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Background: Magnetic nanoparticles (MNPs) can be localized against hemodynamic forces

in blood vessels with the application of an external magnetic field. In addition, PEGylation of

nanoparticles may increase the half-life of nanocomposites in circulation. In this work, we

examined the effect of PEGylation on the magnetic capture of MNPs in vivo.

Methods: Laser speckle contrast imaging and capillaroscopy were used to assess the

magnetic capture of dextran-coated MNPs and red blood cell (RBC) flow in cremaster

microvessels of anesthetized rats. Magnetic capture of MNPs in serum flow was visualized

with an in vitro circulating system. The effect of PEGylation on MNP-endothelial cell

interaction was studied in cultured cells using an iron assay.

Results: In microcirculation through cremaster muscle, magnet-induced retention of 250 nm

MNPs was associated with a variable reduction in RBC flow, suggesting a dynamic coupling

of hemodynamic and magnetic forces. After magnet removal, faster restoration of flow was

observed in PEG(+) than PEG(–) group, which may be attributed to a reduced interaction

with vascular endothelium. However, PEGylation appears to be required for magnetic

capture of 50 nm MNPs in microvessels, which was associated with increased hydrodynamic

diameter to 130±6 nm in serum, but independent of the ς-potential.

Conclusion: These results suggest that PEGylation may enhance magnetic capture of

smaller MNPs and dispersion of larger MNPs after magnet removal, which may potentially

affect the targeting, pharmacokinetics and therapeutic efficacy.

Keywords: polyethylene glycol, magnetic nanoparticles, hemodynamics, microcirculation,

magnetic targeting

Background
Magnetic localization of nanoparticles with an iron oxide core is a promising approach

for target drug delivery.1–5 With the superparamagnetic characteristics of the nano-

sized iron oxide core, magnetic nanoparticles (MNPs) can be manipulated with an

external magnetic field and thereby serve as carriers for delivery of drugs.1–4,6,7 To

achieve local accumulation of MNPs, various magnetic field designs have been tested

ex vivo8 and in vivo,9–23 including alternating current-induced magnetic field9 and

NdFeB magnet applied in a stationary8,10–16,20–23 or mobile17-19 manner. Magnetic

force-induced local retention of MNPs with particle sizes in the range of 130–366 nm

has been demonstrated with good reproducibility in vivo,11,12,14,16,20–23 including in

vessels of different sizes11,12 and tumor tissues.14,16,20–23 Magnetic targeting with these

MNPs may serve as a feasible strategy for delivery of thrombolytic17,19,24,25 and
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chemotherapeutic13,14,16,22,23 drugs. The therapeutic efficacy

will be determined by strategic coupling of targeting, which

depends on the properties of the particles and applied field,

and drug release at the site of action. In target thrombolysis,

interaction of the magnetic nanocomposites with the fibrin

clot in the rat embolic model requires application of a mobile

rather than a stationary magnet.17 In addition, magnetic force

may be applied to control release of encapsulated drugs to

ensure thrombolytic efficiency in vivo.25

Following in vivo administration, MNPs are taken up

by the reticuloendothelial system (RES) within minutes.3,6

The fate of MNPs subjected to phagocytosis by RES

depends on the size, surface modification, chemical com-

position, surface charge and hydrophobicity of

MNPs.2,3,7,26–28 Specifically, surface modification or poly-

mer coating was shown to improve stability, dispersity and

biocompatibility of MNPs.2,3,7,26–28 The polymer, poly-

ethylene glycol (PEG), is a stable, biocompatible, hydro-

philic polymer, which has been extensively studied for

applications to drug or gene delivery.29–31 Immobilized

PEG on the nanoparticle alters the surface characteristics

of the particle, which is dependent on the molecular

weight and polymer conformation. PEG modification can

also hinder interaction with plasma proteins and reduce

plasma protein adsorption on the surface of the

nanoparticles.29,30,32 Moreover, PEG reduces the response

of the immune system to nanoparticles.3,29–31,33 This in

turn reduces clearance of the nanoparticles from the circu-

lation, and thereby allows a longer circulation time and

more nanoparticle accumulation at the target site.33–35

Nevertheless, PEGylation may also reduce internalization

of MNPs by tumor cells30,36–38 as well as endothelial

cells38,39 in culture, and thus potentially reduce intracellu-

lar delivery of drugs.

