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Abstract: Vascular cognitive impairment (VCI) and vascular dementia are the most

common forms of cognitive disorder associated with cerebrovascular disease and related

to increased morbidity and mortality among the older population. Growing evidence

suggests the contribution of blood-pressure variability, cardiac arrhythmia, hyperactiva-

tion of the renin–angiotensin–aldosterone system, endothelial dysfunction, vascular remo-

deling and stiffness, different angiopathies, neural tissue homeostasis, and systemic

metabolic disorders to the pathophysiology of VCI. In this review, we focus on factors

contributing to cerebrovascular disease, neurovascular unit alterations, and novel

approaches to cognitive improvement in patients with cognitive decline. One of the

important factors associated with the neuronal causes of VCI is the S100B protein,

which can affect the expression of cytokines in the brain, support homeostasis, and

regulate processes of differentiation, repair, and apoptosis of the nervous tissue. Since

the pathological basis of VCI is complex and diverse, treatment affecting the mechanisms

of cognitive disorders should be developed. The prospective role of a novel complex drug

consisting of released–active antibodies to S100 and to endothelial NO synthase in VCI

treatment is highlighted.

Keywords: vascular cognitive impairment, cerebrovascular disease, neurovascular unit,

endothelial dysfunction, S100 protein

Cerebrovascular disease (CBVD) is a major cause of morbidity and mortality

among the older population.1 There is growing evidence suggesting the contribu-

tion of blood-pressure instability, cardiac dysrhythmia (atrial fibrillation), hyper-

activation of the renin–angiotensin–aldosterone system, endothelial dysfunction,

vascular remodeling and stiffness, angiopathy of different etiology, patient life-

style (including smoking and drinking), nervous tissue disturbances (eg, amyloid

β and τ protein in Alzheimer’s disease, which have a negative impact on neuronal

functional processes), and systemic metabolic disorders (particularly diabetes

mellitus and dyslipidemia) to CBVD development. Vascular cognitive impairment

(VCI) refers to a cognitive disorder form associated with CBVD. Treatment of

VCI is currently focused on vascular risk factors. Understanding the pathogenesis

of VCI will pave the way for the development of treatments targeting disease-

underlying processes. In this review, we focus on factors contributing to CBVD,

neurovascular unit alterations, and novel approaches to cognitive improvement in

patients with VCI.
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Introduction
With increasing life expectancy, cognitive impairment and

dementia are becoming an important public health pro-

blem. In the Canadian Study of Health and Aging,2 pre-

valence of mild vascular cognitive impairment (VCI)

among respondents aged 65–84 years was higher than

that of vascular dementia. Patients with VCI have higher

mortality2,3 and institutionalization rates.2

VCI refers to all forms of cognitive deficits of vascular

origin, ranging from mild cognitive impairment to demen-

tia. VCI can be classified as vascular mild cognitive

impairment (amnesic, amnesic plus other domains, non-

amnestic single domain, and nonamnestic multiple

domain) and vascular dementia.

In this article we have analyzed VCI concepts focusing

on pathophysiological mechanisms and possible treatment

options.

Vascular cognitive impairment and
cerebral small-vessel disease
The diagnostic criteria for probable VCI according to

a statement from the American Heart Association–

American Stroke Association include: neuroimaging evi-

dence of сerebrovascular disease (CBVD) and either

a temporal relationship between CBVD and cognitive dete-

rioration or a relationship between the severity of cognitive

deficits and presence of subcortical vascular lesions, and

cognitive impairment should not progress gradualy (to

exclude neurodegeneration).4

CBVD is the most common cause of VCI5 and

dementia.6 The term CBVD includes a spectrum of disorders

causing large-artery and small-vessel disease (SVD).

