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Objective: The aim of this work was to study the effects of paclitaxel-loaded nanobubbles

targeting pro-gastrin-releasing peptide, designated as paclitaxel targeting nanobubbles, on

small cell lung cancer (SCLC).

Methods: Paclitaxel targeting nanobubbles were prepared by Thin-film hydration method.

Subsequently, the prepared nanomaterials were tested for their in vitro effects on SCLC

H446 cells proliferation, apoptosis and motility using the CCK-8 assay, flow cytometry and

cell scratch test. Next, the potential molecular regulatory mechanisms of the prepared

nanomaterials on H446 cells were evaluated by RT-PCR, Western blot and immunohisto-

chemical detection. Finally, the in vivo effects of the constructed nanomaterials were

assessed on SCLC tumor using tumor-burdened nude mice models.

Results: Paclitaxel targeting nanobubbles significantly inhibited SCLC cell proliferation and

migration, and promoted cell apoptosis. Moreover, the expression levels of Bcl-2, survivin,

CDK2 and MMP-2 significantly decreased in SCLC cells treated with paclitaxel targeting

nanobubbles, whereas the expression of caspase-3 and Rb were increased. There was

a notable decrease in tumor size in vivo in SCLC nude mice models treated with paclitaxel

targeting nanobubbles.

Conclusion: Paclitaxel targeting nanobubbles effectively inhibited the proliferation, migra-

tion and invasion of SCLC cells and induced SCLC cells apoptosis. Hence, these nanobub-

bles show potential in SCLC-targeted drug treatment application.
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Introduction
Small cell lung cancer (SCLC) is a recalcitrant malignancy, which constitutes

approximately 14% of all lung cancers.1,2 Unlike non-small cell lung cancer

(NSCLC), SCLC possesses the propensity for early metastases, and exquisite

sensitivity to initial systemic cytotoxic chemotherapy.3 Despite the high initial

response to therapy, the 5-year survival rate is still below 7%. Notably, most

SCLC patients eventually survive for only 1 year or less after diagnosis.1,3,4

Systemic chemotherapy, as a bedrock treatment for SCLC, has reached

a therapeutic efficacy plateau.3 Advances in molecular profiling and development

of targeted therapies witnessed with NSCLC in the last decade remain to be

successfully replicated in SCLC. Hence, there is an urgent need for more effective

SCLC treatment. In this vein, cancer-targeting drug therapy has become an exciting

research field toward the treatment of SCLC.2,3 Pro-gastrin-releasing peptide
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(ProGRP), a stable precursor for gastrin-releasing peptide,

is the most common, effective and specific biomarker for

the diagnosis and treatment of SCLC.5,6 For this reason,

targeting ProGRP with the aim of inhibiting the growth of

SCLC is a potential therapeutic intervention strategy.7

Paclitaxel, the prototype of the taxane class of chemo-

therapeutics, can suppress microtubule spindle dynamics

and block metaphase–anaphase transitions, inhibit tumor

cell mitosis, suppress cell proliferation and induce

apoptosis.8 Consequently, paclitaxel is widely used as

a first-line treatment for various cancers, such as breast

cancer, prostate cancer and NSCLC.8,9 Due to poor aqu-

eous solubility, paclitaxel is frequently solubilized in poly-

oxyethylated castor oil for clinical application. However,

this formulation can easily cause systemic side effects and

produce allergic reactions.10 Thus, novel paclitaxel formu-

lations have been developed, especially nano-drug deliv-

ery systems. Targeted nanoparticles drug delivery system

has been widely applied to various cancer therapeutic

approaches.11,12 Indeed, some nano-drugs have entered

clinical trials phases while similar advances in SCLC

targeted nano-drug delivery system are few.

Therefore, we used the Thin-film hydration method to

construct a new nano-drug delivery system, paclitaxel-

loaded nanobubbles targeting ProGRP, designated as pacli-

taxel targeting nanobubbles. We then explored the effects

and molecular mechanism of the constructed paclitaxel

targeting nanobubbles on SCLC in vitro and in vivo.

