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Abstract: A cure for sickle cell anemia (SCA) is not available to all who have inherited this

devastating genetically inherited disease. However, increasing knowledge that nutritional

problems are fundamental to the severity of the disease, has produced interest in promoting

dietary supplementation for treating these patients. This review seeks to emphasize the

understanding that both children and adults with sickle cell disease require much higher

energy and protein consumption (more macronutrient intake) than healthy individuals and

tend to suffer from undernutrition if energy intake is consistently low. Shortages may also

exist for micronutrients, eg, Glutathione, which has both anti-inflammatory and anti-oxidant

properties. Both chronic inflammation and oxidant stress are central issues for increased

sickle cell disease severity. In conclusion, dedicating more effort and resources to establish-

ing recommended dietary reference intakes (DRIs)/recommended dietary allowances (RDAs)

for SCA patients is essential, and nutritional intervention should be included as an adjunct

treatment in tandem with standard practice.
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Introduction
Sickle cell disease (SCD), involves widespread single-gene disorder hemoglobino-

pathies. The most common gene disorders are sickle cell anemia (HbSS or SCA),

hemoglobin SC (HbSC) and hemoglobin Sβ thalassemia (HbSβthal). Patients with

SCA suffer most severely, and these diseases represent a significant global public

health concern, in endemic malaria environments. Over 100,000 people in the

United States, are affected. Estimates recorded by the United Nations for the year

2008, were 20–25 million people worldwide living with SCD, with people of

African descent primarily affected.1,2 This review addresses SCA with associated

high severity, and regular costly hospital stays. In 2004 approximately 113,000

hospitalizations for SCD were recorded in the United States. The estimated hospital

costs at that time were $488 million for the year.3 Earlier estimates for 1989–1993

were $475 million per year,4 indicating an approximate 3% increased hospitaliza-

tion cost between 1993 and 2004.

Hydroxyurea (HU), the first drug approved by the FDA to treat SCD, has

provided the ability to extend life and reduce morbidity and mortality in individuals

affected by the disease.5 However, average life expectancy is still approximately

30 years lower for individuals with sickle cell anemia (SCA) than for the general

population.6 Increased use of HU has resulted in decreased attention to new studies

addressing nutritional deficiencies, which still exist and contribute to slowed

growth, development, and reduced quality of life in this population. Nutrition is

reported to impact many chronic health conditions associated with SCD, including

chronic baseline inflammation,7 vaso-occlusive crisis (VOC), which is accompanied
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by frequent pain and greater occurrence of stroke, particu-

larly in young children.8 Other severe manifestations of

SCD are pulmonary hypertension, cardiovascular and

renal disease.

Targeted evidence-based
recommendations for nutrition
therapy in sickle cell disease
It is becoming more apparent that current dietary recom-

mendations for SCD should include more emphasis on

adequate amounts of macronutrients.8 Traditional supple-

mentation studies addressed only the association of SCA

with a variety of micronutrient deficiencies, including zinc,

copper, folic acid, pyridoxine, vitamin E, and more recently

B6, B12, omega three fatty acids9 and vitamin D.10 The

standard treatment protocol provides these supplements.

One small study reported in 1985 demonstrated the efficacy

of including macronutrient supplementation. Compared

with only micronutrient supplements, intervention with

macronutrients, (proteins carbohydrates and fats) showed

measurable improvement in clinical condition, and reduced

hospital admissions in growth delayed children with SCA.11

More recently, in a sickle cell mouse model, Manci et al,

confirmed diminished organ damage and vascular leakage

with a high protein to energy diet (35%) (Figure 1),12 based

on a previous report by Archer et al, that macronutrient

supplementation reduced chronic inflammation. Protein to

energy ratio is a significant determinant of dietary ade-

quacy, and for optimal growth control mice require 20%

of energy from dietary protein. These studies showed

a trending increased weight gain for S35 versus S20 mice

(p<0.06). Also, inflammatory proteins C-reactive protein

(CRP) and interleukin-6 (IL-6) decreased significantly in

S35 versus S20 mice (P<0.05), suggesting that added

macronutrient intervention could reduce sickle cell disease-

associated inflammation, which drives disease severity and

ultimate organ damage.13

Energy and protein requirements
Adults and children with sickle cell anemia have a relative