After intravascular administration, nanoparticles will

initially contact the endothelium of the blood vessel,

which is composed of a thin continuous layer of cell

lining. The interaction of multifunctional nanoparticles

with the endothelium is important,38–42 as it is the main

target in the treatment of disease, including inflammatory,

cardiovascular and oncological diseases.43,44 PEG coating

reduces adhesion of polystyrene spheres to endothelial

monolayer under physiological shear in vitro.39 In addi-

tion, PEG modulates the intracellular behavior of nanopar-

ticles, probably due to protein adsorption.45 We recently

demonstrated that PEGylation of dextran-coated MNPs

may alter particle properties in circulation.46 Although

PEGylated nanocomposites with iron oxide core can be

magnetically captured in vivo,16,47 the effect of

PEGylation on the behavior of MNPs subjected to mag-

netic capture in circulation has not been investigated.

In the current study, the effect of PEG modification on

the behavior of dextran-coated MNP in response to mag-

netic and hemodynamic forces was assessed by visualiza-

tion of red blood cell flow in microvessels in vivo, using

a cremaster microcirculatory preparation of rats.11 The

results suggest that PEGylation may induce a shielding

effect, facilitate capture and escape of MNPs in a size-

dependent manner, and modulate blood flow in the pre-

sence of a magnetic field.

Methods
Materials
Dextran-coated magnetic nanoparticles (MNPs; 50 and

250 nm) with (nanomag®-D PEG-COOH) or without

(nanomag®-D COOH) polyethylene glycol (PEG; 600 dal-

tons) were purchased from Micromod Partikeltechnologie

GmbH (Rostock, Germany). Neodymium (NdFeB) magnets

were purchased from New Favor Industry Co., Ltd (Taiwan).

Hydroxyethyl starch solution (6%, Voluven®) was purchased

from Fresenius Kabi (Germany). Heparin (50,000 units),

Inactin® (sodium salt of ethyl-[1-methyl-propyl]-malonyl-

thio-urea), fetal bovine serum (FBS), ammonium persulfate

and potassium thiocyanate (KSCN) were purchased from

Sigma (St Louis, MO, USA). M199 medium and trypsin-

ethylenediaminetetra acetic acid were purchased from Gibco

BRL (Grand Island, NY, USA). Horse serum was purchased

from Hyclone® (Logan, UT, USA). Penicillin/streptomycin/

amphotericin and endothelial cell growth supplement (ECGS)

were purchased from Upstate Biotechnology (Lake Placid,

NY, USA).

Size and ζ-potential measurement of

nanoparticles
The hydrodynamic size distribution and the ζ-potential of
MNPs were determined by dynamic light scattering and

electrophoretic light scattering, respectively, using

a particle analyzer (NanoPlus, Micromeritics; GA, USA).

MNPs were suspended at a concentration of 0.05 mg/mL

in deionized water (DIW), phosphate buffered saline

(PBS; NaCl 137 mM, KCl 2.7 mM, Na2HPO4 10 mM,

KH2PO4 2 mM; pH 7.4) or particle-free horse serum,

which was subjected to a series of centrifugation to ensure

removal of suspended particles. Briefly, the horse serum

was centrifuged at 300×g for 15 mins (Sorvall RT6000B;
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MA, USA); the supernatant was then centrifuged at

3,800×g for 10 mins (Beckman coulter AV anti

J-E centrifuge; CA, USA), followed by 100,000×g for 1

hr (Beckman coulter optima L-100 K; CA, USA) to

remove any particular matter. After centrifugation and

removal of the upper lipid layer, particle-free serum was

obtained and used to mimick serum components in circu-

lation. MNPs were suspended by a 10-mins sonication

prior to the measurement at 25°C. PBS and serum samples

were analyzed with identical parameter setting.