Materials and methods
The preparation of paclitaxel targeting

nanobubbles
Dipalmitoyl phosphatidylcholine (DPPC, 18 mg), diphenyl-

phosphoryl azide (DPPA, 1 mg), 1,2-distearoylsn-glycero

-3-phosphoethanolamine (DSPE, 1 mg) and paclitaxel

(1 mg) were completely dissolved in 4 mL chloroform.

Solvents were evaporated from the mixture in the fume hood

to form a phospholipid film, followed by hydration in glycerol

and PBS mixture (volume ratio, 1:9) in a shaking incubator at

room temperature for 1 hr to form paclitaxel-loaded lipo-

somes. The liposomal suspension was collected and trans-

ferred to a 50 mL centrifuge tube for further analysis. The

liposome concentration was determined using a phosphorus

assay. Ten microgram of anti-Pro GRP monoclonal antibody

(anti-ProGRP monoclonal antibody) was prepared as pre-

viously described,4 diluted with 50 μL of PBS, and added to

10 μL EDTA (0.5 M). This solution was then incubated with

mercaptoethylamine (50 mg), EDTA (10 μL, 0.5 M) and PBS

(500 μL) at 37°C for 90 mins. To form single-chain anti-Pro

GRP antibody (scAb), themixture was centrifuged three times

(3,000 rpm, 8 mins, 4°C) with 500 μL of PBS containing

EDTA (10 μL, 0.5M). Thereafter, the scAb and liposomes

(500 μL, 5 µg/mL) were incubated at 4°C overnight, centri-

fuged with PBS to remove the free antibody, and re-suspended

in 0.5 mL of PBS. The samples were then slowly injected into

the solution of ventilation with 10 mL perfluorinated propane

gas (C3F8) using sterile syringe injection (Tianjin Physical and

Chemical Engineering Institute of Nuclear Industry), shaken

with capsule silver mercury device for 45 s (Tiancheng

Technology Co., LTD.), and left to stand gently. The upper

level bubble of this mixture was discarded to leave the residual

milky suspension containing paclitaxel targeting nanobubbles

(both paclitaxel and anti-ProGRP monoclonal antibody

loaded liposomal nanobubbles). The procedures are shown

in Figure 6. In addition, C3F8 injected paclitaxel liposome was

only paclitaxel-loaded nanobubbles, named as nanobubbles

carrying paclitaxel.

Paclitaxel quantitative determination
The concentration of paclitaxel was determined using HPLC

fitted with a reverse phase Agilent TC C18 column (150mm

×4.6 mm, 5 μm, Agilent Technologies, CA, USA) and a UV

detector capable of scanning a wavelength range of 200–600

nm. Mobile phase system comprising acetonitrile and water

(60:40 v/v) at a flow rate of 1 mL/min was employed for

elution. Paclitaxel was measured at a wavelength of 227 nm,

and its concentration calculated using the external standard

method. For this purpose, 1 mg of paclitaxel dissolved in

a volumetric flask using acetonitrile to obtain a stock stan-

dard solution. The stock solution was then diluted using

mobile phase to yield a series of calibration solutions ana-

lyzed by the HPLC system. A linear calibration curve was

obtained over the concentration range of 0.5–25 μg/mL of

paclitaxel with a regression coefficient of 0.998.

Encapsulation efficiency and loading

capacity of paclitaxel in nanobubbles
Paclitaxel targeting nanobubbles or nanobubbles carrying

paclitaxel were initially dissolved in 0.1 mL of acetonitrile

before 0.8 mL of phosphate buffer (pH 6.0) was added to the

solution. After shaking for 2 hrs, the resultant suspension was

added to an Amicon® Ultra-0.5 centrifugal filter device and

centrifuged at 10,000 rpm for 60 mins. The ultrafiltrate con-

taining free paclitaxel was subsequently collected and
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analyzed using the HPLC system to obtain the concentration

of free paclitaxel. Consequently, the encapsulation efficiency

was calculated using the following equation:

Encapsulation efficiency ¼½ðtotal amount of paclitaxel

�amount of free paclitaxelÞ=total amount of paclitaxel��100%

Paclitaxel loading capacity was evaluated using freeze-

dried nanobubbles. In brief, a predetermined amount of

freeze-dried paclitaxel targeting nanobubbles was diluted

in 5 mL of ethanol, followed by sonication and centrifuga-

tion. The supernatant that formed was removed and ana-

lyzed by HPLC. The loading capacity was then calculated

using the following equation:

