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Background: Prostate cancer is the second leading cause of cancer-related deaths in

Western countries. Most patients diagnosed with advanced prostate cancer can be treated

with the main treatment: androgen deprivation therapy (ADT). The androgen receptor (AR)

signaling axis plays a pivotal role in the progression of prostate cancer. However, most

patients can ultimately progress to the castration-resistant prostate cancer (CRPC) stage

within 2 years. At this stage, drugs targeting the AR signaling axis, including enzalutamide

and abiraterone acetate, cannot prevent the progression of prostate cancer, thus predicting

a poor prognosis. The molecular mechanism lies in the aberrant AR reactivation, which

exhibits an adaptive response to ADT, such as the presence of AR splice variants. Thus,

CRPC treatment remains a challenge.

Purpose: In addition to the AR axis, a mechanism leading to this progression should be

determined. The present study mainly compared palmitoylated proteins between androgen-

treated LNCaP cells and non-treated LNCaP cells by palmitoylome profiling, to illustrate the

changes at proteomic levels.

Materials and methods: To screen the androgen-induced palmitoylated proteins, we

conducted proteomic experiments using clickable palmitate probe (Alk-C16) between three

individual pairs of androgen-treated and non-treated LNCaP cells.

Results: We identified 4351 unique peptides corresponding to 835 proteins, among them

a number of these identified proteins were palmitoylated proteins, particularly eIF3L.

Androgen treatment significantly increased the palmitoylation level of eIF3L, an individual

subunit of eIF3. As an initiation factor, eIF3L plays a pivotal role in the translation of

mRNAs encoding growth-promoting proteins by enhancing translation rates, thus controlling

cell proliferation.

Conclusion: In this study, we demonstrated that the regulation of eIF3L palmitoylation may

provide new directions for the therapy of prostate cancer. Moreover, the increased level of

androgen-induced eIF3L may be used as a biomarker for the diagnosis of early-stage prostate

cancer.
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Introduction
Updated statistics in 2018 indicate that prostate cancer remains the most commonly

diagnosed malignant tumors in men. A total of 164,690 new cases of prostate cancer

have been diagnosed and 29,430 related-deaths have been reported in the United

States.1 An estimated 450,000 males have been diagnosed with prostate cancer in

Europe, comprising a large proportion of the overall burden of cancers worldwide.2

Prostate cancer is the most common noncutaneous malignancy diagnosed in American
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men and androgen-dependent malignant tumor among

males.3,4 The interaction between androgen and androgen

receptor (AR) is the cornerstone that leads to progression,

thus drugs targeting the AR signaling axis remain the prin-

cipal therapy for advanced prostate cancer.5 Androgen depri-

vation therapy (ADT) is initially effective, leading to

a marked decrease in PSA. However, the majority of the

patients with advanced prostate cancer can progress and

become refractory to ADT owing to aberrant AR activation,

which is castration-resistant prostate cancer. The median

survival at this stage is historically less than 2 years.6,7 The

associated mechanisms include the occurrence of AR splice

variants,8 inducing 20–40% of the patients to respond poorly

to enzalutamide or abiraterone, both of which are large

breakthroughs in the treatment of metastatic castration-

resistant prostate cancer (CRPC). Secondary resistance to

these drugs is regarded as an adaptive change in prostate

cancer cells. Thus, therapeutic methods targeting the novel

mechanism need to be developed to meet the clinical need of

patients with metastatic CRPC.

Posttranslational modification helps provide protein with

additional functions, among which protein fatty acylation is

rather common.9 Protein fatty acylation is the covalent attach-

ment of lipids onto proteins, controlling protein–protein and

protein–membrane interactions, which play a pivotal role in

modulating the biological functions of proteins and mediating

their targeting for activation.10,11 Thus, this modification is

essential for cells to maintain homeostasis and to respond

instantly to extracellular signals! Several forms of protein

fatty acylation exist in eukaryocytes, which primarily include

N-myristoylation and S-palmitoylation. S-palmitoylation is

the addition of a 16-carbon saturated fatty acid, the so-called

palmitate, to cysteine residues via a labile thioester linkage12

(Figure 1A). Among these modifications, palmitoylation is

a common form of protein fatty acylation, by which protein

hydrophobicity is efficiently increased to facilitate membrane

association. In addition, palmitoylation is closely associated

with the regulation of protein trafficking, stability and

activity.13,14 Several studies have demonstrated that protein

palmitoylation is associated with the development of disease,

tumorigenesis and prognosis. Studies have proved the pre-

sence of aberrant palmitoylation in Huntington disease, caused

by a CAG expansion in the huntingtin (HTT) gene. The

palmitoyl acyltransferases for HTT are disturbed, resulting in

reduced palmitoylation of HTT and exhibiting itself with

motor, cognitive and psychiatric deficits.15 Moreover, Ras

tumorigenesis is also regulated by palmitoylation. The Ras

family of proteins widely consists of cancer drivers and plays

S-palmitoylation
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Figure 1 (A) Structure of common protein fatty acylation. S-palmitoylation is the addition of the 16-carbon palmitate to a cysteine residue via a reversible thioester linkage.

