Association of \textit{pvl} gene with incomplete hemolytic phenotype in clinical \textit{Staphylococcus aureus}

Menglu Gao, Ruirui Sang, Gang Wang, Yuanhong Xu

Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, 230000, People's Republic of China

Purpose: This experiment aimed to evaluate the correlation between the hemolytic phenotype of \textit{Staphylococcus aureus} and \textit{pvl} gene in terms of characteristics of antibiotic resistance.

Materials and methods: Two-hundred and eleven strains of hospital-acquired \textit{S. aureus} and their bacterial susceptibility to 20 antibiotics were determined by MicroScan WalkAway96. All strains were cultured on Columbia sheep blood agar plates for 24 hours and then underwent ten passages for investigation of their hemolytic phenotypes. \textit{S. aureus} produced incomplete \(\beta\)-hemolytic phenotype, termed as \textit{S. aureus} strains with incomplete hemolytic phenotype (SIHP). The \textit{pvl} gene was identified by PCR amplification followed by DNA sequencing. Statistical analyses of the data were performed using SPSS version 16.0 software.

Results: Fifty-two (24.64\%) strains were confirmed to maintain the incomplete hemolytic phenotype of \textit{S. aureus} (SIHP). Meanwhile, 15 (7.11\%) of 211 strains were found to carry the \textit{pvl} gene, and eight of the 15 strains were SIHP. Compared with \textit{S. aureus} strains with complete hemolytic phenotype (SCHP), SIHP showed higher susceptibility to seven of the 20 antibiotics (oxacillin, ciprofloxacin, gentamicin, ceftriaxone, cefoxitin, levofloxacin, and moxifloxacin) \((P<0.05)\). The \textit{pvl}-positive bacteria had a higher rate of resistance to four antibiotics (rifampin, ciprofloxacin, levofloxacin, and moxifloxacin) in comparison with the \textit{pvl}-negative strains \((P<0.05)\).

Conclusion: SIHP had a high frequency of \textit{pvl} gene. The \textit{pvl}-positive isolates showed less resistance to rifampin, ciprofloxacin, levofloxacin, and moxifloxacin. Additionally, the majority of SIHP isolates (61.54\%) were methicillin-resistant \textit{S. aureus}. SIHP strains had significantly higher antibiotic resistance to cefoxitin when compared with SCHP, while SCHP strains had a high rate of antibiotic resistance to ciprofloxacin, gentamicin, ceftriaxone, levofloxacin, and moxifloxacin. The results may help to provide medical advice for selection of antibiotics for patients with SIHP-associated infections.

Keywords: \textit{S. aureus}, incomplete hemolytic phenotype, \textit{pvl}, antimicrobial drug resistance, virulence factor

Introduction

\textit{Staphylococcus aureus} is one of the most common pathogens isolated from both healthy individuals and patients worldwide, which can produce a variety of secreted toxins and cause various infections in humans.\(^1\)\(^-\)\(^3\) \textit{PVL} is one of the toxins of synerghobynemotropic exotoxin produced by \textit{S. aureus} and belongs to the pore-forming toxin family.\(^4\)\(^-\)\(^6\) \textit{PVL} shows strong lytic activity against host defense cells such as human polymorphonuclear neutrophils,\(^7\) monocytes, macrophages, and rabbit neutrophils but not murine neutrophils in vitro.\(^8\)\(^-\)\(^10\) Pore formation requires...
the presence of the two components of the toxin, LukS-PV and LukF-PV. Previous studies demonstrated that PVL aggravated many infections,11 such as skin and soft tissue infection,1 necrotizing pneumonia, bone joint infections, and even bacteremia.12–14

It has been found that the \textit{pvl} gene can spread from strain to strain by bacteriophages and plasmids.15,16 As a result of the \textit{pvl} gene’s transmission mechanism, the prevalence of \textit{pvl}-positive strains has gradually increased.17