Loading capacity ¼½ðtotal amount of paclitaxel� amount
of free paclitaxelÞ=weight of nanobubbles��100%

Paclitaxel release studies
In vitro, paclitaxel release studies were performed using

a multi-compartment rotating cell comprising donor and

receiver chambers, separated by a cellulose membrane

permeable to substances below (cutoff =12,000 Da). One

milliliter of paclitaxel targeting nanobubbles suspension

was introduced into the donor chamber whereas phosphate

buffer (1 mL, 0.05M, pH 7.4) and 0.1% SDS, a mixture that

could assure drug solubility, were added into the receiving

chamber. At fixed time intervals, the contents in the receiv-

ing chamber were withdrawn, and replaced with fresh buf-

fer mixture. The withdrawn samples were detected by

HPLC to obtain the concentration of paclitaxel.

Characterization and stability of paclitaxel

targeting nanobubbles
The morphology of paclitaxel targeting nanobubbles was

determined by transmission electron microscopy (TEM,

JEM-1011, Inc., Peabody, MA, USA). Samples for TEM

analysis were prepared by depositing a drop of diluted

paclitaxel targeting nanobubbles dispersion on the pro-

cessed microvesicle copper net, dying with 3% negative

phosphotungstic acid for 2 mins, and drying overnight.

Additionally, the physical stability of paclitaxel targeting

nanobubbles was measured for a period of 3 months by

monitoring the average diameters of nanobubbles using

a size and Zeta potential analyzer (90 plus/BI-MAS

Brookhaven). Each diameter measurement was taken five

times and the average calculated.

The effect of paclitaxel targeting

nanobubbles on the proliferation of SCLC
The effect of paclitaxel targeting nanobubbles on SCLC cell

proliferation was detected by CCK 8 assay. The H446 SCLC

cells (Cat no. TCHu196) were purchased from the Cell

Culture Bank of the Chinese Academy of Sciences

(Shanghai, People’s Republic of China) and cultured in

RPMI-1640 medium containing 10% FBS. The culture mix-

ture was maintained at 37°C and supplied with 5％ CO2.

After cell growth reached logarithmic phase, cells were

digested with pancreatic enzyme, beaten into a cell suspen-

sion liquid and re-suspended in medium containing 8% fetal

bovine serum. Next, cells were seeded in 96-well culture

plate at a density of 100–1,000 cells per well and then

incubated overnight. Subsequently, H446 cells were sepa-

rately exposed to four different materials (blank nanobub-

bles, paclitaxel, nanobubbles carrying paclitaxel or paclitaxel

targeting nanobubbles) at 0.01, 0.1, 1, 10 and 50 µM con-

centrations and then incubated for 24 hrs. Next, 10 μLCCK 8

reagent was added to the cells and incubated for another 2–4

hrs. The resulting formazan precipitates were dissolved in

DMSO and absorbance measured at 450 nm using

a microplate reader (Thermo Scientific Microplate Reader,

Thermo Fisher Scientific, Waltham, MA, USA).

The effects of paclitaxel targeting

nanobubbles on the apoptosis of SCLC
The H446 SCLC cells were incubated separately with blank

nanobubbles, paclitaxel, nanobubbles carrying paclitaxel or

paclitaxel targeting nanobubbles at a paclitaxel drug con-

centration of 10 µM for 24 hrs. Thereafter, the cells were

digested, centrifuged and suspended in 195 μL Annexin

V-PE binding buffer. Afterward, Annexin V-PE (5 μL) was
added to the cell suspensions and the mixture incubated in

the dark at room temperature (20–25°C) for 10 mins. After

this, the cells were digested, centrifuged and re-suspended in

200 µL of Annexin V-PE binding fluid and analyzed by flow

cytometry (FACSCalibur, BD, Franklin Lake, NJ, USA).

