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Abstract: STAT3 is the most ubiquitous member of the STAT family and involved in many

biological processes, such as cell proliferation, differentiation, and apoptosis. Mounting

evidence has revealed that STAT3 is aberrantly activated in many malignant tumors and

plays a critical role in cancer progression. STAT3 is usually regarded as an effective

molecular target for cancer treatment, and abolishing the STAT3 activity may diminish

tumor growth and metastasis. Recent studies have shown that negative regulators of

STAT3 signaling such as PIAS, SOCS, and PTP, can effectively retard tumor progression.

However, PIAS, SOCS, and PTP have also been reported to correlate with tumor malig-

nancy, and their biological function in tumorigenesis and antitumor therapy are somewhat

controversial. In this review, we summarize actual knowledge on the negative regulators of

STAT3 in tumors, and focus on the potential role of PIAS, SOCS, and PTP in cancer

treatment. Furthermore, we also outline the STAT3 inhibitors that have entered clinical trials.

Targeting STAT3 seems to be a promising strategy in cancer therapy.
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Introduction
STAT protein family members, including STAT1, STAT2, STAT3, STAT4, STAT5

(STAT5A and STAT5B), and STAT6, are important transducers of many cytokines

and growth factors.1 Of the seven members of the STAT protein family, STAT3 is

the most common, and is constitutively activated or overexpressed in approximately

70% of human solid and hematological tumors compared with normal tissue.2

STAT3 is activated by phosphorylation to form a homodimer and then translocates

to the nucleus. The nuclear homodimer recognizes and binds to STAT3-specific

DNA-binding elements that can regulate the expression of target genes associated

with cell growth, proliferation, differentiation, apoptosis, and immunoresponse.3

Aberrant activation of STAT3 can induce malignant cell transformation and is

associated with poor prognosis of some tumors.4–10 It has been reported that

disruption of constitutively activated STAT3 can suppress tumor-cell growth and

promote cell apoptosis, and the STAT3-signaling pathway has become an attractive

target for cancer therapy.4–7,11 Therefore, great efforts have been made to discover

new selective inhibitors targeting STAT3 signaling. Recent studies have shown that

several negative regulators of STAT3 signaling, including PIAS, SOCS, and PTP,

can effectively prevent cancer progression (Figure 1).12–17 However, these negative

regulators have also been reported to correlate with tumor malignancy, and their

biological functions in tumorigenesis and antitumor therapy are somewhat contro-

versial. Here, we review actual knowledge on PIAS, SOCS, and PTP in cancer and
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summarize the STAT3 inhibitors that have entered clinical

trials, in order to evaluate the role of targeting STAT3 in

cancer therapy.

Protein inhibitor of activated STAT
(PIAS) family
There are four PIASgenes inmammals:PIAS1,PIAS2,PIAS3,

andPIAS4. These genes share 40% of sequence homology and

a similar domain organization, and the protein corresponding

to each gene has a Zn-binding ring-finger domain in the central

portion (Figure 2).18 PIAS proteins were initially identified as

inhibitors of STAT transcription factors (Figure 1),19,20 but in

fact they can regulate a broader range of biological processes,

including nuclear trafficking andDNA-damage repair by inter-

acting with other transcription factors, such as NF-κB and

p53.21 PIAS proteins may regulate transcription through sev-

eral mechanisms (Figure 1), eg, blocking the DNA-binding

activity of transcription factors, recruiting transcriptional co-

repressors, and promoting protein SUMOylation.22 It has been

reported that PIAS proteins can bind to activated STAT dimers

and prevent them from binding DNA (Figure 1). PIAS1 and

PIAS3 bind to STAT1 and STAT3, respectively, and inhibit

transcriptional activity of STAT1 and STAT3.19,20

A basal amount of PIAS3 has been shown to exist in the

nucleus in most normal human epithelial and endothelial

cells.23 Due to the inhibitory effect of PIAS3 on STAT3

activation, downregulation of PIAS3 expression may play

a critical role in cancer development. As a matter of fact,

many studies have demonstrated that PIAS3 expression is

reduced in various cancers.24–27 For example, PIAS3

mRNA is undetectable in most lymphoma cells, and

absence of PIAS3 partly contributes to the high levels of

activated STAT3 in these cells.24 The PIAS3 protein is also

absent in most lung squamous-cell carcinoma (SCC).12

Moreover, the association of low PIAS3 expression with

increased STAT3 activation has been found in malignant

mesothelioma.27 Lastly, it has been shown that there is

reduced PIAS3 expression in glioblastoma tissue that can

promote glioblastoma-cell proliferation.25,26

In contrast, a lot of studies have demonstrated that

upregulation of PIAS3 expression can inhibit cell prolifera-

tion and increase drug chemosensitivity in various tumors.