energy shortage. Hibbert et al, and others have shown that

nutritional deficiency in SCA is secondary to a marked

hypermetabolic state associated with higher energy

requirements. Investigations demonstrated increased urea

kinetics (a result of protein catabolism),14 erythropoiesis,

myocardial energy expenditure,15 and proinflammatory

cytokines,16 as significant contributors to the increased

energy demands. In SCD patients, nutrients from the diet

and amino acids from body protein catabolism channeled

toward rapid red cell production, are replacing hemolyzed

sickle red cells being constantly removed from the circula-

tion. This metabolic irregularity drastically increases the

energy requirement and reduces the availability of nutri-

ents for growth and development in children and for main-

taining adequate muscle mass in adults. The primary

clinical manifestation of this relative nutrient deficiency

is severe undernutrition. Singhal et al, measured the diet-

ary intakes and resting metabolic rates (RMR) of 41 chil-

dren with SCD and 31 control subjects with normal

hemoglobin, aged three to six years. Dietary intake was

assessed by weighed food consumption and RMR was

determined by indirect calorimetry. The children with

SCD had significantly elevated RMR compared with the

healthy controls, after adjusting for gender and weight.

Energy intake was similar for both groups, but the ratio

of energy intake to RMR was significantly lower for the

The high protein: energy diet (35%) prevented damage to spleen
& liver (P<0.001), kidney (P=0.06) and lung (P=0.006) in S35 mice
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Figure 1 High protein diet reduced organ damage in sickle cell mice.
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SCD compared with the control group. The authors con-

cluded that this observation indicates a relative energy

deficiency in SCD.17 These findings support a hypothesis

for the increased need for energy from macronutrients (ie,

proteins, carbohydrates, and fats), for pre-pubertal children

with sickle cell disease. This condition is also likely to be

the case for adults with SCD, particularly those that inherit

the SCA genotype.

Macronutrients required to improve
nutritional status in SCD – amino
acids
Arginine
The amino acid arginine plays a vital role in the synthesis

of nitric oxide in the endothelial cells. Nitric oxide stimu-

lates muscle cells to relax thereby regulating blood flow

and blood pressure through dilatation. Arginine metabo-

lism is impaired in SCD and contributes to endothelial

dysfunction, vaso-occlusive crises, and pulmonary hyper-

tension. Arginine deficiency develops over time so that by

adulthood it achieves a low steady state. Due to the inter-

action between arginine availability and nitric oxide levels,

lack of adequate amounts of arginine leads to disruption of

vascular homeostasis and oxidative stress. Therefore, in

SCD arginine becomes an essential amino acid.18

Kehinde et al, investigated twenty (20) normal non-sickle

cell anemia (NSCA) subjects and 20 SCA subjects receiving

supplementation with L-arginine (1 gm/day for six weeks) to

determine its effect on liver enzymes, lipid peroxidation, and

nitric oxide metabolites. Plasma arginine, liver enzymes ala-

nine aminotransferase (ALT), aspartate aminotransferase

(AST), alkaline phosphatase (ALP), plasma total bilirubin

concentration (TB), malondialdehyde concentration (MDA-a

marker of oxidative stress) and nitric oxide (NOx) metabolite

concentrations were estimated. ALT, AST, ALP (p<0.05 for

all) and TB (p<0.001) were significantly higher for SCD

subjects than for healthy controls at baseline. Plasma arginine

and nitric oxide levels were significantly higher for the con-

trols (p<0.001 and <0.05 respectively). Arginine supplemen-

tation caused a greater percentage increase in plasma

arginine and nitric oxide in SCD than in non-SCD subjects

(p<0.001).19 This research provides evidence that a chronic,

oral low-dose supplementation with L-arginine improves

liver function, increases plasma arginine concentration and

nitric oxide metabolite levels in both non-SCD and SCD

subjects, thereby reducing oxidative stress with greater sen-

sitivity demonstrated in SCD subjects. A randomized,

double-blind study in children showed that supplementing

a ready-to-use food with arginine and citrulline resulted in

increased bioavailability of arginine and improvement in

endothelial function.20 Dietary supplementation with argi-

nine and nitrates may help to alleviate endothelial dysfunc-

tion in SCD patients by maintaining ample substrate to

generate nitric oxide. Arginine supplementation has also

been shown to increase total antioxidant activity and erythro-

cyte integrity in SCA subjects.21 Foods with high nitrate and

nitrite content include beets, spinach, radishes, celery, and

mustard greens.22 Providing food sources of antioxidant

Vitamins E, C and A (beta-carotene) can also boost the

glutathione antioxidant defense system and work together

with arginine-derived nitric oxide to combat oxidative

stress.23,24 Dietary sources of bioactive food components

that may be helpful for SCD associated chronic disease

management, as well as energy and macronutrient require-

ments, are found in (Table 1).

