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Background: Gut microbiota (GM) has recently been described as a functional reservoir of

antimicrobial resistant genes (ARGs). However, the ARG-carrying bacterial species in the

human gut has been poorly studied. This study, for the first time, is reporting bacterial

communities' composition and antimicrobial resistome in the stool samples of pregnant and

non-pregnant (NP) Saudi females.

Methods: Gut bacterial community composition was analyzed by 16S amplicon sequencing

and culturomics. High throughput MALDI-TOF technique was used for identification of the

isolates from stool samples and evaluated for resistance against 13 antibiotics using the agar

dilution method. Clinically important ARGs were PCR amplified from genomic DNA of the

stool samples using gene-specific primers.

Results: 16S amplicon sequencing revealed that GM of pregnant and NP women were pre-

dominantly comprised of phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria.

Bacterial diversity decreased in pregnant groups, whereas phylum Bacteroidetes declined sig-

nificantly (p<0.05) in the first trimester. We noticed a relatively high abundance of butyrate-

producing bacteria (eg, Faecalibacterium spp. and Eubacterium spp.) in the gut of pregnant

women, whereas Prevotella copri was found at significantly (p<0.01) higher abundance in NP

women. Moreover, about 14,694 isolates were identified and classified into 132 distinct species.

Themajority of the species belonged to phyla Firmicutes and Proteobacteria.About 8,125 isolates

exhibited resistance against antibiotics. Out of 73 resistant-species, Enterococcus was the most

diverse genus and Escherichia coli was the highly prevalent bacterium. The majority of the

isolates were resistant to antibiotics; trimethoprim/sulfamethoxazole, cycloserine, and cefixime.

ARGs encoding resistance against aminoglycoside, macrolide, quinolone, β-lactam, and tetra-

cycline antibiotics were predominantly found in genomic DNA of the stool samples.

Conclusion: We conclude that pregnancy-associated GM modulations may help to sustain

a healthy pregnancy, but a higher proportion of antibiotic resistance could be deleterious for

both maternal and fetal health.

Keywords: gut microbiota, antimicrobial resistance, metagenomics, culturomics, pregnancy,

Saudi Arabia

Introduction
During pregnancy, women undergo complex physiological changes that are accom-

panied by changes in the diversity and composition of gut microbiota (GM).1,2 Any

change in GM composition and diversity may eventually affect host immunity,
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digestion, and metabolism.3–5 Pregnancy-associated GM

modulations, especially an enriched abundance of the

phyla Proteobacteria and Actinobacteria, have been asso-

ciated with the increased energy uptake that occurs during

pregnancy.2,6

The health implications of pregnancy-associated GM

modulation are still unclear; first, because GM diversity

and composition are plastic in nature and vary significantly

with geography and diet,7 and secondly, because the preg-

nancy–GM association has been studied in only a few

geographical locations.1,2,8–10 In addition, unprecedented

use of antibiotics could substantially affect GM diversity.11

Increased prescription of antibiotics during pregnancy,

which has been reported in several countries,12–14 could

decrease GM diversity during pregnancy and may be dele-

terious for both maternal and fetal health. Furthermore,

unnecessary and inappropriate use of antibiotics could

induce teratogenicity, modulate GM composition, and con-

tribute to the emergence of antimicrobial-resistant

pathogens.15,16

Human GM has become a functional reservoir of anti-

microbial resistance genes (ARGs)17 that could potentially

be acquired by opportunistic pathogens.17,18 These patho-

gens could translocate from the gut to various body sites

through fecal contamination, gut barrier penetration, and

medical services (such as catheter replacement).19,20 Such

pathogens could further complicate infections, especially

in immune-compromised individuals (including pregnant

women and infants),21,22 and stress health care resources.

Bacterial pathogens carrying ARGs could affect ovum

implantation, pregnancy sustention, and delivery, and

they could be life-threatening for both the mother and

fetus.23,24 To deal with emerging infectious diseases,

a top priority is an effective strategy for profiling the

GM resistome and documenting the abundance of antibio-

tic-resistant bacteria in the human gut.

So far, the GM resistome has been poorly profiled and

never been comprehensively analyzed during pregnancy.