The prevalence of the \textit{pvl} gene has been less common in methicillin-susceptible \textit{S. aureus} isolates than in methicillin-resistant \textit{S. aureus} (MRSA).18 The \textit{pvl} gene locus represents a stable genetic marker of community-acquired MRSA (CA-MRSA) strains.19 Studies have shown that PVL had a high proportion in CA-MRSA.20 The \textit{pvl} genes have also been reported to be present in 77% of the CA-MRSA isolates, but only 4% of HA-MRSA isolates were \textit{pvl}-positive.21 Although the toxin may be a highly linked epidemiological marker for CA-MRSA strains, PVL is not the major virulence determinant of CA-MRSA.22

Incomplete hemolytic phenotype has an opaque, darker hemolytic ring in contrast with the transparent hemolytic phenotype of \textit{S. aureus} strains with complete hemolytic phenotype (SCHP).23 Recently, Zhang et al proposed that a number of \textit{S. aureus} strains with incomplete hemolytic phenotype (SIHP) strains belong to the class of \textit{S. aureus}. The authors demonstrated that SIHP strains were MRSA which highly expressed \(\beta\)-hemolysin and carried the \textit{tst} gene. Because toxic shock syndrome toxin (expressed by \textit{tst}) causes toxic shock syndrome,24,25 SIHP possesses high virulence potential.23 Here we determined the prevalence of SIHP, antimicrobial resistance, and \textit{pvl} genes carried in \textit{S. aureus}, and compared the diversity of these factors between SIHP and SCHP strains.

Materials and methods

Bacterial strains

After excluding strains from repeated sources, a total of 211 strains were selected randomly and isolated from patients in the First Affiliated Hospital of Anhui Medical University from January 2016 to December 2017. Constituent ratios of departments where strains were isolated are shown in Table 1. The specimens included 30 samples of blood (14.22%), 70 of secreta (33.18%), 45 of sputa (21.33%), nine of shunt fluids (4.27%), 25 from wounds (11.85%), eight from interstitial fluids (3.79%), and 24 others (11.37%). The Medical Ethics Committee of the First Affiliated Hospital of Anhui Medical University approved this study (no Quick-PJ2018-07–29) and all isolates were collected with written informed consent from the patients, conducted in accordance with the Declaration of Helsinki.

Antimicrobial sensitivity testing

The bacteria were cultured on Columbia sheep blood agar plates at 35°C in an atmosphere containing 5% CO\(_2\) (v/v) for 24 hours. According to the manufacturer’s instructions, 1–2 single colonies were added to Mueller-Hinton broth (MHB), followed by proper adjustment of bacteria concentration. Based on the broth microdilution method and the Clinical and Laboratory Standards Institute criteria, bacterial identification and antimicrobial susceptibility testing were performed using MicroScan WalkAway 96 (Beckman Coulter, Brea, CA, USA).26 The bacterial isolates were subjected to 20 antibiotics for sensitivity testing. Antibiotics included: tetracycline, beta-lactams (oxacillin, ceftriaxone, cefoxitin), fluoroquinolones (levofloxacin, ciprofloxacin, moxifloxacin), gentamicin,