Glutamine
Glutamine is a non-essential amino acid whose synthesis is

ATP-dependent. Glutamine becomes conditionally essen-

tial in sickle cell disease due to its increased requirement.

Deficiency for glutamine availability may result in meta-

bolic stress, increased resting energy expenditure (REE),

muscle wasting and decreased immune function. A study in

27 children and adolescents with SCD, supplemented with

600 mg/kg/day of oral glutamine resulted in decreased REE

by 6 percent indicative of reduced protein turnover and

improved glutamine nutritional status.25 Glutamine is also

a precursor of NAD, and recent research indicates that

glutamine may make sickle RBCs less adhesive.26

Evidence suggests that a pharmaceutical grade of

L-glutamine is beneficial for decreasing the incidents of

SCD-related vaso-occlusive (VOC) pain events without

significant safety concerns.27 In 2017, the FDA approved

pharmaceutical grade L-glutamine for children and adults

with sickle cell disease. For individuals >5 years of age with

repeated VOC pain events, oral L-glutamine at a dose of

0.3 g/kg twice per day is recommended, with a maximum

daily dose of 30 g.28 L-Histidine, leucine, valine, and

cysteine are also insufficient in SCD subjects.29

Vitamin D and SCD
Vitamin D is vital for calcium homeostasis and essential

for bone mineralization. Deficiency of Vitamin D is com-

mon in sickle cell disease due to dark skin pigmentation,

limited sun exposure, increased catabolism and decreased
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Table 1 Dietary reference intakes for healthy individuals and dietary sources of nutrients suggested for nutrition management of SCD*

Nutrient Increased
Need in
SCD

DRI (RDA)
Children

DRI (RDA)
Adults

Dietary Sources

Protein (g/d) ✓ 1–3 y 13

4–8 y 19

9–13 y 34

14–18 y F 46

14–18 y M 52

19 −70+y F 46

19 −70+y M 56

Pregnancy 71

Lactation 71

Beans, Peas, Lentils, Nuts, Seeds, Peanut, Butter, Whole Grains, Meat,

Fish, Poultry,

Carbohydrate (g/d) ✓ 1–18 y 130 19–70+ y 130

Pregnancy 175

Lactation 210

Wheat, Rice, Oats, Sorghum, Millet, Fonio Corn, Quinoa, Beans,

Lentils, Peas, Potatoes, Fruits, Vegetables, Breakfast Cereals, Breads,

Pasta

Omega 3 Fatty

Acids

α-Linolenic Acid

(g/d)

✓ 1–3 y 0.7

4–8 y 0.9

9–13 y F 1.0

9–13 y M 1.2

14–18 y F 1.1

14–18 y M 1.6

19–70+y M 1.6

19–70+y F 1.1

Pregnancy 1.4

Lactation 1.3

* α-Linolenic Acid sources;