Cerebral SVD is the main cause of cognitive impairment

progression in older people,7 and increases the risk of demen-

tia and stroke.8–10

Cerebral SVD includes a variety of conditions with

various etiologies that affect the small arteries, arterioles,

venules, and capillaries of the brain.11

Hypertensive vasculopathy (HV) and cerebral amyloid

angiopathy (CAA) are the two most common forms of

cerebral SVD.12

HV includes a great variety of functional and structural

changes in small arteries that occur due to hypertension. It

involves vascular remodeling, inflammation, endothelial dys-

function, and increased contractility.13 Long-standing hyper-

tension can lead to lipofibrohyalinosis, arteriosclerosis, and

arteriolosclerosis of deeply penetrating vessels in the brain,

causing diffuse white-matter lesions14 and cerebral

microbleeds.15 Some consider that blood–brain barrier

(BBB) dysfunction may impact HV-associated cerebral

SVD.16

HV can also affect the venous system of the brain. In

several studies, it was associated with venous

collagenosis.17,18 Thickening of the walls of periventricu-

lar veins and venules with collagen subtypes I and III is

more frequent in brains with leukoaraiosis and increases

with age.19

CAA indicates amyloid β (Aβ) accumulation in vessel

walls, and is known to be a major cause of lobar intracer-

ebral hemorrhage.20 CAA prevalence is age-dependent. In

the population-based Vantaa 85+ study (253 women, 53

men, mean age at death 92.3 years), 69.6% of participants

had CAA, with the highest prevalence in the parietal

lobe.21

In pathological studies, CAA has been associated with

cortical watershed microinfarcts in both Alzheimer’s dis-

ease (AD) and vascular dementia.22,23 These multiple

microinfarctions may cause сerebral blood flow (CBF)

disturbances, due to capillary occlusion,24 which can lead

to progression of white matter hyperintensity (WMH).25

Cortical superficial siderosis can also be found in

patients with CAA,26 which is thought to be more indica-

tive of CAA than HV, as in CAA mainly superficial

cortical and leptomeningeal vessels are involved.27

Cortical superficial siderosis is more frequently observed

in patients with cognitive impairment and АD.28,29

CAA is also one of the major causes of cerebral

microbleeds.30 At 7 T magnetic resonance imaging (MRI),

cerebral microbleeds were observed in 78% of patients

with AD or mild cognitive impairment in one study.31 In

the Rotterdam Study, the presence of microbleeds was asso-

ciated with cognitive decline and increased risk of dementia

(HR 2.02, 95% CI 1.25–3.24).32 It is hypothesized that

cerebral microbleeds in strategic areas of the brain may

damage cortical and subcortical tracts33 or signify microvas-

cular damage that leads to VCI.34 Increasing evidence sug-

gests that CAA can also contribute to VCI, even in the

absence of AD.35 In a prospective cohort study, 79% of

CAA participants had mild cognitive impairment, and their

scores for executive function and processing speed were

lower than those of ischemic stroke controls.36 Higher MRI

WMH volume was associated with lower processing-speed

scores36,37 and executive function37 in CAA. Small-vessel

microstructural damage in CAA can make an independent

contribution to cognitive impairment, as CAA is also
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associated with cognitive decline before symptomatic intra-

cerebral hemorrhage.38

Vascular cognitive impairment
pathophysiological mechanisms
Сardiovascular risk factors
A large number of publications have been published on the

role of cardiovascular risk factors in the occurrence and

progression of cognitive impairment. Cardiovascular dis-

ease is a well-known risk factor for cognitive impairment

and dementia.39 In particular, conditions that increase car-

diovascular risk, including diabetes, essential hypertension

(EH), hyperuricemia, and smoking, also increase risk of

VCI, which is a common cause of cognitive impairment.40

ЕH-induced cеrebral SVD promotes arterial and arteriolar

lesions in subcortical white matter surrounding basal gang-

lia. Recent evidence suggests that subcortical vessels are

vulnerable to the damaging effect of increased blood pres-

sure, due to their specific anatomical strucrure: a short

straight-flow section after branching out from the brain

base arteries.41 WMH detected using MRI is highly pre-

dictive of cerebral SVD.8 EH-associated cerebral SVD

manifests with arteriosclerosis, characterized by smooth

muscle–cell death, deposition of hyaline material in vessel

walls, and lipohyalinosis. In more severe cases, fibrinoid

necrosis of vascular walls leads to their rupture and

hemorrhage.

The exact etiology of cerebral SVD remains unclear;

however, it is known that cerebral ischemia promotes its

onset. Garry et al showed42 that endothelial release of endo-

genous nitric oxide (NO) is an obligatory condition for

optimal CBF. In the case of cerebral SVD, the concentration

of asymmetric dimethylarginine (ADMA) increases. ADMA

is NO synthase (NOS) inhibitor that blocks positive vasodi-

lation and endothelioprotective effects of NO.43 Therefore,

there is a link between ED and CBF reduction. Furthermore,

the increased level of ADMA is considered a risk factor for

atherosclerosis and a key factor in cardiovascular disease

development.44

Сognitive impairment and serum uric acid
Increased serum uric acid (UA) is an additional cardiovas-

cular risk factor, regardless of EH or diabetes presence.45

It is considered a predictor of cardiovascular events, even

when serum UA is high normal.46 In contrast, the patho-

physiological relationship between serum UA and cogni-

tive decline in patients with and without history of

dementia needs further investigation.46–48 UA's pathophy-

siological contribution to different types of dementia

(eg, AD, Parkinson's disease, and VCI) differs, and also

remains unclear.