(B) Reversible S-palmitoylation. Palmitate is transferred from palmitoyl-CoA, which is produced by acyl-CoA synthetase, to a protein by protein acyl transferase. By

contrast, palmitate on proteins is cleaved by palmitoyl-protein thioesterase.
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a role in signaling, cell proliferation, differentiation and

survival.16,17 Two reports in 2005 indicated that the presence

of Ras was controlled by a transport cycle via palmitoylation

and depalmitoylation,18,19 thus determining its location to

membrane and subsequent oncogenic signaling (Figure 1B).

Therefore, targeting and disrupting membrane interactions of

specific Ras isoforms represent a significant therapeutic strat-

egy for regulating Ras-driven tumorigenesis. Nature in 2017

indicated that palmitoylation-mediated activation of MC1R

could prevent melanomagenesis.20 From the aforementioned

discussion, palmitoylation plays a key role in membrane loca-

tion, subsequent signaling pathway and tumorigenesis.

Considering the limitations of the current drug therapy for

CRPC, we explore palmitoylated proteins in androgen-

treated LNCaP cells and non-treated LNCaP cells, to reveal

the mechanism of prostate cancer progression by protein pal-

mitoylation and identify a new drug target!

Click-chemistry-based chemical probes for the detection

of protein palmitoylation hasten the discovery of novel

palmitoylated proteins and elucidate their biological

functions.21 The combination of mass-spectrometry-based

quantitative proteomics with click chemistry probes can be

used to explore the dynamics of protein palmitoylation

under different physiological or pathological

conditions.22,23 In the present study, we used the chemical

tool and compared the palmitoylated proteins between

androgen-treated LNCaP cells and non-treated LNCaP

cells in the palmitoylome profiles. We found that the palmi-

toylation level of eIF3L was high in both androgen-treated

and non-treated LNCaP cells, and androgen treatment sig-

nificantly increased the palmitoylation level of eIF3L.

Considering that eIF3L serves as an initiation factor and

palmitoylated eIF3L might cooperate with the initiation

complex and enhance the translation of mRNAs,24 we

demonstrated that androgen-induced palmitoylation of

eIF3L might play a pivotal role in AR gene expression and

cancer progression, making it possible to provide new direc-

tions for therapeutic targets. Moreover, the high level of

palmitoylated eIF3L induced by androgen may serve as

a novel biomarker in the diagnosis of early prostate cancer.

Materials and methods
S-palmitoylation assay
Prior to the experiments, LNCaP cells were seeded with

complete media onto 6 cm-dishes (5×105 cells/dish) and

incubated for 48 hrs. We purchased LNCaP cells from

American Type Culture Collection, which were grown in

RPMI-1640 media supplemented with 10% FBS and incu-

bated in a 5% CO2 humidified chamber at 37°C for 48 hrs

before any experiment. The cells were then treated with

R1881 (10 nM) or DMSO in RPMI-1640 media supple-

ment with 0.5% FBS. After 24 hrs, the cells were har-

vested for S-palmitoylation assay.

The S-palmitoylation assay was performed in accordance

with the protocols described previously25 and slightly mod-

ified. The following are the inclusive reagents needed in this

experiment: Nethylmaleimide (NEM, Sigma), Protein (A/G)