Inhibition of constitutively activated STAT3 by curcumin

attenuates tumor-cell growth by upregulating PIAS3 in

ovarian and endometrial cancer cells.13 Overexpression of

PIAS3 contributes to suppression of lung cancer–cell

growth and restores drug chemosensitivity.28–30 In prostate
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Figure 1 The negative regulators of JAK-STAT signaling. Binding of the ligand to cytokine receptor induces receptor dimerization and activation of receptor associated JAK

kinase, which in turn phosphorylates STAT proteins. After forming a homodimer, STAT proteins translocate to the nucleus to control gene expression. Negative regulation

of the JAK-STAT pathway is provided by PTPs, SOCS and PIAS proteins.
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cancer, overexpression of PIAS3 induces cancer-cell apop-

tosis both in vitro and in nude mice.31 In addition, PIAS3

overexpression can reduce STAT3 transcription and inhibit

glioblastoma-cell proliferation.26 All these findings indicate

that PIAS3 may be an attractive candidate for targeting the

JAK–STAT signaling pathway and restoring sensitivity to

chemotherapeutic drugs in cancer therapy.

However, overexpression of PIAS genes has also been

observed in some cancers.23,32 PIAS1 is overexpressed in

human prostate cancer, and enhances cancer-cell growth

through inhibition of p21.33,34 High PIAS1 expression is asso-

ciated with adverse patient outcomes in multiple myeloma.35

Additionally,PIAS3 is overexpressed in colorectal cancer.36 The

mechanism of the PIAS proteins promoting tumorigenesis may

be related to their SUMO-ligase activity. Through

SUMOylation, PIAS proteins can interact with several tumor

suppressors and oncogenes including TP53, PML, AKT, MYC,

and FAK.36 This field needs to be further explored in the near

future.

In conclusion, the biological function of PIAS in

tumorigenesis and antitumor therapy is somewhat contro-

versial. Therefore, much more detailed genetic and func-

tional analyses of PIAS should be performed to clarify the

inconsistencies and thus better to understand the role of

PIAS in cancer therapy.

Suppressor of cytokine–signaling
proteins
The mammalian SOCS family consists of eight members:

SOCS1–7 and the cytokine-inducible SH2-containing pro-

tein. They all are negative-feedback regulators of the JAK–

STAT signaling pathway.37 Structures of SOCS family mem-

bers are characterized by an N-terminal region of variable

length and limited homology, a central SH2 domain, and

a conserved SOCS box at the C-terminus (Figure 2).38

SOCS proteins inhibit JAK–STAT signaling by mechanisms

(Figure 1) of blocking STAT recruitment to the cytokine

receptor by shielding the STAT-binding sites of the receptor,

binding to JAKs and inhibiting their kinase activities, and

targeting receptor proteins or JAKs for proteosomal degrada-

tion via ubiquitination.39,40 A positive correlation has been

proven between SOCS dysregulation and tumor progression.

Several members of the SOCS family have been identified as

tumor suppressors, and dysregulation of their biological roles

in controlling cytokine and growth-factor signaling may

contribute to the development of many human cancers.41,42

SOCS1, SOCS2, and tumors
Hypermethylation and silencing of SOCS1 have been

commonly reported in various kinds of tumors, including
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members are characterized by their N-terminal region with variable length and limited homology, an extended SH2 domain (ESS), a central SH2 domain and

a conserved SOCS box at the C-terminus.
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cervical cancer, esophageal SCC (ESCC), hepatocellular