Interesting results were obtained in the population-based

Rotterdam Scan Study,47 which included 814 participants

(mean age 62.0 years). This study aimed to evaluate

a relationship among UA levels, brain atrophy, and cognitive

functioning. Higher UA levels were associated with white-

matter atrophy (difference in Z-score of white-matter volume

per SD increase in uric acid –0.07 [95% CI –0.12 to –0.01]).

This was particularly marked when comparing participants

with elevated and normal serum UA (Z-score difference –

0.27 [–0.43 to –0.11)]. Persons with elevated UA also had

worse cognitive scores (–0.28 [–0.48 to –0.08]).

Nevertheless, recent data allow us to consider that UA

after all has a positive impact on cognition, rather than

triggers its deterioration. Engel et al48 assessed the relation-

ship between hyperuricemia and dementia in regard to

antihyperuricemic treatment. This case–control study

included 27,528 patients diagnosed with dementia and

110,112 controls. Among all the participants, 22% had

hyperuricemia or gout and 17% received antihyperuricemic

treatment. The minimum follow-up was 3 years. Authors

reported slightly lower dementia risk in patients with hyper-

uricemia (OR 0.94, 95% CI 0.89–0.98), and this risk reduc-

tion was even more marked among patients receiving

antihyperuricemic treatment (OR 0.89, 95% CI 0.85–0.94).

There can be multiple pathophysiological mechanisms

for a UA neuprotective effect. Primarily, its antioxidant

activity deserves attention.46 A recent meta-analysis49

showed a significant reduction in antioxidant-system activity

and serumUA in patients with dementia. Furthermore, essen-

tial antioxidant concentrations, including α- and β-carotene,
lycopene, lutein, and vitamins A, C, and E, which can facil-

itate oxidative stress, tend to decrease in cases of low serum

UA.50 UA has effects similar to ascorbate in the body, which

is another important antioxidant. In addition, UA has the

ability to eliminate oxygen and hydroperoxyl radicals, singlet

oxygen, and oxoheme oxidants, and can make stable com-

plexes with iron ions.46 Several authors have found a linear

association between serum and cerebrospinal fluid (CSF) UA

and between impaired BBB and UA concentration in CSF

blood, which supports the hypothesis that UA can have an

impact on the central nervous system (CNS) and cognition.51

At the same time, prooxidave properties of UA have

been described.46 Such dual (pleiotropic/ambiguous)

chemical properties of UA are assumed to be due to the
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influence of the environment in which this substance is

included in biochemical processes, including the presence

of metal ions.

UA may affect Aβ metabolism, but direct mechanisms

are not yet known. Some authors have explained UA neuro-

toxicity by its ability to potentiate proapoptotic Aβ effects

and expression,52,53 while others54 have found that increased

UA levels lessen the harmful effects of CSF Aβ1–42 and

higher UA reduce the harmful effects of Aβ1–42, a CSF

biomarker of cognitive function, and observed an improve-

ment in Mini–Mental State Examination (MMSE) and

Alzheimer's Disease Assessment Scale— cognitive subscale

scores.

Impaired cerebrovascular microcirculation can also pro-

vide a pathophysiological link between UA and cognitive

functioning, especially in patients with VCI. Elevated serum

UA levels may trigger inflammatory responses to oxidative

stress, endothelium dysfunction, and cerebral microvascula-

ture damage and remodeling, which in turn can explain an

increased risk of vascular dementia.46,55,56 Recent data also

support the relationship between high levels of UA, inflam-

mation, and vascular dementia. Positive correlations between

higher levels of CRP, IL6, and serum UA,57 and between

inflammatory markers and WMH, lower gray matter, and

hippocampal volume, which are indirect markers of cerebral

atrophy, have been observed.58 In animal studies, inhibition

of NFκB-signaling pathways, which causes a reduction

inUA-related hippocampal inflammation, improved cogni-

tive functioning. Moreover, hippocampal gliosis in both

humans and rats was associated with serum UA levels. The

authors have also found a significant increase in hippocampal

gliosis related to serum-UA levels both in humans and rats.59

Impaired biochemical processes in

nervous tissue: the S100 protein family
VCI is also considered an outcome of impaired biochemical

processes in neurons, including synaptic transmission failure.