The effect of paclitaxel targeting

nanobubbles on the migration of SCLC
The cell scratch experiment was used to test the migration

ability of tumor cells. All instruments were sterilized

before operation. Cells were cultured in a 6-well plate at

a density of 5×104 cells/well for 24 hrs. When cells grew

into a single monolayer and reached more than 90% con-

fluence, the sterilized plastic pipette tip (100 μL) was used
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to draw a scratch in the monolayer cells. After washing

away cell debris, the cells were incubated in complete

medium separately containing blank nanobubbles, pacli-

taxel, nanobubbles carrying paclitaxel or paclitaxel target-

ing nanobubbles, for 36 hrs. Each media contained 10 µM

of paclitaxel. Cell growth was monitored by taking photo-

graphs under a microscope at 0, 12, 24 and 36 hrs.

Quantitative real-time PCR (qRT-PCR)

determination of the expression levels of

Bcl-2, cyclin-dependent kinase (CDK2),

survivin, matrix metalloproteinase-2

(MMP-2) and caspase-3 in SCLC cells
The H446 cells were treated separately with blank nanobub-

bles, paclitaxel, nanobubbles carrying paclitaxel or paclitaxel

targeting nanobubbles for 24 hrs. Each of the materials con-

tained 10 µM of paclitaxel. Total RNA was extracted using

Trizol reagent according to the manufacturer’s instructions.

For the isolated RNA, cDNA was prepared using a Reverse

Transcription Kit according to the manufacturer’s protocol.

Subsequent qRT-PCR analysis was carried out using the Fast

SYBR green master mix on the Fast Real-Time PCR system

(Applied Biosystems). The qRT-PCR reaction procedure was

as shown: 95°C for 5 mins, 40 cycles of 92°C for 30 s, 60°C

for 40 s, and 72°C for 1 min. Each experiment was repeated

independently three times. Comparative quantification of

these molecular levels was evaluated and normalized by the

2−ΔΔCt method relative to β-actin. Primers sequences were as

follows: BCL-2 forward: CGC ACC GGG CAT CTT CTC

CTC, and reverse: GGA GAA GTC GTC GCC GGC CT;

CDK2 forward: CCA GTA CTG CCA TCC GAG AG, and

reverse: GTG AGA GCA GAG GCA TCC ATG; survivin

forward: GGA CCA CCG CAT CTC TAC ATT C, and

reverse: GTT CTC AGT GGG GCA GTG GAT G; MMP-2

forward: CCC AAG TGG GAC AAG AAC CAG ATC, and

reverse: CAG CGG CCA AAG TTG ATC ATG; caspase-3

forward: GATGTCGATGCAGCAAACCTC, and reverse:

CAC CAT GGC TCA GAA GCA CAC.

Western blotting quantitation of the

expression levels of Rb, caspase-3,

survivin, CDK2 and Bcl-2 of SCLC cells
The H446 cells were treated separately with blank nano-

bubbles, paclitaxel, nanobubbles carrying paclitaxel and

paclitaxel targeting nanobubbles for 24 hrs. In each case,

10 µM of paclitaxel was used. Subsequently, cells were

harvested and suspended in lysis buffer on ice for 30 mins,

and centrifuged at 13,000×s g for 20 mins at 4°C. The

supernatant was collected and the concentration of protein

assessed by the bicinchoninic acid method. Equal amounts

of proteins were loaded in SDS-PAGE and transferred to

a PVDF membrane. Then, membranes were blocked in

TBST containing 5% skimmed milk powder (Tris

Buffered Saline Tween-20) for 1 hr, and incubated over-

night with antibodies against Rb, caspase-3, survivin,

CDK2, Bcl-2 and β-action. The membranes were then

washed in TBST buffer and thereafter incubated with the

corresponding horseradish peroxidase labeled second anti-

body for 1 hr at room temperature. After washing in TBST

buffer, the membranes were visualized using the ECL

detection system (Amersham Biosciences, Piscataway,

NJ, USA). Protein bands were scanned using a light den-

sity scanner (Beckman Company, USA). Each experiment

was performed in triplicates.