carcinoma, breast cancer, ovarian cancer, glioblastoma

multiforme, acute myeloid leukemia, and chronic mye-

loid leukemia.43–49 Methylation of SOCS1-promoter CpG

islands contributes to the transformation of liver cirrhosis

to hepatocellular carcinoma.50 The SOCS1 gene has been

found to be frequently mutated in both classical

Hodgkin's lymphoma and primary mediastinal B-cell

lymphoma.51,52 Restoration of SOCS1 gene expression

suppresses cell growth in acute myeloid leukemia,53

breast cancer,54 ovarian cancer, and hepatocellular

carcinoma.46,55 Hypermethylation of SOCS1 is reversed

to an unmethylated state during chronic myeloid leuke-

mia patients’ remission phase.49 In gastric cancer, loss of

the SOCS1 protein is involved in tumor progression and

lymph-node metastasis.56 Spontaneous colorectal cancer

is also found in SOCS1-knockout mice.57 In addition,

SOCS1 expression is correlated with the clinical stages

of some tumors. The SOCS1 level at stages II-IV is lower

than at stage I in colorectal tumors. Meanwhile,

the SOCS1 protein is highly expressed in well-

differentiated adenocarcinomas.58 High mRNA levels of

SOCS1 are also associated with early tumor stages, and

can improve clinical outcomes in breast cancer.59 Breast

cancer patients with positive SOCS1 expression exhibit

decreased incidence of detectable circulating tumor cells

in peripheral blood.60 In glioblastoma multiforme, hyper-

methylation-mediated silencing of SOCS1 enhances

tumor radioresistance.47

In light of these findings, SOCS1 displays a role as

a tumor suppressor in most tumors through inhibiting

tumor proliferation and invasion, as well as reducing

the sensitivity of tumor cells to cytokines or hormones.

Molecular mechanisms underlying the antiproliferative

effect of SOCS1 on tumor cells are inhibition of JAK–

STAT3 and other signaling pathways. In non-small-cell

lung cancer, SOCS1 presents its potent antiproliferative

effects through blockage of the JAK–STAT signaling and

FAK-dependent signaling pathways.61 SOCS1 also exerts

its growth-inhibitory function through downregulation of

cyclin D1, CDK2, and CDK4 in prostate cancer.62 In

addition, SOCS1 has been reported to inhibit the invasion

and migration of colorectal cancer by preventing epithe-

lial–mesenchymal transition and promotes mesenchy-

mal–epithelial transition by increasing E-cadherin and

decreasing ZEB1 observed in cell cultures and mouse-

xenograft models.63

Similarly, hypermethylation of SOCS2 has been

detected in ovarian cancer.46 SOCS2 CpG islands were

found to be hypermethylated in 14% of primary ovarian

cancers, but not in normal tissue. Furthermore, high

SOCS2 expression is closely associated with favorable

prognosis in primary breast cancer, and survival time

also shows an evident positive correlation with SOCS2

expression in breast cancer patients.64

SOCS3 and tumors
In various human cancers, reduced expression or silencing

of SOCS3 is associated with constitutive STAT3

activation,15 and hyperactivation of STAT3 can contribute

to tumorigenesis by inducing multiple tumor-promoting

genes.65 Hypermethylation of SOCS3 is mostly found in

head-and-neck cancer,66 lung cancer,67 glioma,68

cholangiocarcinoma,69 prostate cancer (but not in benign

prostate hyperplasia),70 Barrett esophagus carcinoma, and

ulcerative colitis–related colorectal cancer.71,72 Reduced

SOCS3 expression has been detected in human malignant

melanoma.73 In hepatocellular carcinoma, level of SOCS3

expression is inversely correlated with STAT3 activation.74

Loss of SOCS3 activates STAT3, promotes cell prolifera-

tion, and leads to enhanced hepatitis-induced

hepatocarcinogenesis.75 Moreover, restoration or upregu-

lation of SOCS3 expression can suppress tumor growth

and metastasis in some malignancies.76–78 For example,

exogenous SOCS3 can inhibit cell growth and enhance

cell sensitivity to radiotherapy in human non-small-cell

lung cancer.79 The antitumor mechanism of SOCS3 may

involve its negative regulation of the JAK–STAT and other

signaling pathways.80–82 In prostate cancer, SOCS3 antag-

onizes the proliferative and migratory effects of FGF2 by

inhibiting p44/p42 MAPK signaling.80 Other studies have

also demonstrated that SOCS3 can inhibit the proliferation

of mesothelioma cells via multiple signaling pathways,

including JAK–STAT3, ERK, Fak, and p53.81 In addition,

SOCS3 has also been found to inhibit inflammation-

associated tumorigenesis in the colon through both

STAT3 and NFκB pathways.82

SOCS4, SOCS5, and tumors
Some studies have proven that SOCS4 can suppress tumor

growth.59,83–85 In human breast cancer, SOCS4 expression is

inversely associated with TNM stage, and high SOCS4

expression predicts a favorable prognosis.59 Meanwhile, an

inverse relationship between SOCS4 and EGFR expression
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has also been found in aggressive hepatocellular carcinoma.83