Cremaster muscle preparation
The cremaster muscle was prepared based on a previous

study with minor modification,11 and the experimental

protocol was approved by the Institutional Animal Care

and Use Committee at Chang Gung University, which is

certified by the American Association for Accreditation of

Laboratory Animal Care. Briefly, Sprague Dawley rats

(330±7 g, n=23) were anesthetized using Inactin®

(100 mg/kg; i.p.). After hair removal from the lower abdo-

men and the scrotum, a rectal probe was inserted to ensure

the core body temperature at 37±1°C, followed by urinary

bladder cannulation. The left cremaster muscle was dis-

sected, and the testis was removed. From the left femoral

artery, the iliac artery was cannulated in a retrograde man-

ner with a PE50 tubing without interrupting the blood flow

to the pudic epigastric artery, a branch of the iliac artery

that supplies blood to the cremaster bed. Two small

branches of the left iliac artery and pudic epigastric artery

were ligated, allowing most of injected particles to reach

the cremaster vasculature. With the cremaster vasculature

remaining part of the rat circulation (Figure S1), the mus-

cle was then placed in situ on a cylindrical NdFeB magnet

(1.9 cm in diameter; 0.8 cm in thickness), and tension was

applied. Saline-hydroxyethyl starch (1:2) mixture was con-

tinuously infused at a rate of 30 μL/min for injection of

MNPs via an injection port on the intra-arterial catheter

tubing. At completion of the study (see below), the rats

were euthanized by cervical dislocation under anesthesia.

Laser speckle imaging
The laser speckle contrast imaging (MoorFLPI-2™; Moor

Instruments, England) was used to monitor tissue blood

flow changes in real time. A random speckled pattern is

generated as blood cells move in the tissue, which is

illuminated by a focused diode laser at 650 nm. The region

of interest (ROIs) in the field of monitoring was analyzed

with time. Blood flow is presented as 2-D images or

tracings that were updated every 10 sec. The simultaneous

recordings of flux and photo images reveal patterns of flow

and MNP retention in a single microvessel. There are two

major branches of microvessels in the cremaster muscles.

For data analysis, six to eight ROIs in each branch were

averaged to obtain perfusion values of each branch. The

lowest blood flow occurred 4–13 mins after intra-arterial

injection of MNPs (+MNP), and the flow 5 and 15

mins after removal of the magnet (-Mag) was calculated

as percent basal level.

Capillaroscopy
Visualization and characterization of MNP capture in cre-

master microcirculation were performed using the

CapiScope Handheld Video Capillaroscope System (KK

Technology, Honiton, England), which generated oblique

profiled epi-illumination imaging by light-emitting diodes

at a wavelength of 525~535 nm. In the image, RBCs were

viewed as flowing subjects over a gray background, which

delineates vessel wall as a faint contour, whereas MNP

pellet captured by the magnet was observed as a dark

subject. A color mode was used to increase the contrast

for observation of the vessel wall. RBC flow and diameter

of a single vessel was determined from the images.

In vitro circulation system
To observe magnetic capture of MNPs in a circulatory sys-

tem, magnet-induced MNP retention in a silicon tubing (i.d.

2 mm; o.d. 4 mm) was recorded using a CCD camera

(MD130, Sage Vision, Taiwan) controlled by Future

WinJoe software (Future Optics, Hangzhou, China) mounted

on a dissecting microscope (SL-620, Sage Vision, Taiwan).

A permanent magnet (2×1×0.5 cm; 1.55 kG) was placed by

the silicon tube at a 45° angle, 5 cm downstream from the

injection site as illustrated in Figure 4A. The peristaltic pump

(Masterflex® 7553–80, Vernon Hills, Il, USA) with silicone

tubing (Peroxide; L/STM13 #96400-13 with i.d. 0.8 mm)

induced a flow of 2 mL/min through the total length of

150 cm tubing filled with horse serum or hydroxyethyl starch

solution. The horse serum was centrifuged at 100,000 g for 1

hr to remove particular matter prior to use. The shear stress of

the system with serum was calculated to be 0.7 dyn/cm2,

using a viscosity of 1.66 mPa s.48 In experiments with serum,

particles (0.1 mg) were injected into the silicon tube in

approximately 10 s, followed by a 10 mins observation per-

iod. In experiments with hydroxyethyl starch solution, parti-

cles (0.1 mg) and citrated whole blood (20 μL) were injected
simultaneously, followed by a 1 min observation period. The
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2-dimentional area of the particle retention in the silicon tube

was analyzed by image-J software.

Endothelial cell culture
Human umbilical vein endothelial cells (HUVECs) were

obtained with a protocol approved by the institutional review

board of Chang Gung Memorial Hospital to study MNP-

HUVEC interaction, as described previously.38,40 HUVEC

were cultured in M199 medium with FBS (10%), heparin

(100 μg/mL), endothelial cell growth supplement (ECGS)

(30 μg/mL) and penicillin/streptomycin/amphotericin (1%)

at pH 7.4. The cells were maintained at 37°C in an incubator

supplied with 5% CO2 and used between passages 3–9.