Therefore, recent studies have focused on the broad family of

Са2+-binding proteins with the EF–hand structural motif

called the S100 proteins, and in particular on the S100B

brain protein involved in synaptic processes.60 S100 proteins

were discovered by Moore in 1965.61 They dissolve comple-

tely in 100% saturated ammonium sulfate solution of at pH

7.2, which explains the name of this group.

S100-family proteins are expressed in various tissue

types and perform diverse functions. S100 proteins interact

with intracellular effectors in tissue, regulate contraction,

mobility, growth, and differentiation of cells, play a role in

membrane organization, cytoskeleton dynamic composition,

and protein phosphorylation and secretion, and protect

against oxidation.60

S100 proteins are considered “calcium sensors” like

calmodulin and troponin C, without any internal catalytic

activity. Upon binding to calcium or (less often) to copper

and zinc ions, S100 proteins undergo conformational

changes.62 For instance, the recognition of target proteins

(ie, τ) is not a calcium-dependent but a zinc-dependent

process, and the implementation of neuroprotective proper-

ties requires copper ions.60,63 Some of the S100 proteins,

including S100B, act like cytokines. S100B may cause both

neurotrophic (in physiological nanomolar concentrations)

and neurotoxic (in micromolar concentrations) effects.

Astroglia, Schwann cells, neurons, and satellite glial

cells, as well as melanocytes, chondrocytes, adipocytes, ske-

letal muscle fibers, dendritic cells, and some populations of

lymphocytes, express S100B.64 This protein stimulates pro-

liferation and migration of cells and inhibits apoptosis and

differentiation. Therefore, S100B plays an important role in

synaptic process modulation, tissue development and repair,

astrocyte activation in neurodegenerative processes, and

glioma formation.64 S100B regulates cell proliferation,

which may have a positive effect on tissue regeneration and

may promote carcinogenesis. An association between

chronically elevated S100B levels and Parkinson’s disease

has been observed. The mechanisms underlying this associa-

tion are probably related to a downregulation in the expres-

sion of dopamine D2 receptors and G protein–coupled

receptor kinase 2, in the acceleration of dopamine metabo-

lism, and in reduction in serotonin concentration.65

In neurotoxic micromolar concentrations, extracellular

homo- and heterodimer forms of S100B affect neurons,

glial apoptosis, and cell necrosis.66,67 This effect is based

on S100B's ability to induce proinflammatory cytokines

and oxidative stress–related enzymes, and to amplify other

signals directed at neurons and glial cells.66–70

S100B in neurotoxic concentrations enhances the expres-

sion of IL1 and interleukin–6 (IL6) in microglia and neurons,

changes neuronal metabolism, activates τ-protein hyperpho-

sphorylation, reduces levels of synaptic proteins, and ele-

vates the synthesis and activity of acetylcholinesterase.68

S100B also increases the expression of the Aβ precursor

protein in neuronal cell cultures71 and enhances astrocyte

activation caused by the Aβ peptide.67 In turn, IL1 induces

S100B expression,69 perpetuating the vicious cycle of S100B

neurotoxic effects.
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Transgenic mice overexpressing S100B have hippocam-

pal dementia-like and behavioral impairment, such as short-

term-memory disturbances, partial disability in spatial task

solving, spatial and nonspatial memory problems, hyperac-

tivity, ie, exploratory hyperactivity, adaptation disorder, and

reduced anxiety.65,72 Recent studies consider S100B as an

early and easily measurable marker of cerebral ischemia.

S100B can be detected in blood after the release from injured

astrocytes into the extracellular space.73 In the study by Gao

et al the serum level of S100 protein was measured using

enzyme–linked immunosorbent assay in patients with cere-

bral SVD (n=210) and VCI. Authors provided evidence that

plasma level of S100 protein was significantly higher in

cerebral SVD patients compared to control group (P<0.05).