Compared with noncancerous gastric tissues, gastric cancer

elicits much lower SOCS4 expression, accompanied by

hypermethylation of SOCS4-promoter CpG sites.84

Moreover, in vivo studies using several mouse models have

demonstrated that SOCS4 is able to suppress tumors derived

from epithelial cells and that RUNX1 mediates repression of

the SOCS4 promoter to reduce SOCS4 level and increase

STAT3 activity, thereby promoting tumor development.85

Similarly to SOCS4, SOCS5 is also able to suppress

tumor development.43,86,87 SOCS5 expression is higher in

normal human cervical tissue than in neighboring cervical

tumors.43 Significant reduction of SOCS5 is detected in

the thyroid-gland cancer tissue than normal tissue,86 and

exogenous SOCS5 in the highly aggressive anaplastic

thyroid cancer cells can reduce or abolish phosphorylation

of the STAT3 protein and activation of the PI3K–AKT

pathway, which can cause an altered balance between

proapoptotic and antiapoptotic molecules and increase

sensitivity to chemotherapeutic drugs.87

SOCS6, SOCS7, and tumors
SOCS6 has also been reported to be downregulated in

many cancers.88–92 Moreover, exogenous or upregulated

SOCS6 can inhibit cancer-cell growth in gastric cancer,

prostate cancer, medulloblastoma, glioblastoma, and cer-

vical cancer.88,90,93,94 The role of SOCS6 in tumor sup-

pression is associated with cKit (SCF receptor). The

abnormality of SCF–cKit signaling is closely related to

certain tumors.95 SOCS6 can interact with cKit via its SH2

domain, which suppresses cKit-dependent pathways.96

Overexpression of SOCS6 in a Ba/F3-Kit cell line causes

a decrease in SCF-dependent cell proliferation and

a parallel reduction in ERK1, ERK2, and p38 signaling.97

Few data are currently available with regard to the tumor-

suppression activity of SOCS7. SOCS7 is downregulated in

colon cancer.98 On the other hand, increased expression of

SOCS7 can reduce aggressive ability of prostate cancer cells

by blocking activation of the JAK–STAT3 pathway.99

Importantly, high levels of SOCS7 predict good disease-

free survival and overall survival in breast cancers.59

Upregulated expression of SOCSs in tumors
Many SOCS types are considered tumor suppressors, and

upregulation or activation of these proteins is associated

with the inhibition or suppression of many malignant

tumors. However, SOCSs are also upregulated in some

tumors. Constitutive expression of SOCS1 has been

detected in chronic myeloid leukemia and correlates with

poor response to IFN treatment.100 Expression of SOCS2 is

significantly higher in papillary thyroid cancer than in

patients with benign disease.101 Additionally, expression

of SOCS3 is significantly elevated in human breast

cancer.102 In the human melanoma cell line 1286, constitu-

tive SOCS3 can stimulate tumor-cell growth.103 Increased

SOCS in tumors can contribute to tumor development, and

that is possibly mediated by its negative control of other

SOCSs that normally suppress tumor development. For

instance, in patients with active acromegaly and colonic

polyps, SOCS2 is significantly increased, which causes

a reduction in SOCS1 expression and leads to elevated

STAT5B levels and consequently exaggerated GH-

mediated proliferation of colonic epithelial cells.104

As such, it is suggested that increased expression of

SOCS proteins may be a consequence rather than a cause

of their antitumor activities. Tumor cells are sustained by

several cytokines that can activate JAK–STAT signaling

and other molecules to support cell proliferation and sur-

vival within the tumor microenvironment. Dysregulation

of oncogene expression and function, as well as any other

loss of function changes in negative regulation of the

JAK–STAT pathway, may overwhelm the capacity of

SOCS proteins to inhibit JAK–STAT signaling activation.

Therefore, the inhibitory action of SOCS proteins may not

have a significant impact on proliferation and survival of

tumor cells, even if they are overexpressed.