Cellular uptake of MNPs
HUVECs were cultured in a 24-well culture plate with

M199 medium to 90% confluence prior exposure to

MNPs (100 μg/mL) with or without placement of the

NdFeB magnet underneath the well for 0.5–6 hrs. All

groups were subjected to the NdFeB magnet for 5

mins immediately after addition of MNPs to ensure sedi-

mentation of the particles. After trypsinization, hydrochlo-

ric acid (10% v/v) was added to the cell pellet and

incubated at 55°C for 4 hrs, followed by treatment with

ammonium persulfate (1 mg/mL) and KSCN (1 M). The

amount of cell-associated iron was determined by mea-

surement of OD490 with a VICTOR3 Multilabel Plate

Reader (PerkinElmer, Shelton, CT, USA). A standard

curve with a known concentration of MNPs was prepared

under identical conditions for the calibration.

Statistical analysis
Data are presented as mean ± SEM. All results were

analyzed using a student’s t-test, paired t-test or one-way

analysis (ANOVA) with repeated time measurement fol-

lowed by Duncan’s post hoc test. Statistical significance

was determined at P<0.05.

Results
Figure 1 illustrates hydrodynamic diameters and the ζ-
potential of PEG(–) vs PEG(+) MNPs in PBS or serum.

In PBS (Figure 1A), PEGylation induced no effect on

ζ-potential or hydrodynamic size in either size of

MNPs studied. In serum (Figure 1B), the hydrody-

namic diameter of both the PEG(–) and PEG(+)

MNPs of 250 nm increased to about 600 nm.

However, only the hydrodynamic diameter of PEG(+)

50 nm MNPs increased in size with the corresponding

PEG(–) MNPs remaining largely unchanged. Despite

the very different sizes, the ζ-potentials of all MNPs

in serum were similar and averaged from −7.2 to −8.2
mV, probably due to formation of protein corona.

Figure 2 illustrates images of MNP accumulation with

time in a representative microvessel preparation of cre-

master skeletal muscle with an underlying magnet. The

upper panel shows the initial rapid flow through the vessel,

and as early as 1 min after MNP (5 mg/kg) administration,

the flow is reduced in a localized region. The correspond-

ing lower panel provides photographs and the growing

dark, localized region, reflecting the accumulation of

MNPs. Such retention of MNPs interfered the speckle

signals and left gray images at 2–10 mins after MNP

administration. Gradual reduction of the RBC flow to

84% of basal level was measured upstream of the retention

site 4 mins after administration of MNPs. Removal of the

magnet 15 mins after administration resulted in the rapid

removal of the MNPs and restoration of the flow. In con-

trast, the flow of the parallel vessel remained relatively

stable at 93±2% (n=5) of the basal value at these time

points studied.

Supplemental data (Figure S2) provide an expanded

view of the accumulation site, where magnetic capture of

MNPs occurred in the cremaster microvessels (photo

views) and the flow was affected not only in the parent

vessel but also in downstream branches as evident by the

gray area in the flux view. However, no significant differ-

ence was observed comparing RBC flow up- vs down-

stream of the retention sites without any branch in

between (A, B, F, G, H; n=5).

Figure 3 shows the results from injection of PEGylated

MNPs subjected to magnetic capture on RBC flow in cre-

master microvessels in vivo. After intra-arterial administra-

tion of 250 nm particles under magnetic capture

(Figure 3A–C), RBC flow was reduced in most of the

ROIs studied; however, in some vessels, the RBC flow

fluctuated even with the magnet underneath the muscle

piece. After magnet removal (-Mag), the flow was immedi-

ately restored in PEG(+) rat, whereas the flow in most

vessels of the PEG(–) rat was at best only partially restored

after magnet removal (Figure 3A). Most tracings, which

represent the relative changes of RBC flow with time, of

vessels in the PEG(+) rat recovered to near basal levels of

individual vessel after magnet removal (Figure 3A). This

was also observed in the representative flux images from

the same rat in Figure 3B. MNPs of 250 nm with vs without

PEG significantly reduced basal blood flow by 73% (n=11
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branches from 5 rats) vs 58% (n=9 branches from 5 rats),

respectively (Figure 3C); however, no significant effect was

observed between the PEG(+) and PEG(–) groups. Five

minutes after magnet removal (-Mag), significant restora-

tion of the flow was observed in both PEG(+) vs PEG(–)

groups. Fifteen minutes after magnet removal, the flow of

the PEG(+) group returned to near the basal level, which is

significantly higher than that in the PEG(–) group (P<0.05).