UltraLink Resin (Thermo), Rabbit anti-eIF3L (1:2000,

Protein tech), hydroxylamine (Sigma), tris (2-carcboxy-

ethyl) phosphine hydrochloride (TCEP, Sigma), tris [(1-ben-

zyl-1H-1, 2, 3-triazol-4-yl) methyl] amine (TBTA, Sigma),

Thiopropyl Sepharose 6B (Sigma) and azide-agarose beads

(Nanocs). LNCaP cells were homogenized in lysis buffer

(10 mM sodium phosphate, 2 mM Na2EDTA,

0.32 M sucrose, 1% Triton X-100, 50 mM NEM and Pierce

protease and phosphatase inhibitor cocktail, pH 7.4) for 30

mins. The lysates were then immunoprecipitated using pro-

tein A/G resin preloaded with eIF3L antibody overnight. The

following day, the protein A/G resin was washed three times

and incubated with elution buffer (1% SDS, 10 mM sodium

phosphate, 2 mM Na2EDTA, 0.32 M sucrose) at 50°C for 5

mins to release eIF3L proteins. Eluted samples were divided

into two equal portions—one treated with

1 M hydroxylamine and the other with 1 M Tris·HCl (pH

7.4) (as a control) with the presence of activated thiol-

sepharose 4B (Sigma). After incubation for 2 hrs at room

temperature, the protein A/G resin was washed with a wash

buffer (10 mM sodium phosphate, 2 mM Na2EDTA,

0.32 M sucrose, 1% Triton X-100, 500 mM NaCl and 0.2%

SDS) three times. Western blot analyses were performed to

determine the presence of eIF3L protein.

Metabolic labeling and click chemistry

accumulation
Before the experiments, the LNCaP cells were seeded with

complete media onto 6-cm dishes (5×105 cells/dish) and

then incubated for 48 hrs. Metabolic labeling and click

chemistry were performed in accordance with the proto-

cols previously described26 and then modified slightly. The

ω-alkynyl fatty acid analog, Alk-C16, was dissolved in

DMSO to generate 50 mM stock solutions and stored at

−80°C. Prior to cell treatment, Alk-C16 was dissolved in

RPMI-1640 serum-free media supplement with 5% BSA

(fatty acid free) at a final concentration of 100 μM. The
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fatty acid media solutions were sonicated for 15 mins at

room temperature. The fatty acid media were then divided

into two equal portions—one added with R1881 (10 nM)

and the other added with DMSO as a control. The seeded

LNCaP cells were washed with PBS once and added the

two fatty acid media, respectively, for 24 hrs at 37°C/5%

CO2. After incubation for 24 hrs, the cells were washed

three times and homogenized in 500 μL lysis buffer (1%

Nonidet P-40/150 mM NaCl/Pierce protease and phospha-

tase inhibitor cocktail/100 mM sodium phosphate, pH 7.5)

for 30 mins at 4°C. The protein extracts were then sub-

jected to the probe labeling reaction for 1 hr at room

temperature, at final concentrations of the following

reagents: 1 mM azide-agarose beads, 1 mM TCEP dis-

solved in water, 0.2 mM TBTA dissolved in DMSO/tert-

butanol (20%/80%) and 1 mM CuSO4 in PBS. The order

of addition of the reagents to the protein extracts is impor-

tant for the reaction. With click chemistry, the Alk-C16-

conjugated proteins were accumulated in the azide-agarose

beads. The agarose beads were washed three times with

the lysis buffer at room temperature. The proteins accu-

mulated in the beads were subsequently digested for mass

spectrometry.

nLC-MS/MS analysis
Proteomic profiling was performed on an EASY nLC1000

(Thermo Fisher) system with an LTQ-Orbitrap-Elite

(Thermo Fisher) mass spectrometer. Tryptic peptides

were desalted using 0.1% fluoroacetic acid and loaded on

a trap column (PepMap C18, 300 μm×5 mm). The pep-

tides were then eluted to a 3 μm fused silica capillary

column (75 μm×500 mm). Finally, the peptides were sepa-

rated at two gradients: the gradient from 100% mobile

phase A (97.9% H2O, 2% acetonitrile, 0.1% formic acid)

to 30% mobile phase B (80% acetonitrile, 19.02% H2O,

0.08% formic acid) in the first 80 mins and the mobile

phase B from 30% to 100% in the next 10 mins. The

eluted peptides were directly sprayed with a voltage of

1.6 kV into the on-line coupled LTQ-Orbitrap-Elite MS

using a nano electro-spray ionization source equipped with

a metal-coated nano-scale emitter. Mass spectra were

obtained over a mass-to-charge ratio (m/z) range of

300–1800 Th at a resolving power of 30,000 at 400 m/z.

Database search
The recorded MS spectra were analyzed using MaxQuant

Software (version 1.5.5.1). The MS/MS peak list file was

performed by searching against a forward and reverse

version of the UniProtKB/Swiss-Prot human database

(generated from version 2017_05, human taxonomy,

20,316 entries). The cutoff of the false discovery rate for

peptide and protein identification was set to 0.01, and only

peptides with ≥7 amino acid residues were allowed for

identification. Label-free quantitation (LFQ) was con-

ducted using MaxQuant on identified razor and unique

peptides to properly quantify identified proteins.27 Gene

ontology (GO) analysis was performed using DAVID

(NIH) configured to assign the identified proteins with

cellular function GO terms.