Construction of a tumor-burdened nude

mice model
The BALB/c-nu male nude mice (4–5 weeks, 22.7±6.04 g)

were obtained from Beijing Changyang Xishan Farm. This

work was approved by Shanxi Medical University’s Ethics

Committee (Licence number: SYXK (Jin) 2015–0001). The

experimental procedures were in compliance with the Care

and Use of Laboratory Animals from the National Institutes

of Health. The mice were raised in a temperature-controlled

room (25–27°C, 40–50% humidity) on a 12 hrs light/dark

cycle with free access to water and food. The H446 cells

were cultured using RPMI-1640 medium with 10% FBS at

37°C with 5% CO2 supply. The cells were collected during

the logarithmic growth period and were re-suspended in

PBS (pH=7.4) at a concentration of 1×107 cells/mL.

A cell suspension (200 μL) was subcutaneously injected

in the back of nude mice. Tumor development in the nude

mice was monitored every 3 days and on day 10 after

injection, the diameter of the tumors was about 1.0 cm,

confirming that a tumor-burdened nude mice model had

been successfully constructed.

Anti-tumor efficacy of paclitaxel targeting

nanobubbles
The tumor-burdened nude mice were randomly divided

into four groups each group comprising six mice. To

each of the group of mice either blank nanobubbles, pacli-

taxel, nanobubbles carrying paclitaxel, or paclitaxel
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targeting nanobubbles was administered at a dose of

1.32 mg/kg body weight by tail vein injection once

a week for 4 consecutive weeks. The feeding and activity

profiles of the mice were observed, and their weights

recorded twice a week. Twenty-four days after initial

administration of the respective drug materials, the tumors

were removed from the mice, and their volume measured

by a Vernier caliper. Additionally, the tumors were also

prepared for further immunohistochemical analysis.

Volume of tumors was calculated according to the

formula:

Tumor volume ¼ða�b2Þ=2:

Parameters a and b refer to the length and width of the

tumor, respectively.

Immunohistochemical analysis of the

expression of Bcl-2, CDK2, survivin,

caspase-3 and MMP-2 in SCLC tissues
The tumor tissues were successively treated using for-

maldehyde fixation, ethanol dehydration and paraffin

embedding. The tissues were sliced and the sections

dried overnight in the oven. Then, the paraffin wax

was removed using xylene, ethanol, water and PBS,

respectively. The tissue sections were then treated

using 3% H2O2 in the dark for 10 mins and subsequently

washed using distilled water and PBS three times con-

secutively. Antigens were retrieved using citrate buffer

(pH 6.0) at 100°C for 10 mins and were washed with

PBS three times. Each tissue section was incubated with

primary antibodies against Bcl 2, CDK 2, survivin, cas-

pase-3 and MMP-2 overnight at 4°C. Subsequently, each

section was washed in PBS and incubated further using

the secondary antibody at room temperature for 30 mins.

After washing with PBS, each section was placed in 500

μL of diaminobenzidine solution at room temperature for

6 mins and washed in distilled water. Finally, each sec-

tion was counterstained with hematoxylin, visualized and

analyzed by use of a CX31 microscope (Olympus

Corporation, Japan).

Statistical methods
The experimental data were obtained from at least three

experiments and values expressed as mean±standard

deviation. Statistical analysis was performed using the

SPSS18.0 statistical software and differences between

groups was evaluated using the Student’s t-test. A value

of p <0.05 was considered statistically significant.

Results
Physical properties of paclitaxel targeting

nanobubbles
The physical properties of synthesized paclitaxel targeting

nanobubbles were determined by HPLC, TEM and Zeta

potential. Based on the HPLC results, the encapsulation effi-

ciency and loading capacity of paclitaxel targeting nanobub-

bles were 70.72±5.38% and 3.29±0.17%, respectively. In

comparison, the encapsulation efficiency and loading capacity

of nanobubbles carrying paclitaxel were 68.98±4.56% and

2.91±0.13%, results which showed that paclitaxel could

encapsulate equally well in targeted and non-targeted

nanobubbles.

Regarding physical appearance, the paclitaxel targeting

nanobubbles were a creamy white suspension and corre-

sponding TEM images revealed their spherical shape and

uniform distribution (Figure 1A and B). Moreover, the

particle sizes (300–500 nm) in TEM were consistent with

the values detected by a particle size analyzer (452.1±46.6

nm). The particle size distribution of paclitaxel targeting

nanobubbles is listed in figure 1C. Additionally, these

particles had a polydispersity index of 0.164±0.043

(Figure 1C) and Zeta potential of −15.8±2.72 mV

(Figure 1D). In comparison, the parameters for nanobub-

bles carrying paclitaxel were: size (392±48.5 nm); poly-

dispersity index (0.188±0.061) and Zeta potential (−17.3
±3.35 mV).