In another group of rats receiving 50 nm MNPs, distinct

tissue perfusion patterns were observed. Magnetic capture-

induced flow reduction occurred only in the rat receiving

PEG(+), but not PEG(–) MNPs (Figure 3D and E). The mag-

netic capture of PEGylated MNPs reduced flow in almost all

vessels studied in this representative rat, demonstrating

a dynamic retention pattern with the magnet in place; whereas

magnet removal partially restored the flow (Figure 3D and E).
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In contrast, intra-arterial administration ofMNPswithout PEG

caused a gradual increase in theflowof primarily larger vessels

under influence of the magnet, with stabilized RBC flow after

magnet removal (Figure 3D). Figure 3F illustrates that 4–13

mins after administration of 50 nm MNPs without PEG in

magnetic field, the microvascular flow was not altered (n=17

branches from 10 rats), suggesting minimal magnetic capture;

whereas PEGylated MNPs of 50 nm significantly reduced

basal blood flow by 46% (n=23 branches from 13 rats;

P<0.05). Fifteen minutes after magnet removal (-Mag), the

flow was restored to 87% of basal level in the PEG(+) group.

Figure 4 illustrates representative dynamic retention of

PEG(+) MNPs in response to magnetic capture using

capillaroscopy. Both gray and color modes of capillaro-

scopy images display the change in location of MNP

agglomerate 12–19 mins after MNP (250 nm) administra-

tion with the magnet underneath the cremaster preparation.

Even with the magnet in place, the agglomerate of PEG(+)
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MNPs moved along the vessels. After removal of the

magnet (-Mag), no retention was observed in any micro-

vessel in this field. In contrast, no such agglomerates were

observed after injection of PEG(+) MNPs in the absence

of the magnet (Figure S3).

To determine whether PEGylation may exert an effect on

magnetic capture of MNPs, MNPs with or without PEG were

injected in a silicon tube with serum or hydroxyethyl starch

flow at 2 mL/min in circulation, as illustrated in Figure 5A.

Magnetic capture of 50 and 250 nm MNPs in hydroxyethyl

starch flow was observed 14 sec after co-administration with

rat blood in an upstream syringe (Figure 5B). With or without

PEGylation, pellet formation occurred in response to the pre-

sence of both the magnet and RBC flow; a clear boundary was

observed between the pellet and the RBC flow. In experiments

without administration of whole blood, MNPs were injected

into the flowing serum at 2 mL/min to observe magnetic

capture of MNPs without RBC interruption. Pellet formation

was observed in the silicon tube by the magnet within 20 sec,

followed by gradual reduction of the pellet size in the presence

of themagnet and serum flow (Figure 5C). In the 50 nm group,

the pellet size of PEG(−) particle was gradually reduced with

time and became almost invisible after 480 sec; whereas the

pellet size of PEG(+) particles gradually decreased with time,

and then increased after 390 sec (Figure 5C). The size of the

pellets of 250 nm particles decreased quickly and reached

equilibrium between 120 and 600 sec.

The retention areas of 50 and 250 nmparticles in Figure 5C

are summarized in Figure 5DandE, respectively.At 30 sec, the

retention areas of 50 nm particles of PEG(−) and PEG(+)

remained at about 72% (Figure 5D), whereas that of 250 nm

particles dropped to 36% and 29% (Figure 5E), respectively.

However, an increase in the 2-D area of PEG(+) particles was

observed after 400 sec, resulting in significantly more particle

retention in the group of PEG(+) at the end of observation

(Figure 5D; P<0.05). In contrast, no significant difference

between PEG(−) and PEG(+) groups was observed after 300

sec (Figure 5E).

To determine whether PEGylation may reduce MNP–

endothelium interaction and facilitate post-magnet dispersion,

250 nm MNPs with or without PEG were incubated with

cultured HUVECs under magnetic field, followed by analysis

of cell-associated MNP (MNPcell; Figure 6). Here, the magnet

significantly increased MNPcell with and without PEG by

1.3~3.5 and 1.2~3.2 fold, respectively, at 1–6 hrs after admin-

istration of MNPs (P<0.05). Overall ANOVA indicates

a significant difference between the PEG(−) vs (+) groups

(P<0.05). In the presence of the magnet, PEGylation signifi-

cantly reduced MNPcell by 46% and 47% at 4 and 6 hrs after

administration of MNPs, respectively (n=7, P<0.05).