Significant cognitive impairment was found in cerebral SVD

patients, especially in patients with leukoaraiosis (P<0.05;

comparing to control group). Significant correlation was

found between increased S100 protein level and cognitive

decline in patients with leukoaraiosis (P<0.05).7

Concentration of S100B in CSF elevates in acute cere-

brovascular events74,75 and correlates with the size of the

ischemic area and the clinical outcome.76 It has been shown

that S100B concentration reaches a maximum on day 2–3

after ischemic stroke. The concentration of S100B reaches

a peak in 2–24 hours after cerebral hypoxia, due to cardiac

arrest, and correlates with outcome and coma levels.66 There

are data showing S100B concentration increase in CBVD

outcomes: subarachnoid hemorrhages and hemorrhagic and

ischemic stroke.77,78

Studies have shown possible involvement of S100B in the

pathogenesis of AD.69 In AD patients, the level of S100B in

the brain is increased, due to activated astrocytes, which are

cellular components of amyloid plaques and contain an

increased amount of S100B.70 Since S100B stimulates axon

growth and neuroprotection,79 its increase in the brain of AD

patients is probably initially a compensatory response compo-

nent. However, overexpression of this protein may have

adverse effects. Neurotrophic activity of S100B also promotes

aberrant axonal hypertrophy and the formation of large dys-

trophic neurites, which are found in and near amyloid

plaques.80 Chronically elevated levels of S100B in the brain

lead to enhanced expression of the Aβ precursor protein,81

which is a source of additional Aβ-peptide accumulation.

An increase in S100B in the brain of AD patients is

directly related to τ-positive neuritic pathology.82 There is

a parallel overexpression of S100B and the proinflammatory

cytokine IL1 in AD and vascular dementia, which plays an

important role in the pathogenesis of neuropathological

changes.66,68–70 A connection between glial cells overexpres-

sing IL1 and S100B, and an increase in neurofibrillary τ-
protein tangles has been found.82

Role of the neurovascular unit in central

nervous system diseases
The brain consumes up to 20% of the total amount of oxygen

and nutrients (mainly glucose) contained in the blood.83

Neural homeostasis depends on the complex vascular cere-

bral network. It provides the essential distribution of nutri-

ents and oxygen in the brain in accordance with local

metabolic rate.84 Therefore, proper cerebral blood flow is

the key factor in neuronal functioning. The brain tissue–

blood boundary, referred to as the BBB, plays a decisive

role in CNS homeostasis.85 The BBB is formed by endothe-

lial cells with tight junctions between them, constituting an

isolating structure that separates circulating blood compo-

nents from brain tissue. Tight junctions determine the isolat-

ing properties of the BBB, as well as contribute to its

polarization, leading to different functional features of the

internal and external sides, which face the blood flow and

brain tissue, respectively.85 The concept of the neurovascular

unit (NVU) is closely related to the BBB. Interest in this topic

increased significantly in the early 2000s after the publication

of the Stroke Progress Review Group report on progression

of the increase instroke incidence.86 The NVU consists of

neurons, glial cells (astrocytes, microglia, oligodendrocytes),

vascular elements (endothelial and smooth-muscle cells,

pericytes, basal membrane), and extracellular matrix.87 The

NVU integrates neuronal activity with local cerebral perfu-

sion, modulates functional characteristics of the BBB, and

interacts with extracellular matrix proteins.88 In addition, the

NVU underlies the pathogenesis of several CNS diseases

(cerebral stroke, vascular cognitive disorders,

dementia, AD, Parkinson’s disease, amyotrophic lateral

sclerosis, and multiple sclerosis).89

In the structure of the BBB, highly organized and specia-

lized transport systems (ATP-binding cassette transporters, in

particular the A1 subtype, the multidrugresistance protein),

perform a detoxifying function and also eliminate the Aβ
peptide.90 These transporters also ensure maintenance of

CNS homeostasis.88

The other component of the NVU — astrocytes — con-

stitute approximately 50% of brain cells. Studies have shown

that astrocytes are involved in all CNS diseases.87 Thousands

of processes occur in a single astrocyte, allowing the proper

functioning of cerebral microcirculation and synapses and
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supporting the structure of neuropils. In addition, astrocytes