Data processing and statistical analysis
Protein abundances normalized using the LFQ algorithm

integrated in MaxQuant were Log2 transformed for further

analyses. Filtering was conducted in Microsoft Excel 2010.

DanteR (version 1.0.1.1) and Perseus (version 1.5.5.3) were

used to perform different types of statistical analysis includ-

ing Log2 transformation, correlation plot, statistical tests,

imputation, P-value adjustment and volcano plot.27

Results
Design and synthesis of clickable

palmitate probe (Alk-C16)
Both alkyne and azide analogs of palmitic acid were

developed for click chemistry applications. In the current

study, we chose the alkyne analog because it exhibited

physicochemical properties similar to those of the wild

type fatty acid carbon chain and maintained the hydropho-

bicity for membrane affinity.26 (Figure 2) We added the

alkyne group at the ω-position of a fatty acid. The position

is the terminal end farthest from the carboxyl

functionality.26 Our ω-Alkynyl palmitate analog (Alk-

C16) was synthesized from alcohols containing internal

alkynes via a zipper reaction. In the reaction, an internal

alkyne was isomerized to a terminal alkyne followed by

Jones oxidation to yield the ω-alkynyl palmitate analog

with high yield and purity.26

Proteomic experiments using clickable

palmitate probe (Alk-C16)
To compare the palmitoylated proteins between androgen-

treated LNCaP cells and non-treated LNCaP cells in the

palmitoylome profiles, Alk-C16, a palmitate fatty acid ana-

log, was metabolically incorporated onto cellular proteins

and the proteins modified with Alk-C16 were analyzed

using MS-based proteomics and an informatics-assisted
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label-free strategy. First, the LNCaP cells were added with

Alk-C16 and then incubated for 24 hrs. When the cells were

metabolically incorporated with Alk-C16, the cells were

divided into two parts to check the androgen-induced palmi-

toylated proteins: one treated with androgen (R1881) and the

other with DMSO as the control. After 24 hrs, the cells were

harvested and lysated. Alk-C16 incorporated onto acylated

proteins was chemoselectively ligated to azide agarose beads

by a Cu1-catalyzed alkyne-azide [3+2] cycloaddition reac-

tion (click chemistry). The conjugated proteins, which were

theoretically palmitoylated proteins, were accumulated in

azide agarose beads by ligation. The conjugated proteins

were then digested on the agarose beads for MS and label-

free quantitation.

Androgen promotion of eIF3L

palmitoylation
We supplied three individual pairs of androgen-treated and

non-treated LNCaP cells to screen the androgen-induced

palmitoylated proteins. As a result, we identified 4351

unique peptides corresponding to 835 proteins (mascot

score>2, P<0.05). Meanwhile, we filtered the outlier pro-

teins and contaminant proteins. The identified proteins

were then analyzed in LFQ by MaxQuant version.

A number of these identified proteins were palmitoylated

proteins, particularly the eIF3 initiation factors, including

its subunits eIF3j, eIF3g, eIF3c, eIF3b, eIF3a and eIF3L.

We have also compared the amino acid sequences of

eIF3L of Homo sapiens (human) with the mass spectrum

results of eIF3L, and they are consistent (Figures 3 and 4).

The protein with the relatively higher LFQ activity was

eIF3L, one subunit of eIF3, both in androgen-treated and

in non-treated LNCaP cells. Among these 6 subunits of

eIF3, the androgen-induced candidates were identified as

their LFQ activities were significantly upregulated (fold

changes>1.5, P<0.05) in triplicate samples of androgen-

treated vs non-treated LNCaP cells. Notably, both eIF3a

and eIF3L were identified as the candidates (Figure 5).

To strengthen the evidence, thiopropyl captivation of

S-palmitoylated protein assay was further performed to

explore whether androgen promotes the eIF3a and eIF3L

palmitoylation levels in LNCaP cells, when the cells were

treated with R1881 (androgen). The eIF3L palmitoylation

level was significantly upregulated. This result was con-

sistent with that of MS. We concluded from the aforemen-

tioned results that androgen upregulates the palmitoylation

of eIF3L in human prostate LNCaP cells (Figure 6).

To further elucidate the regulatory effect of androgen

on eIF3L palmitoylation, androgen (R1881) and abirater-

one were added in the cultured LNCaP cells at the same

time, but the concentration of abiraterone is varied from

0.1 µmol/L to 0.5 µmol/L; as the result shown in Figure 7,

abiraterone could downregulate the eIF3L palmitoylation

level by inhibiting androgen (R1881). From the above

results, it can be seen that eIF3L palmitoylation is clearly

regulated by androgen.