The release profiles of paclitaxel targeting nanobub-

bles and nanobubbles carrying paclitaxel were detected

in vitro. The results revealed prolonged in vitro release

kinetics of paclitaxel from the two types of nanobubbles

with no initial burst effect in both formulations. About

80% of the entrapped paclitaxel was released from pacli-

taxel targeting nanobubbles within the first 6 hrs, while

70% of the drug was released from nanobubbles carrying

paclitaxel within the same period of time (Figure 1E,

p<0.01).

The effect of paclitaxel targeting

nanobubbles on the proliferation of SCLC

cells
Biological effects of paclitaxel targeting nanobubbles were

evaluated in SCLC cells using the CCK 8 assay. The H446

SCLC cells were first treated with four different materials
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(blank nanobubbles, paclitaxel, nanobubbles carrying

paclitaxel or paclitaxel targeting nanobubbles), respec-

tively. Each material was confected into different concen-

tration solution (0.01, 0.1, 1, 10 and 50 µM). After

administration for 24 hrs, the proliferation of H446 cells

was determined by CCK 8. Paclitaxel, nanobubbles carry-

ing paclitaxel and paclitaxel targeting nanobubbles could

inhibit the viability of H446 cells in a dose-dependent

manner (Figure 2A). Moreover, the greatest inhibitory

effects were displayed by the paclitaxel targeting nanobub-

bles group. Besides, 10 µM of the drug, a highly effective

and low toxicity dose, was used in the following experi-

ments. The results indicated that paclitaxel targeting nano-

bubbles could significantly inhibit the proliferation of

H446 cells.

Effects of paclitaxel targeting nanobubbles

on SCLC cells apoptosis
Apoptosis-inducing effects of paclitaxel targeting nano-

bubbles on H446 cells apoptosis were assessed quantita-

tively by flow cytometry. Compared to the other groups

(Figure 2B and C): blank nanobubbles (2.68±1.1%);
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paclitaxel (11.92±2.0%) and nanobubbles carrying pacli-

taxel (16.72±2.3%), marked apoptosis was observed with

paclitaxel targeting nanobubbles (28.28±4.2%, p<0.05).

Hence, paclitaxel targeting nanobubbles markedly induced

the apoptosis of H446 cells (p<0.05, Figure 2B and C).

Evaluation of effects on the migration of

SCLC cells
To explore the effects of paclitaxel targeting nanobubbles

on the motility of H446 cells, we used the cell scratch

experiment to measure cell migration. Accordingly, the

H446 cells were treated with blank nanobubbles, pacli-

taxel, nanobubbles carrying paclitaxel or paclitaxel target-

ing nanobubbles and images of cell migration recorded

every 12 hrs. A time-dependent decrease in the scratching

distance was observed in the four groups (Figure 3).

Moreover, the paclitaxel targeting nanobubbles displayed

the greatest inhibition of H446 cells migration. Therefore,

paclitaxel targeting nanobubbles could effectively inhibit

the migration of H446 cells.

Evaluating molecular mechanisms

mediating effects of paclitaxel targeting

nanobubbles on SCLC
To investigate the potential molecular mechanisms at play

in the observed effects of paclitaxel targeting nanobubbles

on SCLC, qRT-PCR and Western blot were used to deter-

mine the expression of Bcl-2, CDK2, survivin, MMP-2,

and caspase-3 in H446 cells. Besides, immunohistochem-

istry was applied to measure the expression of these mole-

cules in vivo. In qRT-PCR, as compared to the blank

nanobubbles control group, the expression levels of

BCL-2, CDK2 and survivin were downregulated in pacli-

taxel group, nanobubbles carrying paclitaxel group and

paclitaxel targeting nanobubbles group. In contrast, the

expression of caspase-3 was upregulated in these groups.