control the ionic balance in the extracellular matrix, as well

as development of the vasculature, and synthesize biologi-

cally active substances (including neurotrophic factors) that

transmit signals to other cells (communicative function). At

the same time, astrocytes are able to transform into a reactive

state, initiate the production of proinflammatory cytokines

and the formation of astroglial scars (gliosis), and suppress

axonal regeneration.87

Despite the fact that the concept of the NVU is most

applicable for studying processes occurring in gray matter,

intercellular interactions are equally important for white

matter. As another structural component of the NVU,

oligodendrocytes are one of the main subtypes of cells

that synthesize myelin, a substance rich in phospholipids

that covers axons and is essential for effectively conduct-

ing a nerve impulse. Studies have shown that oligoden-

drocyte–endothelial cell couplings (the so-called

oligovascular niche) potentiate angiogenesis and oligoden-

drogenesis in white matter.87 Once the acute phase of

trauma has passed, oligodendrocytes are able to release

MMP9, inducing vascular remodeling in white matter.91

The activity of oligodendrocyte-progenitor cells is aimed

at the remyelination of damaged white-matter zones in

demyelinating diseases, including multiple sclerosis, leu-

kodystrophy, and vascular dementia.92

Another important component of the NVU in terms of

VCI pathogenesis are pericytes, which are located around

the endothelial layer of capillaries and embrace endothelial

cells with their processes. Pericytes perform extremely

important functions: integrating, coordinating, and realiz-

ing effects on the NVU. Pericytes regulate permeability of

the BBB, cerebral perfusion, and eliminate cellular debris.

Moreover, pericytes serve as a source of pluripotent stem

cells for the CNS.87 As such, pericytes are closely related

to endothelial cells and thus support normal functioning of

the NVU.

Because the NVU is a vital structure in cerebral home-

ostasis, the dysfunction of its components may lead to

acute conditions, such as traumatic brain injury,94–98 sub-

arachnoid hemorrhage,98 and chronic conditions, such as

dementia99,100 and AD.101,102

There are specific morphofunctional changes in all of

these pathological processes. The loss of selectivity of the

BBB, inflammation, and degradation of the extracellular

matrix and basal lamina components are common features

observed in NVU dysfunction. A recent study showed that

pericyte degeneration due to ischemia contributes to cere-

bral homeostasis failure.103

Under the concept of the NVU, a focus on neuron

pathology as a central link in the pathogenesis of nervous

system dysfunction has been transformed into a more inte-

grated view, allowing the creation of a new basis for

experimental and clinical research in the field of CNS

diseases, including VCI.

Endothelial dysfunction and VCI

biomarkers
Several studies have suggest the role of ED inNVU failure and

VCI development. In most cases, ED is associated with oxida-

tive stress and results from both ischemia and inflammation. It

is known that vascular risk factors enhance ED progression.

Under normal conditions, endothelium-derived vasoactive fac-

tors take part in the coordination of vasodilatation/vasocon-

striction and CBF. Therefore, it is believed that ED leads to

diminution of CBF and alteration in BBB stability.104

Under ischemia, the endothelium expresses the adhe-

sion molecules P-selectin, E-selectin, ICAM1, and

(VCAM1, which are crucial for leukocyte migration into

the perivascular space. Accordingly, ED can be detected

using these adhesion molecules, as well as homocysteine,

VWF), and MCP1, as biomarkers.105 The detection of

these substances has potential utility for early diagnosis

and prognosis of CVBD and VCI in particular.106

Under physiological conditions, low concentration of

VEGF, which contributes to angiogenesis can be found in

the brain. It is known that ischemia promotes VEGF

overproduction.107 Tarkowski et al showed increased

level of markers of inflammation (TGFβ, VEGF) in VCI,

suggesting these substances as potential biomarkers.108,73

VWF is derivedmostly from the endothelium. Vasoactive

hormones, cytokines, hypoxia, and shear stress induce the

production of VWF, and NO indirectly inhibits its secretion

in vitro.109 Some studies have reported a correlation between

vWF levels and CBVD outcomes (ie, stroke).110,111

Results from a meta-analysis by Quinn et al indicated

a relationship between increased levels of ED biomarkers

associated with coagulation: thrombin-generation markers

(D–dimer and prothrombin fragment 1+2) and VCI.112

MCP1 acts as a key attractant for mononuclear cells and

plays a role in collateral vessel formation and blood-flow

regulation in response to ischemia in vivo.113,114 There is

evidence that MCP1 exerts neuroprotective properties in

glial–neuronal cocultures.115 Increased MCP1 levels in

Parfenov et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Neuropsychiatric Disease and Treatment 2019:151386

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


CSF and serum have been found in stroke patients, suggest-

ing an association between MCP1 and cerebral ischemia

pathogenesis.116,117

Acute-phase CRP is produced in chronic or acute

inflammation. Interestingly, studies have shown the role

of CRP in MCP1, E–selectin, VCAM1, and ICAM1

expression in cerebral ischemia exaggeration.118,119

Elevated levels of CRP have been found in clinical studies

in stroke patients.120,121 Therefore, there is a likelihood

that CRP might be also a biomarker of VCI.

