statin actions.

Pretreatment of PC3 cells with MK2206 (0.2 μM) for
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60 min greatly inhibited AKT and FOXO1 phosphoryla-

tion (Figure 7A-C), potentiated statin inhibition of AKT

and FOXO1 phosphorylation (Figure 7A-C), and caspase 3

and PARP cleavage (Figure 7A, D, E). Moreover, like

statins, MK2206 significantly inhibited cell viability and

further enhanced statin inhibition of cell viability (Figure

7F). Taken together, this data supports the concept that the

effects of statins on cell proliferation and apoptosis in PCa

cells is mediated, at least in part, through an AKT/FOXO1

signaling pathway.

Discussion
In the present study, we have demonstrated that statins

produce a dose- and time-dependent induction of cell

apoptosis while an inhibition of cell growth in PCa cells.

These statin effects involve the modulation of AKT/

FOXO1 signaling pathway as evident by a decrease in

AKT and FOXO1 phosphorylation and phosphorylated to

total AKT and FOXO1 protein ratios. Furthermore, pre-

treatment with a specific AKT phosphorylation inhibitor

potentiated the statin effects on cell viability and cell

apoptosis. This data suggests that statins, in addition to

being used as anti-hyperlipidemia agents,8 may possess

beneficial actions in PCa prevention and treatment.

To determine the apoptotic pathway(s) involved in

statin-induced cell apoptosis, we have analyzed represen-

tative biomarkers of intrinsic, extrinsic and ER-related

apoptotic pathways, BAX and BCL-2,26,27 caspase-8 and

FAS-L,28 and CHOP,29 respectively. Statins significantly

increased FAS-L expression level and the cleavage of

caspase-8, caspase-3 and PARP without an alteration in

BAX, BCL-2 and CHOP (Figure 4), suggesting that the

extrinsic death receptor pathway is the major signal path-

way involved in statin-induced cell apoptosis in PCa cells,

which is in agreement with the previous demonstration.30

To further gain insight of statin actions on cell apopto-

sis, alterations in AKT/FOXO signaling pathway have

been explored. AKT/FOXO signaling pathway plays vital

roles in regulating various cellular functions, such as cell

growth, apoptosis and survival.31 As a downstream
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Figure 6 A dose-dependent stimulation of FOXO1 nuclear translocation by simvastatin and fluvastatin in PC3 cells. PC3 cells were treated with various doses of either

simvastatin (Sim) or fluvastatin (Flu) for 36 h, and the nuclear (N) and cytosolic (C) proteins were isolated and analyzed by Western blotting (A and C). Lamin-B and β-actin
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Figure 7 Potentiation of simvastatin (Sim) and fluvastatin (Flu) inhibition of AKTand FOXO1 phosphorylation and cell viability while promotion of cell apoptosis by the AKT

kinase inhibitor in PC3 cells. PC3 cells were treated with or without 5 μM simvastatin or fluvastatin for 36 h following a pretreatment with or without 0.2 μM MK2206 for

60 min. Total cellular proteins were prepared and immunoblotted for p-AKT(Ser-473), AKT, p-FOXO1 (Ser-256), FOXO1, cleaved-PARP, PARP, cleaved-caspase 3 and
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effector of AKT, FOXO1, which is phosphorylated by

AKT, may mediate the AKT actions on diverse cellular

functions.32,33 FOXO1, a member of the FOXO family,

composes of four genes, FOXO1, FOXO3, FOXO4 and

FOXO6.34 Phosphorylation of FOXO proteins by AKT

decreases the transcriptional activities of FOXO factors

apparently through the promotion of translocation of

FOXO factors from nucleus to cytosol, and contributes to

cell survival, growth and apoptosis.35,36 The FOXO sig-

naling is further transduced to regulating other gene

expression and protein functions.23,37 It has been reported

that FOXO factors can induce cell apoptosis through sti-

mulating the expression of death receptor ligands, such as

tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL) and FAS ligand, and promote cell cycle arrest

through the upregulation of the cell cycle inhibitor p27,kip1

which induces G1 arrest, or GADD45, which causes G2

arrest.38 Overexpression of FOXO1 in LNCaP PCa cells

has been revealed to induce cell apoptosis, presumably

mediated through the extrinsic apoptotic pathway.39

Dysregulation of FOXO factors have been reported in

several tumor types including prostate cancer,40 breast

cancer,41 glioblastoma,42 leukemia43 as well as

rhabdomyosarcoma.44 In the present study, we have

observed for the first time that treatment with statins in

PC3 cells significantly decreased AKT and FOXO1 phos-

phorylation and phosphorylated AKT and FOXO1 to total

AKT and FOXO1 protein ratio. Furthermore, inhibition of

AKT and FOXO1 phosphorylation using a specific AKT

inhibitor potentiated statins’ effects on cell apoptosis and

proliferation in PCa cells. This observation is in agreement

with a previous report that statins blunted AKT/FOXO

signaling in biceps femoris muscle45 and consistent with

the concept that the AKT/FOXO1 pathway plays a signif-

icant role in cell proliferation and apoptosis.21,23,46 Taken

together, these results strongly suggest that AKT/FOXO1

pathway is a potential molecular signal mediating statins-

induced cell apoptosis in PCa cells.

Conclusion
In summary, we have demonstrated in the present study

that statins promoted cell apoptosis while inhibited cell

growth in PCa cells in a dose- and time-dependent manner.

These statins effects may be mediated through the extrin-

sic death receptor pathway and probably involve in the

AKT/FOXO1 signaling. This data, together with clinical

observations that statins may decrease PCa risk and PCa

progression,10,15,47 strongly suggests that statins may be

potential agents for prostate cancer prevention and therapy,

and warrant further preclinical and clinical investigation.
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