Discussion
Protein fatty acylation is critical in maintaining cellular

homeostasis and regulating signaling pathway. We have

shown that the clickable palmitate probe (Alk-C16) can be

used for biochemical detection and cellular imaging of lipid-

modified proteins. It facilitates our study of the dynamic

behavior of lipid-modified proteins in various diseases and

the determination of the pathological mechanism. It also has

several advantages in cell culture for the detection of pro-

teins that are palmitoylated under metabolic conditions such

as drug treatment.22,23 Moreover, combined with quantita-

tive proteomics, the clickable palmitate probe can quantify

the palmitoylated proteins as well.

Protein synthesis is increasingly recognized as an

important component in tumorigenesis and progression.

Enhanced translation rates are closely associated with

Protein

Agarose
beads

Agarose
beads

Click reaction
Cellular

proteome

N N

N
N

N

S S
O OC

C

OH

O

Cell

Protein

N3

Figure 2 Process of labeling cellular lipid-modified proteins with fatty acid analogs. Synthetic ω-alkynyl fatty acids are added to cultured cells and metabolically incorporated

into acylated proteins. After workup, the alkynyl group is chemoselectively ligated to azide-tagged biotin or fluorophore by a Cu1-catalyzed alkyne-azide [3+2] cycloaddition

reaction.
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malignant transformation.28,29 Genome-wide analyses of

mRNA translation by ribosome profiling indicates that

translational control contributes significantly to overall

gene expression.30 The initiation phase of protein synth-

esis is rate-limiting for most mRNAs. The translational

components, particularly some initiation factors, play

a pivotal role in the translational regulation.31

eIF3 is the largest of the initiation factors, comprising 13

non-identical protein subunits (eIF3a to m). It binds stably to

40S ribosomal subunits and promotes the binding of methio-

nyl-tRNAi and mRNA to form the 40S initiation complex.

The individual over-expression of 6 different eIF3 subunits is

observed in various tumors, by enhancing the translation of

mRNAs that encode growth-promoting proteins.32 The m7G

cap-dependent scanning pathway of initiation involves the

binding of a Met-tRNAi-40S ribosomal complex to the 5´-

terminal region of an mRNA, followed by 5´ to 3´ scanning

along the mRNA, recognition of the initiation codon, and

Figure 3 The mass spectrum results of eIF3L palmitoylation.
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junction of the 60S subunit.33–36 The 80S initiation complex

formed can then enter the elongation phase of protein synth-

esis. The ribosomal complex, often called the 43S preinitia-

tion complex or (43S PIC), comprises the 40S ribosome,

eIF1,eIF1A, eIF3, and the ternary complex, eIF2-GTP-Met-

tRNAi.

In our recent study, we detected the androgen-induced

palmitoylated proteins by comparing the palmitoylome

profile of androgen-treated LNCaP cells with that of non-

treated cells. The results demonstrated that androgen sig-

nificantly increased the level of palmitoylated eIF3L in

androgen-treated LNCaP cells. This rapid response to

Figure 4 The amino acid sequences of eIF3L of Homosapiens (human). The partial highlighted red sequences of eIF3L are consistent with the mass spectrum results by

comparing Figure 3 with Figure 4.
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extracellular signal: the androgen,is closely associated

with the dynamic palmitoylated level of eIF3L. Prostate

cancer is an androgen-driven solid tumor; thus, many

therapeutic strategies target the AR signaling axis.

However, when patients progress to the CRPC stage, the

administration of drug therapy remains a challenge for

urologists.

This preliminary study identified that androgen can

induce the palmitoylation of eIF3L, which serves as the

initiation factor and regulates protein expression and cell

growth. Over-expression of eIF3 subunits is observed in

many tumors by enhancing the translation of mRNAs.

Further studies should be performed to confirm the corre-

lation of palmitoylated eIF3L and cell proliferation. In

addition, the correlation between the palmitoylated eIF3L

and the prognosis of PCa patients was also worthy of

further study. It is hoped that all the questions will be

resolved with our proposed methods.

Conclusion
The results in this study indicate that other mechanisms

may exist in the development and progression of prostate

cancer. Androgen-induced protein palmitoylation may pro-

vide a new direction for the treatment of prostate cancer

and the level of palmitoylated eIF3L may be a biomarker

to detect early prostate cancer.
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