Walnuts, Flaxseeds, Chia seeds, Black Walnuts, Edamame

Dietary Fiber (g/d) 1–3 y 19

4–8 y 25

9–13 y F 26

9–13 y M 31

14–18 y F 26

14–18 y M 38

19–50 y M 38

19–50 y F 25

51–70+ M 30

51–70+ F 21

Pregnancy 28

Lactation 29

Whole grains (wheat, millet, sorghum, fonio brown rice), lima beans,

kidney beans, black beans, pinto beans, black-eyed peas, sweet pota-

toes, greens pistachios, almonds, banana, apples, pears, berries, avo-

cado, yams

Vitamin B6 (mg/d) ✓ 1–3 y 0.5

4–8 y 0.6

9–13 y 1.0

14–18 y F 1.2

14–18 y M 1.3

19–50 y 1.3

51–70+ M 1.7

51–70+ F 1.5

Pregnancy 1.9

Lactation 2.0

Chickpeas, Bananas, Potatoes, Fortified Breakfast Cereals, Tuna,

Salmon, Turkey

Vitamin B12(μg/d) ✓ 1–3 y 0.9

4–8 y 1.2

9–13 y 1.8

14–18 y 2.4

19–70+y 2.4

Pregnancy 2.6

Lactation 2.8

Clams, Liver, Fortified Cereals, Fortified Nutritional Yeast, Rainbow

Trout, Salmon, Tuna

Folate (μg/d) ✓ 1–3 y 150

4–8 y 200

9–13 y F 300

9–13 y M 400

14–18 y 400

19–70+y 400

Pregnancy 600

Lactation 500

Black-eyed Peas, Chickpeas, Asparagus, Avocado, Spinach, Broccoli,

Brussel Sprouts, Wheat Germ, Enriched Pasta, Mustard Greens,

Kidney Beans

Vitamin A (μg/d) ✓ 1–3 y 300

4–8 y 400

9–13 y 600

14–18 y F 700

14–18 y M 900

19–70+y M 900

19–70+y F 700

Pregnancy 770

Lactation 1,300

*Beta—carotene sources

Sweet Potato, Carrots, Cantaloupe, Broccoli, Spinach, Pumpkin,

Mango, Red peppers, Sweet Potatoes, Papaya

Vitamin C (mg/d) ✓ 1–3 y 15

4–8 y 25

9–13 y 45

14–18 y F 65

14–18 y M 75

19–70+y M 90

19–70+y F 75

Pregnancy 85

Lactation 120

Broccoli, Oranges, Kiwi, Guava, Strawberries, Collard Greens,

Lemons, Brussel Sprouts, Cauliflower, Bell Peppers, Tomatoes, Apples

Vitamin D (μg/d) ✓ 1–3 y 15

4–8 y 15

9–13 y 15

14–18 y 15

19–70 y 15

>70 y 20

Pregnancy 15

Lactation 15

Salmon, Tuna, Mackerel, Cod liver oil, Sardines, Fortified Cereals,

Fortified Milk & Yogurt, Fortified Soy Milk, Eggs, Fortified Orange

Juice, Mushrooms

(Continued)
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Table 1 (Continued).