Protein tyrosine phosphatases
Protein phosphorylation and dephosphorylation occur

mainly at tyrosine residues and are catalyzed by PTKs

and PTPs, respectively. Tyrosine phosphorylation of

STAT3 by specific PTKs is critical for its activation.

Therefore, PTPs are very important in the negative regula-

tion of STAT3 activity. There are seven types of PTPs

targeting STAT3 (Figure 1): PTPRD, PTPRT, PTPRK,

SHP1, SHP2, PTPN9, and TC-PTP.2

Protein tyrosine phosphatase receptor-type

D (PTPRD) and tumors
PTPRD belongs to the highly conserved family of receptor

PTPs. Capable of interacting directly with STAT3, it nega-

tively regulates STAT3-mediated signaling and thus functions

as a tumor suppressor.105–107 The PTPRD gene is frequently

inactivated in a number of cancers, such as glioblastoma

multiforme, colon cancer, breast cancer, neuroblastoma, lung
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cancer, and SCC.105,106,108–113 Loss of PTPRD enhances the

tumor-forming capacity of immortalized human astrocytes in

mouse-xenograft models.105 Heterologous loss of PTPRD

leads to a significant increase in STAT3 phosphorylation and

expression of the STAT3 target genes within glioblastoma

multiforme.106 Loss-of-function mutations in PTPRD also

promote cell growth and phosphorylation of STAT3 (Y705)

in head-and-neck SCC cells.112 Interestingly, head-and-neck

SCC cells with a PTPRD mutation are more sensitive to

a STAT3 inhibitor, providing an important clue to treatment

of head-and-neck SCC patients.112 Additionally, exogenous

PTPRD significantly decreases tumor-cell proliferation and

induces increased apoptosis in PTPRD-deficient primary mel-

anoma cells.111

Protein tyrosine phosphatase–receptor
type T and tumors
PTPRT is also a member of the PTP-receptor family. Like

PTPRD, PTPRT can act as a tumor suppressor, mainly

through inhibition of STAT3 signaling via directly depho-

sphorylating STAT3 at Y705.114,115 PTPRT is inactivated

by mutations in many cancers, including colorectal cancer,

lung cancer, gastric cancer, and head-and-neck SCC.114–117

It has been reported that PTPRT mutations enhance STAT3

activation and promote cell survival in head-and-neck

SCC.117 Many human tumors exhibit aberrant hyper-

methylation of the PTPRT promoter, which is associated

with decreased expression of PTPRT.118 Reduction in

PTPRT correlates with an increase in phosphorylated

STAT3 and sensitivity to STAT3 inhibition in head-and-

neck SCC.118 Therefore, it is possible that PTPRT hyper-

methylation can function as a biomarker for evaluating the

efficacy of STAT3 inhibitors against cancer.

Protein tyrosine phosphatase–receptor
type K and tumors
PTPRK is another member of the PTP-receptor family. In

2015, Chen et al firstly reported that PTPRK can interact

directly with STAT3 by dephosphorylating phosphorylated

STAT3 at Y705.119 In addition, they found that expression of

PTPRK decreased in NKTCL cells. Furthermore, restored

PTPRK dephosphorylates phospho-STAT3 at Y705, which

can inhibit the proliferation, migration, and invasion of

NKTCL cells. Low expression of PTPRK is related to its

promoter's hypermethylation.119 Finally, PTPRK is able to

inhibit EGFR signaling to suppress tumor growth.120–122

Src homology region 2 domain–containing
phosphatase 1 and tumors
SHP1, also known as PTPN6, is a member of the nonreceptor