Increased arterial stiffness in the

development of cerebral vascular

disorders
Increased vascular stiffness is another mechanism in cerebro-

vascular disorder development. Van Sloten et al122 showed

that a decrease in elasticity of the arteries is a predictor of

cerebral stroke, regardless of other cardiovascular risk factors

or aortic stiffness. Increased stiffness of the carotid arteries

may lead to the development of cerebral complications

through a variety of mechanisms. Vascular stiffness as a part

of CBVD and VCI pathogenesis contributes to pulse pressure

that increases the stress on the cerebrovascular system.123–125

The cerebrovascular system is very vulnerable to hemody-

namic changes, since it has low resistance potential, allowing

high blood pressure to affect the microcirculatory bed.

Ultimately, microcirculatory dysfunctionmanifests with ische-

mia and hemorrhage. Compensatory remodeling and thicken-

ing of the cerebral vascular walls occurs to withstand high

pressure in the microcirculatory bed.123,124 Over time, this

kind of protective mechanism is transformed into pathology,

contributing to vascular reactivity disturbances, hypoperfu-

sion, chronic cerebral ischemia, and VCI. On the other hand,

the increased stiffness of elastic arteries (including the carotid

arteries) leads to excessive variability in blood pressure,126,127

which increases the sensitivity of organs with high blood flow,

including the brain, to pressure fluctuations in the presence of

altered reactivity of the microcirculatory system.123 Last but

not least, increased stiffness of the carotid arteries mediates the

development of CBVD, potentiating the formation of athero-

sclerotic plaques prone to rupture.125,128

Vascular aging and cognitive dysfunction
Complex and in some cases completely unexplored pro-

cesses of vascular aging play a role in VCI pathogenesis.129

Oxidative stress and inflammation are pathogenic fac-

tors responsible for both CBVD and VCI.127 With aging,

the generation of reactive oxygen species (ROS) and

hyperactivation of NADPH oxidase lead to oxidative

stress and ED.130 Furthermore, the resulting oxidative

stress potentiates coronary artery damage, as well as the

development of stroke.

ROS generation potentiates the damage of arteries and

vasomotor disturbances inhibiting production of NO, the

most powerful vasodilator and a crucial factor required for

proper endothelial functioning.131 Vasomotor disturbances

present as flux-dependent and shear stress–vasodilation

impairment that leads to a mismatch between oxygen-supply

capacity and tissue demand, causing the development of ische-

mia. NO exerts vaso- and cardioprotective actions, inhibiting

platelet- and inflammatory-cell adhesion to endothelial cells,

blocking signaling pathways triggered by proinflammatory

cytokines, protecting endothelial progenitor cells by suppres-

sing apoptosis, and regulating tissue metabolism.129 Severe

NO deficiency is exacerbated by a lack of

tetrahydrobiopterin132 and intracellular L-arginine130 as much

as by the age-dependent reduction in endothelial NO synthase

(eNOS) expression.131 All these pathological changes promote

an intracellular energy deficit, vascular inflammation, athero-

genesis, and CBF failure.

A number of experimental studies and clinical data provide

evidence that mild chronic inflammatory processes predispose

older people to atherosclerosis.133 Studies on experimental

models of aging discovered a proinflammatory shift in vascu-

lar gene expression resulting in elevations in proinflammatory

cytokines, adhesion molecules, and inducible NOS levels.129

In humans, there is a correlation between age and concentra-

tion of several inflammatory markers (such as TNFα,
VCAM1, E–selectin, IL6, IL18, and MCP1), independently

of other cardiovascular risk factors.134–137 Increased concen-

tration of these cytokines creates a proinflammatory microen-

vironment promoting apoptosis of endothelial cells and

vascular dysfunction, and contributes to cognitive decline.138

Activation of RAAS and oxidative stress
Activation of the renin–angiotensin–aldosterone system