Therefore, we aimed to profile gut microbial resistome in

pregnant and non-pregnant (NP) women and to determine

the resistant genes behind the resistance. The samples

collected from pregnant and NP women were comprehen-

sively evaluated through culturomics and metagenomics

using Illumina MiSeq, 16S RNA sequencing, and

MALDI-TOF techniques. Purified bacterial isolates were

then tested for antimicrobial resistance against 13 antibio-

tics. Moreover, the samples were also evaluated for the

presence of 47 antimicrobial resistant genes.

Materials and methods
This study was approved by ethical research committee of

the Faculty of Medicine at King Abdulaziz University

(HA-02-J-008), under the reference number 114–14. All

the participants provided written informed consent to par-

ticipate in this study, and all methods were performed in

accordance with the approved guidelines. The exclusion

criteria included gastrointestinal infection, antibiotics

intake in previous 3 months, and age above 50 years old.

In total, 24 stool samples were collected, including eight

samples from the control NP women and eight samples

from each first and third trimester group of pregnant

women. Age and body mass index (BMI) information of

the participants are mentioned in Table 1.

16S rRNA gene amplicon sequencing and

data processing
Genomic DNA was extracted from the 24 stool samples

(eight samples per group) using QIAamp Fast DNA Stool

Mini Kit (Qiagen NV, Venlo, the Netherlands). The sam-

ples were gel-purified and sequenced for 16S rRNA genes

using V3–V4 universal primers. DNA concentrations were

checked using the Qubit system (Invitrogen, Thermo

Fisher Scientific, Waltham, MA, USA). Then, Illumina

sequencing adapters and dual-index barcodes were joined

to the sequence-reads using a limited PCR cycle. The

product was cleaned with Agencourt AMPure beads

(Agencourt, USA) and libraries were normalized using

the Nextera XT protocol. Samples were loaded into

a single flow cell for sequencing on the MiSeq sequencing

platform (Illumina, USA) following the manufacturer’s

protocol.

Raw FASTQ files were collected from the Illumina

MiSeq, and paired-end reads were joined using

PANDAseq.25 Sequences were filtered; cleaned of primers

and barcodes and all reads with “N” and those with

sequences <200 bp were deleted, and high-quality sequences

were dereplicated.26 The filtered sequences reads were clus-

tered at k=10 (97% similarity) and chimaeras and singleton

Table 1 Average age and body mass index information of the

participants in each group

Sample type Age Body mass index

Non-pregnant 39.12±7.7 26.2±3.01

First trimester 25.37±4.13 31.15±5.75

Third trimester 33.28±7.34 30.7±6.76
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reads were deleted. Finally, curated database derived from

GreenGenes, RDPII, and NCBI were targeted using

BLASTn for operational taxonomic units (OTUs).

Sequence data of this study was submitted in the NCBI

under project no. PRJNA355357.

Culturomics
A total of 12 stool samples (cross-sectionally collected)

were processed for culturomics; six samples from NP

group and six samples equally collected from women in

first trimester and third trimister of pregnancy. The sam-

ples were cultured at 37°C for 48 hours on modified

medium containing ascorbic acid to support the growth

of anaerobic bacteria along with aerobic bacteria at aerobic

environment as previously described (Table S1).27,28

Colonies were sub-cultured on the same media composi-

tion, and purified isolates were identified through MALDI-

TOF MS (Bruker Daltonics, Billerica, MA, USA).29 Each

isolate was smeared as a thin-layer on separate spots of

MALDI-Biotyper plate and covered with a matrix solution

(5 mg of α-cyano acid 4-hydroxycinnamic acid diluted in

500 µL of acetonitrile, 25 µL trifluoroacetic acid, and 475

µL of HPLC-grade water). The automatic acquisition of

bacterial spectra was performed with the flexControl 3.0

software, and spectra analysis was done with Biotyper 2.0

software. The spectrum with a score ≥1.9 was considered

correct identification, otherwise the isolate was re-

processed for identification. The unidentified isolates

from MALDI-TOF were identified through 16S RNA

gene sequencing as described previously.30

Antimicrobial susceptibility screening
Antimicrobial susceptibility testing was performed accord-

ing to the agar dilution method as described previously.31

Briefly, agar media plates were prepared by adding anti-

biotics at 50°C after autoclaving and mixed well before

pouring into 90 mm petri dishes. Control plates were

prepared without antibiotics. A suspension of 0.5

McFarland turbidity, measured with a densitometer

(BioMérieux, Craponne, France), was prepared for

each isolate. Then, 2 µL of the suspension was spotted

onto the agar surface. The plates were incubated for 48

hours at 37°C. We confirmed isolates' growth on the anti-

biotic-free control plates. Results were interpreted as resis-

tant or susceptible to each antibiotic, based on the growth

observed on the antibiotic-supplemented and control

plates. Isolates were considered susceptible when growth

was inhibited on the antibiotic-supplemented plates.31,32

We used a relatively high level of 20 µg/mL concentration

of each antibiotic to select robust resistance, as previously

reported in several studies for environmental and gut

resistome screening.17,33,34 We tested resistance against

13 antibiotics that belonged to 9 different antimicrobial

classes (Table 2).