PTP family and encoded by the PTPN6 gene. The tumor-

suppressive activity of SHP1 is mediated by its negative

regulation of JAK and STAT. Downregulation or loss of

SHP1 protein is often detected in human lymphoma and

leukemia, and inhibition of SHP1 expression is proven to

correlate with methylation of the PTPN6 promoter in ana-

plastic large-cell lymphoma, multiple myeloma, T-cell lym-

phoma, and B-cell lymphoma.123–129 Another study

demonstrated that overexpression of SHP1 is able to decrease

STAT3 activity in non-Hodgkin's lymphoma cells with loss

of SHP1.123 It has also been reported that guggulsterone can

induce apoptosis and suppress the proliferation of multiple

cancer types, such as head-and-neck SCC, leukemia, and

melanoma, by induction of SHP1 expression, which signifi-

cantly decreases activities of JAK2 and STAT3.130 In sora-

fenib-resistant HCC, dovitinib, a receptor-kinase inhibitor,

can induce apoptosis and overcome sorafenib resistance

through SHP1-mediated inhibition of STAT3 signaling.131

Sorafenib derivatives have been reported to be able to

block STAT3 activity and suppress sorafenib-resistant HCC-

cell growth through promoting SHP1 activity.132 Plumbagin,

a vitamin K3 analogue, has also been found to induce SHP1

expression in human myeloma cells, leading to inhibition of

STAT3 phosphorylation by inactivation of cSrc, JAK1, and

JAK2.133 These findings further suggest that activity of

STAT3 is vital to tumorigenesis and drug resistance, and

SHP1-activating agents may be valuable in cancer therapy.

Src homology region 2 domain–containing
phosphatase 2 and tumors
SHP2 is another member of the non-receptor PTP family,

and is encoded by PTPN11. Studies have revealed that the

tumor-suppressive capabilities of SHP2 occur mainly

through its inactivation of STAT3. For example, SHP2-

deficient mice present increased STAT3 activity, increased

spontaneous hepatocellular adenomas, and chemically

induced HCCs.134 Accordingly, Bard-Chapeau et al

reported that SHP2 is downregulated in a small number

of human HCCs.134 Moreover, SHP2 expression is

depressed in human ESCC, and SHP2 knockdown

enhances ESCC-cell proliferation in vitro and in vivo,

along with a significant increase in phosphorylated

STAT3.135 More importantly, low SHP2 expression and

high phosphorylated STAT3 correlate with poor prognosis
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and vice versa in colorectal cancer.136 However, SHP2 was

initially established as an oncogenic protein, and PTPN11

the first identified proto-oncogene to encode a tyrosine

phosphatase.137 Germline gain-of-function mutations of

PTPN11 are associated with increased risk of solid tumors

and leukemia.138–141 Promotion of cancer by SHP2 is

associated with activation of Ras GTPase–ERK signaling

and the PI3K–AKT pathway mediated by SHP2.138–140

MEG2/protein tyrosine phosphatase–
nonreceptor type 9 and tumors
PTPN9 (PTP-MEG2 orMEG2) is a cytosolic nonreceptor PTP

encoded by PTPN9. In 2012, PTP-MEG2 was first reported to

dephosphorylate STAT3 and suppress tumor growth in breast

cancer.142 This study also demonstrated thatMEG2 can interact

directly with STAT3 in vitro and in vivo by dephosphorylating

STAT3 atY705 in a time- and dose-dependentmanner.142Other

research has revealed that upregulated expression ofMEG2 can

effectively inhibit tumor-cell growth and induce cell apoptosis

by reducing STAT3 activity in prostate carcinoma cells.143 In

addition, MEG2 is able to dephosphorylate the NGF receptor

TrkA, the insulin receptor, and VEGFR2,144–146 while the

detailed mechanisms need to be further explored.

T-cell protein tyrosine phosphatase and

tumors
TC-PTP, encoded by PTPN2, also belongs to the nonreceptor

PTP family. STAT3 is one of several substrates of TC-PTP.147

TC-PTP has been reported to be tumor-suppressive through its

modulation of STAT3 signaling. For instance, deletion of the

PTPN2 gene is present in some T-cell acute lymphoblastic

leukemia cells and results in increased JAK–STAT

signaling.148 Biallelic inactivation of PTPN2 correlates with

activation of the JAK–STAT pathway in the Hodgkin’s

Table 1 Direct inhibitors of STAT3

Molecules Targets Effects Indications (clinical trial
phase)

Refs

Peptide and

peptidomimetics

PY*LKTK STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 151

ISS-610 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 152

SPI STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 153

CJ-1383 STAT3 SH2 domain Inhibition of STAT3 phosphorylation Not applicable 154

PM-73G STAT3 SH2 domain Inhibition of STAT3 phosphorylation Not applicable 155

DBD-1 STAT3 DNA-binding domain Inhibition of STAT3 DNA-binding Not applicable 156

Non-peptide small

molecules

Stattic STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 157

STA-21 STAT3 SH2 domain Inhibition of STAT3 dimerization Psoriasis (phase I/II trial) 158