<table>
<thead>
<tr>
<th>Department</th>
<th>Strains, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurology</td>
<td>9 (4.27)</td>
</tr>
<tr>
<td>Orthopedic</td>
<td>21 (9.95)</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>5 (2.37)</td>
</tr>
<tr>
<td>ENT</td>
<td>3 (1.42)</td>
</tr>
<tr>
<td>Out-patient</td>
<td>11 (5.21)</td>
</tr>
<tr>
<td>Infectious diseases</td>
<td>11 (5.21)</td>
</tr>
<tr>
<td>Oncology</td>
<td>2 (0.95)</td>
</tr>
<tr>
<td>Intensive Care Unit</td>
<td>24 (11.37)</td>
</tr>
<tr>
<td>General surgery</td>
<td>15 (7.11)</td>
</tr>
<tr>
<td>Respiration</td>
<td>3 (1.42)</td>
</tr>
<tr>
<td>Plastic surgery</td>
<td>6 (2.84)</td>
</tr>
<tr>
<td>Cerebral surgery</td>
<td>3 (1.42)</td>
</tr>
<tr>
<td>Urology</td>
<td>5 (2.37)</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>14 (6.64)</td>
</tr>
<tr>
<td>Dermatology</td>
<td>24 (11.37)</td>
</tr>
<tr>
<td>Burns</td>
<td>12 (5.69)</td>
</tr>
<tr>
<td>Nephrology</td>
<td>18 (8.53)</td>
</tr>
<tr>
<td>Hematology</td>
<td>6 (2.84)</td>
</tr>
<tr>
<td>Obstetrics and gynecology</td>
<td>1 (0.47)</td>
</tr>
<tr>
<td>Plastic surgery</td>
<td>9 (4.27)</td>
</tr>
<tr>
<td>Rheumatism and Immunological Disease</td>
<td>9 (4.27)</td>
</tr>
<tr>
<td>Total</td>
<td>211 (100.00)</td>
</tr>
</tbody>
</table>
ampicillin, amoxicillin, daptomycin, clindamycin, nitrofurantoin, linezolid, penicillin, rifampin, sulfamethoxazole–trimethoprim, quinupristin-dalfopristin, erythromycin, and vancomycin.

Detection of hemolytic phenotype
All the strains were identified as *S. aureus* by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS VITEK V3.0, BioMérieux, Craponne, France). The strain ATCC25923 with the complete hemolytic phenotype was taken as SCHP reference. All the isolates were cultured on Columbia sheep blood agar plates from different companies (OXOID, UK; BioMérieux; BD Biosciences, San Jose, CA, USA; TianDa, People’s Republic of China) at 35°C in an atmosphere containing 5% CO₂ (v/v) for 24 hours, and 1–2 single colonies from one agar plate were taken to the next Columbia sheep blood agar plates from the same company and cultured for 24 hours, and then underwent ten serial passages. The hemolytic phenomenon was observed. Strains with incomplete hemolytic phenotype on all four blood agar plates and their phenotypes stable to ten passages were identified as SIHP and otherwise, as SCHP. Several SIHP colonies gathered and formed a grid-like hemolytic phenotype.

Detection of pvl genes
The strains were inoculated on Columbia blood agar plates and cultured at 35°C in an atmosphere containing 5% CO₂ for 24 hours. Four bacterial colonies were selected and suspended in 8 mL of MHB and cultured at 37°C with shaking at 200 rpm for 12 hours. One mL of MHB bacterial suspension was moved to a sterile centrifuge tube with shaking at 200 rpm for 12 hours. One mL of MHB bacterial suspension was moved to a sterile centrifuge tube with shaking at 200 rpm for 12 hours. One mL of MHB bacterial suspension was moved to a sterile centrifuge tube with shaking at 200 rpm for 12 hours. One mL of MHB bacterial suspension was moved to a sterile centrifuge tube with shaking at 200 rpm for 12 hours.

Testing for the pvl gene
Among the 211 clinical isolates, 15 (7.11%) yielded positive *pvl* gene amplification (Figure 2). Eight (53.33%) of the 15 *pvl*-positive isolates belonged to SIHP strains and seven (3.57%) of 196 *pvl*-negative isolates were SCHP strains. The prevalence of *pvl* gene in SIHP was significantly higher than that in SCHP (*P*<0.05) (Figure 3).