Antimicrobial resistant genes profiling in

stool samples
A total of 47 clinically relevant ARGs including genes

encoding ESBLs, aminoglycosides, carbapenemases, and

vancomycin resistance were analyzed from the genomic

DNA of the 24 stool samples using specific primer sets as

mentioned in Table S2. PCR reactions were performed in

a volume of 25 µL containing 5 ng DNA templet, 1x

GoTaq® Green Master Mix (Promega Corporation,

Fitchburg, WI, USA), 0.2 µM concentration of each pri-

mer. The cycling parameters were followed as previously

described in the references of Table S2.

Statistical analysis
SPSS version 22 was used for statistical analysis. One-way

ANOVA (for parametric data) and non-parametric

Kruskal–Wallis (two-sided) were employed for non-

normal data. The Kolmogorov-Smirnov D test was used

to ascertain the normality of the data. Bonferroni and

Dunn-Bonferroni tests were respectively performed for

parametric and non-parametric multiple comparison

p-values correction. Culturomics count data were trans-

formed with Hellinger transformation method for ordina-

tion analysis using Vegan R (package analog) as

previously suggested by Paliy and Shankar35 to avoid

Table 2 List of antibiotics tested in this study

Antimicrobials Classes

Kanamycin Aminoglycoside

Gentamicin Aminoglycoside

Metronidazole Nitroimidazole

Oxytetracycline Tetracycline

Cycloserine Analog of D-alanine

Chloramphenicol Phenicol

Cefixime Beta-lactam

Trimethoprim/sulfamethoxazole Sulfonamides

Azithromycin Macrolides

Ampicillin Beta-lactam

Amoxicillin Beta-lactam

Ciprofloxacin Fluoroquinolone

Carbenicillin Beta-lactam
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false outputs and distribution. Data for 16S amplicon were

analyzed for diversity indices and compositional variation

using phyloseq (1.22.3), ggplot2 (3.1.0), scales (1.0.0), and

VEGAN (2.2–1).36,37 The 16S amplicon data were ana-

lyzed with MDS-PCoA method for group clustering. First,

complete OTUs table was rarefied to even-depth and then

subset for most abundant 100 OTUs. Multivariate princi-

pal coordinate species analysis employed with type-1 scal-

ing was performed using GUSTA-ME.37

Results
GM and pregnancy-induced modulation
Pregnancy-associated changes in GM using 16S

amplicon sequencing

After assigning 2.971 million high quality trimmed (>250

bp) sequences to bacterial domains, we detected a total of

15 phyla (Figure 1A), 98 families, 230 genera, and 454

species in the gut of 24 Saudi females. We noticed a relative

decrease in species' diversity in the pregnant group samples.

The lowest diversity (Shannon =3.7, Chao1=1141) was

observed in the third trimester group, whereas the NP

group had the highest diversity (Shannon =3.9,

Chao1=1234) (Figure 1B). To assess pregnancy-induced

changes in GM composition, we used a weighted UniFrac

distance metric with a multivariate correspondence that

clustered the studied groups (Figure 1C).

The GM of NP women was predominantly populated by

the phyla Firmicutes (45.57±15%), Bacteroidetes (45.27

±16%), Proteobacteria (4.65±2.37%), and Actinobacteria

(4.32±2.1%). In addition to variations in other phyla relative

abundance and diversity, Bacteroidetes declined signifi-

cantly (p=0.036) in the first trimester (Figure 1A). In addi-

tion, Prevotellaceae (31.98±14%) was the most abundant

bacterial family in NP Saudi women that was significantly

(p=0.001) affected by pregnancy (first and third trimesters).

Other dominantly detected families included

Ruminococcaceae (24.03±9.5%), Bacteroidaceae (16.89

±9.5%), Lachnospiraceae (10.2±3.4%), Eubacteriaceae

(6.7±3.3%), and Rikenellaceae (3.73±1.2%) (Figure S1).