Nutrient Increased
Need in
SCD

DRI (RDA)
Children

DRI (RDA)
Adults

Dietary Sources

Vitamin E (mg/d) ✓ 1–3 y 6

4–8 y 7

9–13 y 11

14–18 y 15

19–70+y 15

Pregnancy 15

Lactation 19

Wheat germ oil, Sunflower Seeds, Almonds, Spinach, Broccoli, Plant

Oils, Peanut Butter, Spinach

Calcium(mg/d) 1–3 y 700

4–8 y 1,000

9–13 y 1,300

14–18 y 1,300

19–70 y M 1,000

19–50 y F 1,000

51–70+y F 1,200

>70 y M 1,200

Pregnancy 1,000

Lactation 1,000

Yogurt, Cheese, Sardines, Milk, Fortified Soymilk, Calcium-set Tofu,

Fortified Cereals, Turnip Greens, Kale, Fortified Orange Juice, Salmon

with bones, Frozen Yogurt, Ice Cream

Magnesium (mg/d) ✓ 1–3 y 80

4–8 y 130

9–13 y 240

14–18 y F 360

14–18 y M 410

19–30 y M 400

31–70+y M 420

19–30 y F 310

31–70+y F 320

Pregnancy 350

Lactation 320

Almonds, Cashews, Peanuts, Spinach, Whole Wheat Cereal, Soymilk,

Black Beans, Oatmeal, Avocado, Dark Chocolate, Edamame, Baked

Potato with Skin, Brown Rice, Kidney Beans

Potassium (mg/d) 1–3 y 3,000

4–8 y 3,800

9–13 y 4,500

14–18 y 4,700

19–70+y 4,700

Pregnancy 4,700

Lactation 5,100

Sweet Potato, Cantaloupe, Watermelon, Okra, Pineapple, Beans,

Banana, Orange, Collard Greens, Potatoes, Black-eyed Peas, Okra,

Peanuts, Peaches, Tomatoes, Beets

Zinc (mg/d) ✓ 1–3 y 3

4–8 y 5

9–13 y 8

14–18 y F 9

14–18 y M 11

19–30 y M 400

31–70+y M 420

19–30 y F 310

31–70+y F 320

Pregnancy 350

Lactation 320

Oysters, Crab, Beef, Fortified Cereals, Chickpeas “Hummus”,

Oatmeal, Beans, Lentils, Almonds, Cashews

Selenium (μg/d) ✓ 1–3 y 20

4–8 y 30

9–13 y 40

14–18 y 55

19–70+y 55

Pregnancy 60

Lactation 70

Brazil nuts, Tuna, Sardines, Shrimp, Brown Rice, Wheat Bread,

Oatmeal, Baked Beans, Oatmeal, Spinach

Dietary Flavanols *Quercetin sources

Cherries, Blueberries, Cranberries, Black currants, Elderberries, Goji

berries, Chokeberries, Juniper berries, Black-eyed Peas, Red Onions,

Okra, Watercress, Capers, Black Diamond Plums, Brussel Sprouts,

Cilantro, Fennel leaves, Ancho peppers, Radicchio, Chia seeds, Carob,

Buckwheat, Kale, Dill

Dietary Nitrates Spinach, Lettuce, Beetroot, Celery, Chinese Cabbage, Turnips, Endive,

Leeks, Kohlrabi, Fennel, Dill, Parsley

Dietary

Antioxidants and

Phytochemicals

Cloves, Cinnamon, Vanilla Beans, Oregano, Thyme, Sage,

Rosemary, Tumeric, Black Raspberries, Blueberries, Cranberries,

Black Currants, Elderberries, Blackberries, Strawberries,

Pomegranates, Apples

Notes: *DRIs provided for normal requirements. ✓Increased need for SCD.

References for Table 1:
1. Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes. Food and Nutrition Board, Institute of Medicine, National Academies Press (2011).
2. USDA Database for the Flavonoid Content of Selected Foods, Release 3.3 (2018).

3. Hord NG. Dietary Nitrates, Nitrites, and Cardiovascular Disease. Curr Atheroscler Rep. 2011; 13:484–492
Abbreviations: ALT, alanine amino transferase; AST, aspartate amino transferase; ALP, alanine phosphatase; βthal, beta thalassemia; CRP, c-reactive protein; DRI,

dietary reference intakes; HbSS/SCA, sickle cell anemia; HbSC, hemoglobin SC; HU, hydroxyurea; IL-6, interleukin-6; IU, international units; RDA, recommended

dietary allowances; RMR, resting metabolic rate; REE, resting energy expenditure; SCD, sickle cell disease; S20, sickle mice fed 20% protein; S35, sickle mice fed 35%

protein; TB, total bilirubin; F, female, M, male.
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nutrient and energy intake. Deficiencies in Vitamin

D contribute to osteopenia and osteoporosis which affect

up to 80% of SCD patients. Patients with low serum

Vitamin D (<14.1 ng/ml) have more crisis-related hospital

visits per year than those with 25 (OH)D3 serum levels

>34 ng/ml. Dietary intake of fish correlated with these

findings.30 Vitamin D also functions to regulate immune

responses and inflammation through its metabolite 1,25

dihydroxyvitamin D, which binds to the vitamin

D receptor to serve as a transcription factor, inducing

vitamin D-responsive genes present in cells of the immune

system.31,32 A two year randomized clinical trial investi-

gating the effect of a high dose of 100,000 International

units (IU) (equivalent to 3,333 IU/day) versus the standard

treatment 12,000 IU (equivalent to 400 IU/day) of oral

vitamin D3 supplements for reducing risk of respiratory

infections, was studied in 62 children and adolescents with

SCD, aged 3-20 years. The results showed a significant

reduction in respiratory events for both groups during the

two years. The group receiving 3,333 IU/day administered

as 100,000 IU once per month showed a decrease in

annual respiratory events from 4.34±0.35 at baseline to

1.49±0.37 at year 2. Similarly, the group receiving 400 IU/

day administered as 12,000 once monthly showed

a decrease in annual respiratory events from 3.91±0.35 to

1.54±0.37. Ninety-eight percent of the high-dose group

also stabilized at a mean serum 25-hydroxyvitamin

D concentration of 37.0 ng/ml. This study showed a pro-

tective effect of Vitamin D supplementation against

respiratory infections commonly found in children with

sickle cell disease.33 Sources of dietary Vitamin D are

limited and include ergocalciferol (Vit. D2) from mush-

rooms, fortified milk, plant milk and yogurt, fortified

orange juice, fortified breakfast cereals, and as cholecalci-

ferol (Vit. D3) in fatty fish, cheese, egg yolks, and liver.