Drug resistance of *S. aureus*
Antimicrobial characteristics of 211 *S. aureus* isolates are demonstrated in Figure 4. It shows that *S. aureus* strains presented high resistance to oxacillin (45.02%), cefoxitin (46.45%), ampicillin (76.30%), penicillin (82.46%), and erythromycin (65.88%) when compared with the other antibiotics tested such as tetracycline (31.28%), ceftriaxone (21.80%), levofloxacin (27.01%), ciprofloxacin (32.70%), moxifloxacin (17.06%), gentamicin (28.44%), amoxicillin (24.64%), daptomycin (0.47%), clindamycin (37.91%), nitrofurantoin (0.95%), linezolid (0.95%), rifampin (13.74%), sulfamethoxazole–trimethoprim (9.00%), and quinupristin-dalfopristin (2.84%). Among 211 *S. aureus*
isolates, the minimum inhibitory concentrations (MICs) of vancomycin were found to be MIC =0.5 (two strains), MIC =1.0 (109 strains), MIC =2.0 (99 strains), and MIC =4.0 (one strain). The MICs of *S. aureus* are shown in Figure 5. No statistically significant difference in MICs was noted between SIHP and SCHP strains. Similarly, no difference was seen between *pvl*-positive and -negative isolates.

Antimicrobial characteristics of *pvl*-positive and -negative strains

In comparison with the sensitivity of *pvl*-negative strains to quinolones (levofloxacin 29.08%, ciprofloxacin 35.20%, and moxifloxacin 18.37%) and rifampin (14.29%), the sensitivity of *pvl*-positive *S. aureus* to quinolones (levofloxacin 0%, ciprofloxacin 0%, and moxifloxacin 0%) and rifampin...
(6.67%) was significantly elevated (P<0.05) (Figure 6). No statistically significant difference in antibacterial sensitivity was noted in the remaining 16 antibiotics between pvl-positive and -negative strains (P>0.05).

Antimicrobial characteristics of SIHP and SCHP strains

Compared with SCHP strains, SIHP strains had a remarkably higher susceptibility to levofloxacin, ciprofloxacin, and moxifloxacin. Additionally, SIHP strains were more susceptible to gentamicin and ceftriaxone than SCHP strains, but more resistant to cefoxitin than SCHP strains. There were 61.54% of SIHP strains but only 39.62% of SCHP strains found to be MRSA (P>0.05). All statistical differences between SIHP and SCHP strains are shown in Figure 7.

Discussion

Bacteriophages are responsible for spreading pvl gene among bacterial strains. Recently, phage-therapy as a therapeutic strategy in some infections has been proposed. Bacteriophages are able to completely prevent biofilm formation through this strain and eliminate the staphylococcal biofilms within 4 hours. In in vitro inhibitory assays, phage κ lysed a range of clinically isolated MRSA strains successfully. We speculate that bacteriophages might inhibit the resistance of pvl-positive strains to quinolones and rifampin.

The pvl gene prevalence of SIHP strains is significantly higher than that of SCHP strains. Moreover, SIHP strains have high susceptibility to quinolones and the susceptibility pattern is similar to pvl-positive strains. We believe that bacteriophages might inhibit the resistance of pvl-positive

Figure 3 Comparison of pvl gene between Staphylococcus aureus strains with incomplete hemolytic phenotype (SIHP) strains and S. aureus strains with complete hemolytic phenotype (SCHP) strains.

Notes: **P<0.01.**

Abbreviations: pvl, pvl-positive S. aureus; Npvl, pvl-negative S. aureus.

Figure 4 Antimicrobial characteristics of 211 Staphylococcus aureus in terms of 19 antibiotics.

Abbreviations: AMC, amoxicillin; AMP, ampicillin; CIP, ciprofloxacin; CLI, clindamycin; CRO, ceftriaxone; DAP, daptomycin; ERY, erythromycin; FOX, cefoxitin; GEN, gentamicin; I, intermediate; LNZ, linezolid; LUX, levofloxacin; MXF, moxifloxacin; NIT, nitrofurantoin; OXA, oxacillin; PEN, penicillin; QDA, quinupristin-dalfopristin; R, resistant; RIF, rifampin; S, susceptible; SXT, sulfamethoxazole–trimethoprim; TCY, tetracycline.