Third trimester samples were distinguished by having

a higher relative abundance of Ruminococcaceae (33.91

±13.11) compared with the samples from the NP and first

trimester groups Figure S1).

Most of the genera that declined in abundance during the

third trimester were related to the phylum Firmicutes (espe-

cially from Clostridia class); for example, Oribacterium and

Pseudobutyrivibrio were significantly (p<0.05) reduced in

the third trimester group compared to the NP control group.

In addition, the other relatively dominant genera that were

significantly (p<0.05) reduced during the third trimester were

Prevotella and Sutterella (Figure S2). Moreover, the domi-

nantly detected species in the NP group including Prevotella

copri (13.15±9.8%), Tannerella spp. (3.74±2.2%), and

Prevotella stercorea (3.38±2.21%), were profoundly reduced

during the first and third trimesters (Figure S3). Species

Faecalibacterium prausnitzii, Faecalibacterium spp., and

Bacteroides vulgatuswere particularly enriched during preg-

nancy (first and third trimesters).

Evaluation of pregnancy-induced modulation in GM

through culturomics

In total, 132 distinct species were identified through culturo-

mics (using MALDI-TOF and 16S rRNA) by processing

14,694 purified isolates from the stool samples of pregnant

women in their first and third trimester and NP women.

Fiftyeight of the identified species belonged to the phylum

Firmicutes, 57 species were from the phylum Proteobacteria,

16 species were from Actinobacteria, and one was from

Bacteroidetes. The majority of the identified isolates were

from the genera Enterococcus, Escherichia, and Lactococcus

(Figure S4).

Increased species diversity was observed in third tri-

mester samples (Figure 2A), but the differences were

statistically insignificant. The constrained ordination ana-

lysis plotted the GM of control samples separately from

those of the first and third trimester samples (Figure 2B).

We noticed decreased representation of the phyla

Proteobacteria and an increase in Firmicutes (p<0.05)

representation during pregnancy compared to the control

NP group (Figure 2C). Bacteroidetes were not detected

from pregnant groups but a species of Flavobacterium

johnsoniae from phylum Bacteroidetes was found in abun-

dance of 2.66% in the NP group (Figure 2C). In addition,

Actinobacteria were particularly increased in the third

trimester samples compared to the NP samples (Figure

2C). The increase in Actinobacteria was related to greater

growth of species from the genera Bifidobacterium,

Corynebacterium, and Streptomyces in the third trimester

compared to the control group. Distribution of common

species from each phylum in the different groups is pre-

sented in Figure 2D.

Overall, the relative abundance of the genus

Enterococcus was higher in the first and third trimester

(35.9% and 36.7%), respectively, compared to the NP

group (19.2%). Escherichia, Leuconostoc, and
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Enterobacter were subsequently recovered as the domi-

nant genera in first and third trimester samples, but they

had a lower abundance compared to the NP group. In

addition, the genera Klebsiella, Streptococcus, and

Staphylococcus were isolated at a higher relative abun-

dance from the first trimester samples compared to the

NP group. The species Escherichia coli, Enterobacter

cloacae, Lactococcus lactis, Lactococcus garvieae,

Stenotrophomonas maltophilia, and F. johnsoniae

dominated isolates from the NP group, but they were

either profoundly reduced or absent from the first and

third trimester samples.

GM resistome analysis
Out of 14,694 tested isolates, 5,837 isolates were resistant to

a single antibiotic, 1,192 isolates were resistant to two anti-

biotics, and 847 were resistant to three antibiotics. Several

isolates were resistant to four (142 isolates), five (82 isolates),
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and six (25 isolates) antibiotics (Figure S5). The highest

resistance was observed against trimethoprim/sulfamethoxa-

zole (15%), with 25 different species, most of which belonged

to the genera Enterococcus and Enterobacter. Metronidazole

(14%), cycloserine (12%), and cefixime (10%) were asso-

ciated with higher resistance in 32, 29, and 25 different spe-

cies, respectively. Ciprofloxacin and carbenicillin were the

most effective antibiotics, with the lowest abundance and

diversity of resistant bacteria being detected (Figure S5B).

Two bacterial species from the genera Escherichia and

Brevundimonas showed resistance to ciprofloxacin.