In each case, the changes produced by the paclitaxel

targeting nanobubbles were significantly different from

the others (p<0.01) (Figure 4A). On the other hand,

MMP-2 gene expression showed no significant difference

between the treatment groups and the control group con-

taining blank nanobubbles.

In Western blot, the expression levels of BCL-2, CDK2

and survivin proteins were considerably downregulated in

paclitaxel targeting nanobubbles group compared with the

blank nanobubbles group, whereas the expression levels of

Rb and caspase-3 proteins were evidently upregulated

(Figure 4B). The Western blot results were consistent

with those obtained using qRT-PCR.

To further investigate the potential mechanism of pacli-

taxel targeting nanobubbles on SCLC, the expression

levels of molecules in SCLC tumors obtained from the

tumor-burdened nude mice models were determined by

immunohistochemistry. The expression levels of BCL-2,

CDK2, survivin and MMP-2 proteins showed an obvious

decrease in paclitaxel targeting nanobubbles group when

compared with the blank nanobubbles group, while the

expression levels of caspase-3 proteins showed an obvious

increase (p<0.05) (Figure 4C and D).

BCL-2, caspase-3, survivin, Rb, CDK2 and MMP-2

have different roles on cell apoptosis, cycle progression,

proliferation and metastasis. Therefore, the results showed

that paclitaxel targeting nanobubbles significantly inhib-

ited the proliferation and migration of H446 cells and

induced the apoptosis of H446 cells through regulating

those biomolecules expression.

The anti-tumor efficacy of paclitaxel

targeting nanobubbles on SCLC mice
In vivo effects of paclitaxel targeting nanobubbles on SCLC

were assessed in tumor-burdened nude mice models. The

nude mice were randomly divided into four groups as

defined previously with six mice in each group. Changes

in the volumes of tumors were monitored every 3days. The

animal tumor volumes in the paclitaxel targeting nanobub-

bles group were significantly lower than that in the control

group (Figure 5A–C). After removing the tumor, the results

indicated that nude mouse tumor weight of paclitaxel tar-

geting nanobubbles group was significantly lower than the

control group (p=0.001, Figure 5D). Hence, paclitaxel tar-

geting nanobubbles could markedly inhibit the growth of

SCLC in vivo.

Discussion
This work indicated that paclitaxel targeting nanobubbles

could effectively inhibit the proliferation and migration of

SCLC cells, induce the apoptosis of SCLC cells and suppress

the growth of tumors in tumor-burdened nude mice, which

might be through regulating the expression of BCL-2, cas-

pase-3, survivin, Rb, CDK2 and MMP-2. Hence, paclitaxel

targeting nanobubbles had a good anti-tumor effect on

SCLC.

There is convincing evidence suggesting that patients

with SCLC treated using systemic chemotherapy still have
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low survival rates.1,3 Thus, highly efficient and safe thera-

peutic methods for SCLC are urgently needed. Targeted

therapy, in particular, the approach involving ProGRP, has

attracted considerable attention in the treatment of SCLC

because ProGRP is considered as the most effective diag-

nostic and therapeutic biomarker for SCLC.7,13,14 Paclitaxel

exerts very good anti-tumor effects on various cancers8,9 but

its clinical application is limited due to poor aqueous

solubility.10 Liposomes can encapsulate hydrophobic drugs

and enhance the bioavailability of drugs at the targeted site of

action and also lower their toxicity.15 In this study, we con-

structed a new nano-drug delivery system comprising both

paclitaxel and anti-ProGRP monoclonal antibody loaded

liposomal nanobubbles and investigated their potential use

in the treatment of SCLC. These ProGRP-targeting nanobub-

bles, designated as paclitaxel targeting nanobubbles, dis-

played good aqueous solubility, high drug-loading rates and

stability. Compared with blank nanobubbles, paclitaxel and
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nanobubbles carrying paclitaxel, paclitaxel targeting nano-

bubbles significantly inhibited the proliferation and migra-

tion of SCLC H446 cells, induced the apoptosis of H446

cells, and suppressed the growth of SCLC tumors. In view of

the results obtained in the study, targeting ProGRP could

enhance the inhibition of paclitaxel-loaded nanobubbles on

SCLC, making paclitaxel targeting nanobubbles as

a potential therapeutic approach for SCLC.