Importance of hydration and SCD
Hydration plays an essential role in sickle cell anemia.

Cells become sickled due to reduced hydration status and

hemolytic anemia. Poorly hydrated erythrocytes lead to

increased viscosity and may contribute to the vaso-

occlusive crisis in SCD.34 It is crucial to promote proper

hydration by frequent intake of water and other fluids, and

to avoid physical activity and extreme weather that result

in excessive sweating.35 Even sickle cell trait carriers can

experience increased blood viscosity during strenuous

sports.36 Avoiding dietary sodium intake can help to

maintain appropriate hydration status by preventing water

from leaving the erythrocytes.37 Dietary recommendations

for maintaining good hydration status include limiting

high sodium, processed foods, and snacks while consum-

ing water and fluids throughout the day.

The gut microbiome: considerations
in SCD
The gut microbiome contains trillions of bacteria, collec-

tively termed microbiota, that play a significant role in

host immunity. While a balance of commensal and patho-

genic bacteria maintains the gut homeostasis,

a predominance of pathogenic bacteria in the gut may

arise from inadequate intake of the dietary substrate for

gut microbiota, physical damage, and antibiotic use. If the

prevalence of pathogenic bacteria compromises the intest-

inal barrier, disruption of the mucosal T-cell homeostasis

and inflammation may result. There is a link between the

gut microbiome and many inflammatory diseases. These

include type 2 diabetes, allergies and colorectal cancer.38

Dietary intake of prebiotic substrates from legumes,

grains, fruit, and vegetables, as well as probiotics from

fermented dairy, soy, and grains, provide optimal sub-

strates for the gut microbiota that promotes the predomi-

nance of protective commensal bacteria such as

Lactobacillus and Bifidobacterium. These foods also pro-

vide vitamins, minerals, phytochemicals and antioxidants

for the host.39

Few studies have determined whether the gut microbiota

of SCD patients differs from those without SCD. In mouse

models, the gut microbiota has been shown to regulate

neutrophil aging via Toll-like receptors (TLRs) and myeloid

differentiation factor 88 (Myd88) mediated signaling path-

ways, leading to TNFα-induced VOC.40 There is a notion

that VOC contributes to dysbiosis through the subclinical

intestinal ischemia it causes from its presence in the

splanchnic vasculature. Further exacerbation of this com-

promise may arise from dietary factors or medications. The

intestinal microbiome facilitates the synthesis of nitric

oxide (Figure 2)41 in the gut through the arginine citrulline

pathway and in human endothelial cells from dietary flava-

nol derived gut metabolites. The impact of nutritional argi-

nine deficiency in preventing adequate nitric oxide

production and resultant oxidative stress and inflammation

may be due to both alterations of gut bacteria and impair-

ment of the gut microbial pathway. Gut modulation of

bioactive components of food sources of dietary
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phytochemicals, flavanols and amino acids like arginine,

may aid in decreasing oxidative stress and improving both

endothelial function and blood pressure in SCD. Also,

studies through the Minority Coalition for Precision

Medicine and National Microbiome Initiative are currently

exploring the relationship between gut microbiota, circulat-

ing activated neutrophils and VOC.42 Using 16SrRNA

sequencing studies individuals with SCD and no VOC or

antibiotic usage, are compared with sickle cell trait (AS)

carriers. Compared with AS, SCD had a lower relative

abundance of three species from Firmicutes phylum

(Pseudobutyrivibrio, Faecalibacterium, Subdoligranulum)

and two from Bacteriodetes phylum (Prevotella,

Alistipes). Relative abundance of Escherichia-Shigella

from Proteobacteria phylum was higher in SCD. When

further correlated with clinical parameters, lactate dehydro-

genase (LDH) correlated positively with the genera from

Firmicutes phylum. LDH is associated with hemolysis in

SCD patients.43 Maintaining a healthy gut microbiota

through adequate dietary intake of fruits, vegetables,

whole grains, legumes, and fermented foods may aid the

SCD patient in optimizing host immunity.