Discussion
Using RBC flow as an indicator, PEGylation has been

demonstrated to be able possibly to alter the pattern of

dextran-coated MNP retention in response to magnetic

capture. To our knowledge, this is the first in vivo demon-

stration that PEGylated MNPs may be more sensitive to

magnetic capture against hemodynamic forces. This was

especially prominent for smaller particles, which are asso-

ciated with an increased hydrodynamic diameter.

PEGylation enhanced dispersion of larger magnetite parti-

cles after magnet removal, which likely contributed to

reduced MNP–MNP and MNP–endothelium interaction.

Our previous studies demonstrated that magnetic cap-

ture of PEG(–) MNPs led to visible particle retention in

the cremaster vasculature along the magnet margin in the

photo view, which was associated with a reduction of

tissue perfusion.11 In this investigation, laser speckle tech-

nology with a higher spatial resolution is used, enabling

subtle hemodynamic changes that arise from MNP

Time 12’ 14’ 16’ 19’ - Mag

G
ra

y
C

ol
or

Figure 4 Dynamic retention of MNP with PEG in the representative vessels in magnetic field. Magnetic capture of PEG(+) MNPs (250 nm; 5 mg/kg) in cremaster

microcirculation was observed by capillaroscopy under gray and color mode 12–19 mins after administration of the MNPs and 1 min after removal of the magnet (-Mag). The

red arrows indicate the flow direction of the adjacent vessel. The results are representative of 6 experiments. Scale bar indicates 50 μm.
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retention in a single vessel to be recorded. Although sig-

nificant MNP retention may be observed in a single vessel,

blood flow in the microvessel up- and down-stream may

still be maintained at a similar level, suggesting that MNP

retention does not completely occlude the vessel. Although

the structure of PEG may attenuate MNP–endothelium

interaction, PEGylation significantly increased the hydro-

dynamic diameter of especially smaller particles in the

serum, which may lead to enhanced magnetic capture.

For the 250 nm nanoparticles, PEGylation facilitates

the restoration of tissue flow after magnet removal,

which would lessen the potential of any adverse effect

on hemodynamics with PEG(+) MNPs in magnetic tar-

geting. PEGylation of MNPs may reduce the packing

density of magnetically accumulated MNPs, since the

hydrophilic PEG chains would assume an extended con-

formation in the aqueous phase. This in turn would

account for the better dispersibility in circulation,3,29,49

resulting in dynamic pellet accumulation in magnetic

field and fast blood flow restore after magnet removal.

Although no significant changes in averaged RBC flow

were observed with 50 nm PEG(–) MNPs in the presence

of the magnet, RBC flow in larger vessels gradually

increased with time (Figure 3D). It is plausible that the
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magnetic force acting on the captured PEG(–) MNPs may

induce mechanical stimulation upon the endothelium,

which is known to release nitric oxide and cause

vasodilation.50 In contrast, PEG may promote agglomera-

tion of smaller MNPs in magnetic field, which reduces

RBC flow in microcirculation and facilitates magnetic

capture.

In response to magnetic capture in vitro, similar initial

particle retention was observed irrespective of particle size

and PEGylation in the serum flow (Figure 5C), which

allows observation of particle retention with protein cor-

ona development. Although the size of the 2-D pellet of

the particles may not represent the amount of the particles

captured, such a system may provide information concern-

ing particle capture within a short period. Notably, the

retention of PEG(+) MNPs of 50 nm gradually declined

to only 20%, and thereafter significantly increased, sug-

gesting that the magnet might capture PEG(+) MNPs

recirculating to the site of the magnet. In a magnetic

field, the capture–escape–recapture cycle probably also

occurred in vivo.

Endothelial cells interact with MNPs much less than do

tumor cells in culture,38 possibly favoring the use of

MNPs for delivering drugs to treat solid tumors.