LLL-3 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 159

LLL-12 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 160

S3I-201 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 161

SF-1–066 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 162

SF-1–087 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 162

SF-1–121 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 162

S3I-1757 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 163

S3I-M2001 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 164

S3I-201.1066 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 165

BP-1–102 STAT3 SH2 domain Inhibition of STAT3 dimerization Not applicable 166

OPB-51,602 STAT3 SH2 domain Inhibition of STAT3 phosphorylation Advancedmalignancies (phase I trial) 167,

168

CPA-1 STAT3 DNA-binding domain Inhibition of STAT3 DNA-binding Not applicable 169

CPA-7 STAT3 DNA-binding domain Inhibition of STAT3 DNA-binding Not applicable 169

Platinum(IV) tetrachloride STAT3 DNA-binding domain Inhibition of STAT3 DNA-binding Not applicable 169

InS3−54 STAT3 DNA-binding domain Inhibition of STAT3 DNA-binding Not applicable 170

InS3−54A18 STAT3 DNA-binding domain Inhibition of STAT3 DNA-binding Not applicable 171
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lymphoma cell line SUPHD1 and T-cell non-Hodgkin’s lym-

phoma tissue.149 In addition, TC-PTP deficiency in triple-

negative primary breast cancer leads to increased cell prolif-

eration via elevated STAT3 signaling and SFK.150 Restoration

of TC-PTP expression in human breast cancer cell lines

apparently suppresses cell proliferation in vitro and xenograft

growth in vivo.150 These findings suggest that TC-PTP can act

as a suppressor of human tumors.

Direct inhibitors of STAT3
Given the critical role of constitutively active STAT3 in human

tumors, STAT3 has become an attractive target for small-

molecule therapeutics. Since the first peptide inhibitor of

STAT3, PY*LKTK (where Y* represents phosphotyrosine)

was reported,151 a number of small molecules (Table 1) have

been developed to inhibit directly the function of STAT3 for

cancer therapies.152–171 The mechanisms of direct STAT3

inhibition include disruption of phosphorylation, dimerization,

nuclear translocation, and/or DNA binding of STAT3. Both

peptides/peptidomimetics and small nonpeptidicmolecules are

able to target the STAT3 SH2 domain/STAT3 DNA-binding

domain (details shown in Table 1). Because peptides/peptide-

mimics have poor membrane permeability and stability,172

small nonpeptidic molecules have become attractive candi-

dates of STAT3 inhibitors for tumor treatment. In this regard,

STA21 has completed a phase I/II trial for psoriasis, and

OPB51602 has completed a phase I trial for refractory hema-

tologic and solid malignancies.158,167,168 However, it will take

a long time to transfer these molecules to the clinic. One of the

major reasons is that STAT3:STAT3 dimerization is a protein–

protein interaction involving a large surface area and difficult

to be influenced by small molecules.163 Additionally, high

concentrations of small-molecule inhibitors are required to

counteract STAT3 activity, and in this case off-target

toxicity is very likely increased. Up to now, although signifi-

cant progress has been made in preclinical trials, few small-

molecule inhibitors have been used in clinical cancer therapies.

Conclusion
STAT3 is an ideal target for tumor therapy, because of its

pivotal biological functions in tumors. So far, various STAT3

inhibitors have been developed for tumor therapy, including

peptides, small nonpeptidic molecules and natural-product

inhibitors.173 Some STAT3 inhibitors are currently in clinical

trials; however, few are suitable for clinical application,172,173

so a new strategy for STAT3 inhibitors needs to be further

explored. PIAS, SOCS, and PTP can effectively prevent tumor

progression; therefore, negative regulation of STAT3 signaling

would be a valuable strategy. These studies showed that PIAS

proteins can inhibit STAT3-transcription activity by binding to

active STAT dimers and blocking the DNA-binding activity of

STAT. SOCSs are known as a negative-feedback loop of

STAT3 signaling, and interact with JAK domains or intracel-

lular portions of cytokine receptors to reduce STAT3 activa-

tion. STAT3 is also inactivated through dephosphorylation of

Tyr705 by such PTPs as PTPRD, SHP1, SHP2, and TC-PTP.

The data presented in this review prove the important role of

negative regulators of STAT3 signaling in tumor suppression,

which will pave a new avenue for cancer treatment.

Abbreviation list
ESCC, esophageal squamous-cell cancer; HCC, hepatocel-

lular carcinoma; NKTCL, NK/T-cell lymphoma; SCC,

squamous-cell carcinoma.
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