Figure 5 Comparison of MIC to vancomycin between Staphylococcus aureus strains with incomplete hemolytic phenotype (SIHP) strains and S. aureus strains with complete hemolytic phenotype (SCHP) strains as well as pvl-positive and -negative strains.

Notes: (NS), P>0.05, difference was not statistically significant.

Abbreviations: MIC, minimum inhibitory concentration; VAN, vancomycin; R, resistant; I, intermediate; S, susceptible; pvl, pvl-positive S. aureus; Npvl, pvl-negative S. aureus; NS, not significant.
strains to quinolones, and the correlation between pvl gene and incomplete hemolytic phenotype may be responsible for quinolones sensitivity of SIHP strains.

MRSA occurs more frequently in SIHP strains than SCHP ones, our results are similar to those in the study of Zhang et al. They demonstrated that SIHP isolates carried the tst gene which expressed toxic shock syndrome toxin and caused toxic shock syndrome. In the present study, we noted that the pvl gene was frequently carried by SIHP strains and they were more resistant to cefoxitin. Therefore, we suggest that SIHP might be a class of S. aureus with potentially high virulence, that commonly carries virulence factors and presents relatively high resistance to oxacillin and cefoxitin.

SIHP strains are more susceptible to gentamicin and ceftriaxone, and more resistant to oxacillin and cefoxitin than SCHP strains. There may be a series of common regulatory genes that regulate antibiotic sensitivity and hemolytic phenotype. The mechanism of susceptibility, however, remains unclear.

As described previously, SIHP strains with tst and pvl gene cause toxic shock syndrome and aggravate many infections. They have high susceptibility to quinolones, gentamicin, and ceftriaxone as well. Unfortunately, identification of antibiotic susceptibility from the isolation and culture of bacteria is time-consuming. Therefore, for patients with severe S. aureus infection, selection of antibiotics will be preferentially based on clinical experience. These results may assist when providing medical advice on the appropriate use of antibiotics when the S. aureus isolated from patients has been defined as incomplete hemolytic phenotype. The relationship between the pvl gene and drug resistance provides microbiologists with a way to explore how the PVL gene reduces drug resistance in S. aureus. Our study, however, may not reflect a general situation of hospital-acquired S. aureus in central China, due to the limitation of district and the number of S. aureus strains collected. Further approaches would be needed to clarify the significance of PVL gene in formation of incomplete hemolytic ring and increased antibiotic resistance of S. aureus.
Conclusion
Taken together, the frequency of pvl gene is likely associated with the incomplete hemolytic ring of S. aureus strains. pvl-positive S. aureus shows a high sensitivity to quinolones and rifampin. SIHP strains are susceptible to quinolones, ceftriaxone, and gentamicin but have a higher resistance to oxacillin and cefoxitin when compared with SCHP strains, which may be helpful for correct selection of antibiotics in patients with SIHP-associated infections.

Ethical approval
The Medical Ethics Committee of the First Affiliated Hospital of Anhui Medical University approved this study (no Quick-PJ2018-07-29) and all isolates were collected with written informed consent from the patients, in accordance with the Declaration of Helsinki.

Data availability
All data generated or analyzed during this study are included in this published article.

Acknowledgments
We are grateful to the Department of Anhui Provincial Hospital for the materials used in this study. We especially thank Dr JL Shen from the Key Laboratory of Parasitology and Zoonoses, Anhui for his technical assistance and for access to the laboratory facilities. This work was supported by Anhui Natural Science Foundation (9021138203).

Author contributions
All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References

Infection and Drug Resistance

Publish your work in this journal

Infection and Drug Resistance is an international, peer-reviewed open-access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventive strategies to minimize the development and spread of resistance. The journal is specifically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and the community. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/infection-and-drug-resistance-journal