Emerging medicinal plant derived
nutrients for SCD
Interest in natural products is gaining attention as an integra-

tive approach to management of sickle cell disease. Many of

these tropical plants are native to the countries where high

rates of sickle cell disease exist. Derivatives from plants have

been shown to contain antioxidant properties from bioactive

components such as phytochemicals and flavanols.44

Exploration for the use of extracts from the tropical plant

Moringa oleifera is in progress, to determine the antioxidant

capacity in the treatment of oxidative stress in sickle cell

disease. Ethanol extracts of Moringa oleifera showed anti-

oxidant values between 77 and 4,458 μg/ml.45 Other plant

leaves known to contain phytochemicals, include Cajanus

cajan, Zanthoxylum zanthoxyloides, and Carica papaya.

Experiments using 2% sodium metabisulfite to induce red

cell sickling in an in vitro model, demonstrated that these

plants could aid in the resistance of hemolysis and reduce the

number of sickled red blood cells.46 Results in animal models

did not show acute toxicity of the Cajanus cajan leaf.47

Conclusion
Management of SCD is complex and multifactorial.

Nutritional risks are high, and after more than 100 years

of following this disease, investigating the use of nutrition

as adjuvant therapy for addressing multiple diet-related

chronic disorders associated with SCD is still not

a priority for providing adequate treatment. The focus of

much of the research has been about increasing the red cell

count by various methods, without considering that the

changes in the form and function of the sickle red cells

may be associated with developing a nutrient deficiency.

For example, individuals with sickle cell, experience var-

ied levels of hemolytic anemia, which reduces the oxygen-

carrying capacity of the blood. This is associated with

increased rates or red cell production and therefore

increasing amounts of young red cells (reticulocytes) in

the blood. Red cell production requires many substrates,

not the least of which is protein. Protein synthesis is

associated a with high energy cost and limits nutrient

availability for growth and maintenance of body mass.

The reticulocytes also readily stick to the blood vessel

endothelial cells due to increased availability of adhesion

sites. Therefore, the flow of nutrients for other essential

metabolic needs is limited. So, it is not surprising that a

sufficient diet for a healthy age, gender, and body-mass

matched individual will not cover the nutritional needs of

the person grappling with SCD. There has been no attempt

to calculate dietary requirements for these individuals, as

has been done for healthy people without the disease.

Frankly, developing recommended dietary intakes will be

a daunting task, as this involves gathering clinical infor-

mation (ie, body composition, anthropometry, energy

metabolism, measuring circulating nutrients by venipunc-

ture and food intakes by self-reported diet diaries, in

tandem with on-site compliance measurements, and

more). These investigations will require recruiting many

participants of different ages, followed prospectively for at

least six months. These data would then be used to calcu-

late the optimal nutritional requirements for different age

groups of individuals with varying types of sickle cell

disease, including HbSS, β-thallasemia and HbSC, the
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most abundant and severe of this group of

hemoglobinopathies.

The protocol for this type of investigation has already

been developed for healthy individuals and is worth repeat-

ing for this health challenged group. Estimating dietary needs

for those affected by SCD can pave the way toward macro-

nutrient sufficiency, ie, required energy and protein, which

are most deficient in patients with SCD. Identifying and

recommending foods needed to supplement the elevated

metabolism of individuals with SCD will improve growth

and development, promote weight maintenance, conserve

muscle mass, and reduce inflammation for these patients.

Finally, this paper addresses the need for the development

of a comprehensive Medical Nutrition Therapy approach to

treating SCD. This approach should include an emphasis on

high dietary requirements for macronutrients (protein carbo-

hydrate and fat) while incorporating evidence-based research

supporting the use of food sources of polyphenolic phyto-

chemicals, flavanols and gut microbial required prebiotics.

We suggest that these components in combination with the

vitamins, minerals, and omega-3 fatty acids routinely used in

standard treatment, may provide adjuvant therapy for the

SCD-associated chronic disease burden, and promote sus-

tainable health, quality of life and increased longevity for this

patient population.
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