Although the method employed herein cannot differentiate

adsorbed from internalized MNPs, less adhesion is
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generally associated with a concomitant less particle

internalization.51 Our results are consistent with previous

findings that PEGylated particles exhibit reduced interna-

lization by endothelial cells38,52 as well as other cells.37,53

PEGylation may reduce the interaction between the parti-

cles and the endothelial cells, which may mediate, at least

partially, the altered behavior of PEG(+) MNPs in circula-

tion. The PEGylation-associated dynamic retention of 250

nm particles in response to magnetic force may increase

the passage of nanocomposites through the leaky vascula-

ture into the tumor tissue and thereby increase local con-

centration of the delivered drug.13,53

Previous studies have demonstrated a significant differ-

ence between the ζ-potential of PEG(−) and PEG(+) MNPs

in aqueous solution,38 distinct behaviors in circulation are not

attributed to the ζ-potential of MNPs, probably owing to

nearly immediate corona formation after nanoparticles in

contact with plasma proteins.32,54,55 The enhanced capture

of smaller PEG(+) MNPs may be attributed to the PEG–

plasma protein interaction and then agglomerate formation,

resulting in an increased hydrodynamic diameter ofMNPs. It

has been recently demonstrated that plasma protein adsorp-

tion of PEG(+) MNPs, but not bare MNPs, triggers comple-

ment activation,56 which may consequently alter protein

corona composition, physical characteristics and particle

behaviors in circulation. For larger MNPs, PEGylation may

reduce particle–particle interaction induced by magnetic

moment generation in magnetic field, and thus enhance

MNP escape, allowing dynamic retention of MNPs in vivo.

The results herein suggest that PEG(+)MNPs circulation can

be magnetically captured. Moreover, the weakening vascular

wall–nanoparticle interaction by PEGylation may facilitate

blood residence,27,32 favoring the therapeutic outcome with

the target in the circulating blood. Nevertheless, the charac-

teristics of PEGylated nanoparticles may also depend on the

composition of the PEGmoiety.45 Themolecular weight,57,58

density59 and conformation39,60,61 of PEG may affect nano-

particle–cell interaction,32,39 the biocompatibility of the

nanoparticles,32,59 and thus their behaviors in circulation.

Further studies of the composition of the PEG(+) MNPs

coating materials should be undertaken.

Conclusion
This study demonstrates that PEGylation alters the behavior

of dextran-coated MNPs in response to magnetic and hemo-

dynamic interaction. In magnetic targeting, the PEG moiety

may enhance magnetic capture of PEGylated MNPs and

reduce the risk of vessel occlusion by aggregated particles,

presumably by attenuating MNP–MNP and MNP–endothe-

lium interaction. Thus, with PEGylated MNPs as drug

carriers, therapeutic goals may be potentially achieved in

stationary magnetic field. Nevertheless, PEG molecules

with different length may form distinct 3-D structure.32

Whether MNPs with different PEG in length may exert

different behavior remains to be determined.

Abbreviation list
APS, ammonium persulfate; DIW, deionized water;

ECGS, endothelial cell growth supplement; FBS, fetal

bovine serum; HUVEC, human umbilical vein endothelial

cells; KSCN, potassium thiocyanate; Mag, magnet; MNPs,

magnetic nanoparticles; MNPcell, cell-associated MNP;

PBS, phosphate buffered saline; PEG, polyethylene glycol;

RBCs, red blood cells; RES, reticuloendothelial system;

ROIs, regions of interest.
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Supplementary material

Figure S1 Cremaster muscle preparation of an anesthetized rat. Left cremaster muscle was spread with tension created by suture on a home-made platform. The muscle

preparation was then subjected to laser speckle contrast imaging or cappillaroscipy from above.
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Figure S2 Magnetic capture of MNP and subsequent flow changes in microvessels. MNPs (5 mg/kg) were administered intra-arterially to the left cremaster muscle with

a NdFeB magnet placed underneath. MNP accumulation 1 to 14 mins after administration is illustrated as flux and photo images. The arrow in the flux images indicates the

flow direction of the adjacent vessel. Patterns of magnetic capture of MNPs in microvessels (A–H) were observed.
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Figure S3 Dynamic retention of MNP with PEG in the representative vessels without magnetic field. Without magnetic capture of PEGylated MNPs (250 nm; 5 mg/kg) in

cremaster microcirculation was observed by capillaroscopy under gray and color mode 12–19 mins after administration of the MNPs. The red arrows indicate the flow

direction of the adjacent vessel. The results are representative of 6 experiments. Scale bar indicates 50 μm.
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