The emergence of targeted therapy has been

a significant breakthrough in cancer treatment, because

targeted therapy can interfere with specific molecules in

tumor area to inhibit the progression of various cancers,

thereby reducing injury to normal tissues.16 For example,

folate-targeting methods were applied to enhance the ther-

apeutic effect of photo-thermo-radiotherapy in mouth epi-

dermal carcinoma.17 In the current study, targeting ProGRP

could significantly promote the inhibition effects of pacli-

taxel-loaded nanobubbles on SCLC. Additionally, the

improved aqueous solubility of paclitaxel targeting nano-

bubbles suggests that using liposomal nanobubbles as

hydrophobic drug vehicles is a good option, although

there are many publications reporting other polymeric
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nanostructures as the effective drug carriers.18 For instance,

peptide 2 was able to inhibit SCLC growth but its potential

was limited due to low aqueous solubility.19 The solubility

challenge could be circumvented by embedding the drug in

a lipid bilayer and applying the targeted approach as

explored in this study using paclitaxel targeting nanobub-

bles. Biomolecules play important roles in regulating var-

ious events of cell biological processes. For example,

CDK2 is a serine/threonine protein kinase that regulates

G1/S phase transition and S phase progression, which is

essential for the control of cell cycle and proliferation.20,21

The overexpression of CDK2 could lead to the abnormal

regulation of the cell cycle, which is markedly related to the

hyper-proliferation of cancer cells, such as human lung

cancer cell.20,22,23 Research studies show that downregula-

tion in the expression of CDK2 could considerably inhibit

the proliferation of lung cancer cells.23,24 In the present

study, CDK2 expression in SCLC cells was downregulated

after the administration of paclitaxel targeting nanobubbles.

Retinoblastoma (Rb) gene is another biomolecule also

known as a tumor suppressor gene which, together with

the protein that it encodes for, has been identified as

a common cell cycle regulator.25,26 A loss of Rb function

can allow unregulated cell cycle progression and promote
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tumor growth, which is a frequent event in cancer including

SCLC.26–29 In this study, an upregulation in Rb expression

was evident in the administration of paclitaxel targeting

nanobubbles. MMP-2 is a zinc-dependent proteinase that

degrades components of extracellular matrixsubstrates.30

Thus, MMP-2 is critical for cell migration and invasion

during physiological and pathological processes.30,31

Overexpression of MMP-2 has been reported in lung

cancer,32 a finding consistent with observations from our

study. Following treatment using paclitaxel targeting nano-

bubbles, the expression levels of MMP-2 decreased.

Therefore, paclitaxel targeting nanobubbles could inhibit

the proliferation of SCLC H446 cells by regulating the

expression of CDK2 and Rb, and suppress the migration

of SCLC H446 cells via decreasing MMP-2 expression.

Apoptosis is a complex programmed cell death, which is

regulated by a series of molecules such as survivin, Bcl-2

and caspase-3.33,34 Defects in apoptosis can allow cells to

survive and thus cause cancer or autoimmune disorders.34

Survivin, an inhibitor of apoptosis protein, is highly

expressed in most human malignancies, and its expression

levels correlate with a poor clinical outcome.35,36 It is

reported that survivin is overexpressed in almost all

human cancers, such as lung cancer, breast cancer and

bladder cancer.36 Bcl-2, an anti-apoptosis protein, is trans-

located and overexpressed in tumors.37,38 On the other

hand, caspase-3, a pro-apoptosis protein, is a typical hall-

mark of apoptosis and plays an important role in cell

apoptotic chromatin condensation and DNA

fragmentation.39,40 Our study showed that paclitaxel target-

ing nanobubbles administered to SCLC H446 cells could

decrease the expression of survivin and Bcl-2 and enhance

caspase-3 expression, thereby promoting cell apoptosis.

In conclusion, paclitaxel targeting nanobubbles could

inhibit the growth of SCLC by regulating the expression of

several biomolecules. Thus, paclitaxel targeting nanobub-

bles may be a potential anti-cancer treatment strategy for

SCLC. Further preclinical studies, including the use of

diverse cell lines and clinical trials, will be required to

validate these findings.
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