Approximately 8% of the total isolates were simultaneously

resistant to two different antibiotics. The combinations of

metronidazole and azithromycin (18%), trimethoprim/sulfa-

methoxazole and oxytetracycline (11%), and cycloserine and

metronidazole (9%) were the most dual resistant patterns

(Figure S5C). Similarly, 6% of the isolates were resistant to

different triple-antibiotic combinations. Among these,
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approximately 26% of the resistant isolates were resistant to

metronidazole, trimethoprim/sulfamethoxazole, and azithro-

mycin (Figure S5D).

Forty-eight percent of the resistant isolates belonged to

phylum Firmicutes, whereas 47% resistant isolates were

identified as being from phylum Proteobacteria.

Enterobacteriaceae, Enterococcaceae, and Streptococcaceae

were the most resistant families. Out of 73 resistant species,

most of the resistant isolates belonged to Enterococcus

genus followed by Klebsiella and Escherichia (Figure S6).

Among the multiple resistant species, 38 were found to be

resistant against two antibiotics; 28 species were resistant to

different combinations of three antibiotics, and seven spe-

cies showed resistance against combinations of four or five

different antibiotics.

Comparison of GM resistome between NP and

pregnant groups

A total of four resistant phyla were observed in the NP group,

among which Proteobacteria and Firmicutes were abun-

dantly present. The abundance of resistant species from

Proteobacteria was much lower in samples from pregnant

women (particularly third trimester samples) (Figure 3A).

Samples from the pregnant groups were abundant in resistant

species from phylum Firmicutes. Most of the resistant spe-

cies were from the families Enterobacteriaceae,

Enterococcaceae, and Streptococcaceae. The most dominant

antibiotic-resistant families shifted in the samples from the

pregnant groups compared to the NP group, with a clear

reduction in the family Enterobacteriaceae and an increase

in Enterococcaceae (Figure 3B).

A total of 31 resistant genera were identified. Among

the most dominant genera, Enterococcus, Enterobacter,

Streptococcus, and Citrobacter were substantially dissim-

ilar between the pregnant and NP groups (Figure 3C). In

addition, the abundance of the Enterobacter, one of the

dominant antibiotic-resistant genera, was significantly

lower (p<0.05) in pregnant group samples. Although preg-

nant and NP groups were harboring similar (p=0.02) anti-

biotic-resistant genera, the correlation was lower (R=0.29)

(Figure 4A). Therefore, to further elucidate the similarity/

dissimilarity index, SIMPER analysis was performed. We

found 55.35% dissimilarity among the groups by analyz-

ing antibiotic-resistant genera. Genera that were mainly

contributing to dissimilarity among the groups (dissimilar-

ity score >1%) were retrieved and filtered, and the results

are presented in Figure 4B. Overall, the abundance and

diversity of the antibiotic-resistant species were higher in

the NP group followed by the first and third trimester

groups. The total diversity of antibiotic-resistant species

is presented in Figure 4C.

Moreover, to determine group-specific antimicrobial-

resistant bacteria, we observed that isolates from the

genus Klebsiella were substantially higher in first trimester

samples encoding resistance to amoxicillin and metronida-

zole compared to the NP group (Figure S7, S8). Isolates

from the genera Lactobacillus and Enterococcus in third

trimester samples were particularly resistant to cycloserine

(Figure S7). In addition, ampicillin-resistant Escherichia

was profoundly increased in third trimester samples com-

pared to first trimester samples (Figure S7).

Evaluation of ARGs
A total of 37 unique ARGs conferring resistance to 9 various

classes of antibiotics were detected in the genomic DNA

extracted from the 24 stool samples of pregnant and NP

groups (Figure 5). The number of detected resistance genes

per sample ranged between 12 and 27. Out of 47 studied

genes, nine ARGs were detected in >80% of the samples

(Figure 5). The common set of resistance genes detected in

≥70% of the tested samples included aminoglycoside resis-

tance genes (aac6-aph2, aph 3-II, strA, and strB), macrolide

resistance genes (ermB), quinolone resistance genes (parC fm

and parC Fs), β-lactamase (blaTEM) and tetracycline resis-

tance gene (tetA) (Figure 5). Genes associated with major

antibiotic resistance threats, including ESBLs encoding genes

(blaCTX-M), the carbapenem resistance–associated genes

(blaOXA-23-like and blaOXA-51-like) and their IsAba element

were also detected in several subjects. Fewer samples were

positive for vancomycin and blaOXA-58-like resistance genes

(Figure 5). Moreover, no pattern was noticed in ARGs' abun-

dance between pregnant and NP groups.

Discussion
This study used both culturomic and metagenomic

approaches to investigate total GM diversity, AMR pro-

files between trimesters, and pregnancy-associated GM

changes in Saudi females. We observed pregnancy-

associated phyla modulations; discriminately clustered in

the pregnant groups compared to the NP group and indi-

cated a resemblance between NP and first trimester groups

compared to the third trimester group. A closer linkage in

GM composition between control and first trimester sam-

ples has also been reported through 16S amplicon sequen-

cing approach.2
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To profile antibiotic-resistant species in the human

gut, we observed that about 95% of the antibiotic-

resistant species belonged to Firmicutes and

Proteobacteria. Both of these phyla are commensally

abundant in the human gut and have substantial diversity

in antibiotic-resistant species.6,38 At the genus level,

Enterococcus was the most abundant and diverse resistant

genus in our sample population, with Enterococcus fae-

calis and Enterococcus faecium being the most abundant.

A total of ten different species from the genus

Enterococcus were isolated, some of which possessed

resistance against ten different antibiotics. Enterococcus

is one of the major pathogen-containing genera, ubiqui-

tously present in the ecosystem (especially in the gut of

humans and poultry) and able to acquire multiple

AMR.39 In a pregnant mouse model, Tan et al showed

that E. faecalis can translocate into blood, spleen, and

placenta.40 We suggest further studies to elucidate AMR

profiling and pathogenicity of the genus Enterococcus

during pregnancy.

As in other studies, we also observed a higher abundance

ofKlebsiella, Enterobacter, and Lactococcus in the gut of NP

Saudi women.41–43 Specifically, Klebsiella pneumoniae is an

emerging antibiotic-resistant pathogen worldwide and is
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responsible for hospital-acquired infections (especially

bloodstream infections) and pneumonia in newborns and

immune-compromised patients.44 Furthermore, E. coli was

the most abundant antibiotic resistant species. The bacterium

was abundant in both the control and the pregnant groups.

Multiple- antibiotic-resistant E. coli is prevalent throughout

Saudi Arabia45,46 and has been isolated from agricultural

fields, hospitals, food, water, and public places.46,47

Antibiotic-resistant E. coli is endemic worldwide, and

many countries are failing to control its spread. Although

E. coli is a commensal type of bacteria in the human gut, the

AMR could potentially spread and contribute to pathogeni-

city (especially during pregnancy).

The abundance of antibiotic-resistant species varied

greatly among samples and groups. Overall, the antibiotic-

resistance abundance was higher in NP group samples,

whereas samples from pregnant groups were abundantly

inhabited by commensal opportunistic pathogens from the

genera Enterococcus, Klebsiella, Streptococcus, and

Staphylococcus.41,48,49 Moreover, all the tested

(Antimicrobials) AMs confronted resistance. The highest

bacterial resistance was detected against trimethoprim/sul-

famethoxazole, metronidazole, cycloserine, and cefixime;

whereas, lower resistance was recorded against ciproflox-

acin and chloramphenicol. High resistance observed

against metronidazole is probably because of its main
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activity against anaerobic bacteria, whereas isolates iden-

tified in this study are mainly aerobic and facultative

anaerobic. The increase in resistance toward trimetho-

prim/sulfamethoxazole, cycloserine, and cefixime could

be attributed to misuse of AMs in Saudi Arabia.12,45

A higher prevalence of AMR is an emerging problem

that has been associated with disease outbreaks and mor-

tality in Saudi Arabia.45,46 Non-optimized and improper

practices of AMs' prescription, high numbers of people

traveling in pilgrimage, and a large population of expatri-

ates could be a few of the causes for the emergence of

AMR in Saudi Arabia.12,45 Moreover, chicken is

a commonly consumed food in Saudi Arabia, and multi-

ple- antibiotic-resistant bacterial species have been

detected in the meat of chickens in Saudi Arabia,50

which could contribute to the higher prevalence of anti-

biotic-resistant gut bacteria in the Saudi population. This

abundance of AMR is a serious concern. Thoughtful and

rapid efforts are urgently needed for AMs' monitoring and

profiling of AMR across the country.

Furthermore, as Saudi Arabian female GM composi-

tion has not been previously published, we were inter-

ested to document total GM composition and pregnancy-

associated changes using 16S amplicon sequencing.

Being a reserved society, people are reluctant to provide

stool samples.51 Our results are in agreement with pub-

lished studies and observed variation in GM composi-

tion, and modulation with pregnancy in Saudi

population from other geographical regions.2,9,10 GM

diversity and composition were substantially remodeled

from the first trimester to the third. The OTU richness

and abundance in samples from the first trimester group

were more comparable with those in the NP group than

the third trimester group. Abundance of the proinflam-

matory phylum (Proteobacteria) was enriched during

pregnancy and species' diversity was lower in the third

trimester group. Such aberrations have been associated

with several health problems.52,53 In contrast, few stu-

dies have reported that these changes help in sustaining

a healthy pregnancy.1,2
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Besides the phylum Proteobacteria, the phylum Firmicutes

was also enriched during pregnancy, which wasmainly related

to the increased diversity and abundance of taxa from class

Clostridia during pregnancy. Species from this class are

involved in energy uptake and adiposity54,55 that support the

growth and protection of the fetus. The phylum Bacteroidetes

was significantly reduced during pregnancy. The decrease in

Bacteroidetes' abundance was mainly related to pregnancy-

induced decline in the families Prevotellaceae,

Bacteroidaceae, Lachnospiraceae, and Sutterellaceae. These

families are associated with host energy metabolism.56

Besides, our data have limitations of a comparatively wide

range of BMI and age. We do not rule out the implication of

these factors in the differential bacterial composition among

the studied groups. Further, prospective studies are recom-

mended to analyze GM among pregnant and NP females of

the same BMI and age group.

The family Prevotellaceae was abundantly represented

with 12 different species, among which P. copri and

P. stercoreawere predominant. The abundance of both species

was profoundly lower in samples from pregnant women. P.

copri is one of the dominant human gut bacteria,57 which is

comparatively more abundant in non-Westerners5 and

improves intestinal permeability by degrading mucin.58 The

family Ruminococcaceae was discriminately enriched in third

trimester samples. Ruminococcaceae is a metabolically active

family that helps the host by providing short-chain fatty acids

and degrading indigestible polysaccharides.56 In addition,

Ruminococcaceae are associated with anti-atopy

properties,59 and their enrichment during the third trimester

could lead to a higher level in infants that could be helpful in

preventing atopic reactions.

In agreement with other studies,2,5 we noticed a higher

abundance of butyrate-producing species, such as

F. prausnitzii, Faecalibacterium spp., Eubacterium rectale,

andB. vulgatus. Similarly, the other butyrate-producing genera

from the class Clostridia (such as Moryella and

Anaerococcus)60 were uniquely present in samples from preg-

nant women. Butyrate contributes to the maintenance of nor-

mal blood pressure and the intestinal lining, and provides

energy to colonocytes.61 In addition, fiber-degrading species

(such as Succinivibrio spp.) and resistant-starch-degrading

species (such as Oscillospira spp.) also have relatively high

abundance during pregnancy.5,62 The pregnancy-associated

increase in species that degrade resistant starch and fiber

could be helpful in meeting the high-energy demand that

occurs during pregnancy.

In general, data generated from metagenomics and cul-

turomics were dissimilar in species' diversity and abundance.

The dominant species detected through metagenomics were

absent in culturomics and vice versa. The possible reasons

could include the limitation of appropriate growth conditions,

the composition of media being unable to promote the growth

of certain bacteria, the loss of some species during sample

dilution, and the secretion of bacteriocins by some bacteria

that inhibit the growth of other bacteria. Although culturomics

is laborious, it is effective in detecting minor flora. We were

able to isolate 132 species, out of which 113 were undetected

in metagenomic data. In agreement with Lagier et al,63 we

suggest that multiple types of growth conditions could max-

imize bacterial diversity; however, the gap between culturo-

mics and metagenomics could be reduced by improving the

DNA extraction protocol.

Conclusion
GM composition was substantially remodeled with preg-

nancy and affected bacterial diversity. GM harbors

diverse antibiotic resistance that is unrelated to an indi-

vidual’s age, BMI, or pregnancy status; however, such

a higher abundance of antibiotic resistance could be

a potential source for the emergence of new antibiotic-

resistant bacteria in the gut ecosystem. Culturomics

should be conducted in addition to metagenomics to

obtain a more complete profile and a better understand-

ing of functional repertoires. Further studies are recom-

mended to investigate evolutionary aspects of ARGs in

GM and their consequences on pregnancy and the fetus.
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