(RAAS) provokes oxidative stress and mild chronic vas-

cular inflammation and raises vulnerability of cerebral

vessels to atherosclerotic lesions. Recent studies have

described thickening of the intima–media complex, as

well as the remodeling of main arteries under activation

of the RAAS in older people.129 Angiotensin II–mediated

signal pathways involving Capn1 and MMP2 are asso-

ciated with migration of vascular smooth-muscle cells139

and artery remodeling in adulthood.
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Oxidative stress and inflammation are the key patho-

genetic factors responsible for the development of cardio-

vascular diseases, neurovascular dysfunction, VCI, and

dementia.132 Cerebral perfusion autoregulation can be

altered in response to changes in systemic blood pressure,

particularly in patients with hypertension. This leads to

activation of aberrant signaling pathways, by which angio-

tensin II realizes its adverse vasoactive effects, primarily

contributing to the remodeling of blood vessels in the

presence of existing blood-pressure dysregulation.140

In addition, angiotensin II might potentiate inflamma-

tion by activating leukocytes, cell-adhesion molecules,

NADPH oxidase, proinflammatory cytokines, and ROS

generation.140,141 A number of experimental studies have

shown that generation of ROS activates Toll-like receptors

and triggers the inflammatory response. The cascade of

inflammatory reactions, for its part, increases oxidative

stress by inhibiting antioxidant defense systems.142

It is believed that in this inflammatory–oxidative

vicious circle, disruption of the permeability of the BBB

is also important, since in this case plasma-complement

components and Aβ, which penetrate brain tissue, serve as

potential activators of inflammation and production of free

radicals.143 As such, regardless of the cause, progressive

vascular damage caused by oxidative stress and inflamma-

tion probably disrupts the NVU and exacerbates tissue

hypoxia, thereby damaging neurons and white matter.

Furthermore, oxidative stress suppresses production of

BDNF by the endothelium of vessels,144 which (with the

participation of TRKB) provides neuroprotection.145

Сardiovascular risk factors and disruption of the BBB

result in inhibition of proliferation, migration, and differ-

entiation of oligodendrocyte-progenitor cells and also

interfere with reparative processes in white matter, thus

promoting demyelination and local hypoxia.146

Reduced capillary-network density and

cerebral perfusion in terms of cognitive

dysfunction and dementia
Apoptosis is a possible cause of CBVD-associated cognitive

decline.129 The relationship between vascular aging and

apoptosis remains unclear. Research has demonstrated age-

related increase in the number of endothelial cells under-

going apoptosis.129 NO deficiency, mitochondrial oxidative

stress, and elevated TNFα concentration predispose to

apoptosis.147 It is thought that apoptosis contributes to age-

dependent decrease in capillary-network density in most

organs.129 With aging, the decreased microcirculatory net-

work density in certain cerebral areas (eg, the hippocampus)

and altered structure of the remaining functioning capillaries

are observed. In older patients, these processes either precede

or promote cognitive dysfunction in the absence of

neurodegeneration.148

Angiogenesis disruption is the mechanism for age-

related lesions affecting the capillary network and CBF

failure.149 The decline incerebral microcirculatory network

density with aging reduces cerebral perfusion. This leads to

a decrease in trophic support of neurotransmitter-signaling

pathways, especially those with high neuronal activity.

Aging mediates the decrease in microvascular plasticity

and adequate responsiveness of cerebral capillary blood

flow to changes in oxygen and energy-substrate demands.

In adults, the development of nervous tissue is coordinated

with angiogenesis, and cerebral microvascular plasticity is

decreased.148

At any age, EH contributes to cerebral microcirculation

disturbances. Patients with EH also have insufficient capil-

lary-network density, vascular stiffness, diminished CBF,

and impaired collateral CBF compensation.41

Along with other studies, the results of our open com-

parative clinical trial confirm the association between EH,

cognitive decline, and diminished CBF.150 We enrolled

untreated middle-aged patients with stage 1 and 2 EH,

and evaluated cerebral perfusion using the arterial spin-

labeling technique. We have shown that in contrast to

a control group with normal blood pressure (<140/90

mmHg), patients with uncomplicated EH had executive

dysfunction and reduced CBF. The observations correlated

with vascular age previously estimated in the Framingham

study.151 Therefore, early-onset vascular aging plays a role

in EH-associated brain damage in middle-aged patients,

even at initial stages of the disease.

The cerebral vasculature is the most vulnerable target

for elevated blood pressure in the brain. The vast majority

of negative EH effects on cerebral vessels ultimately lead

to the hypoperfusion, white-matter lesions, and severe

CBVD presentations, such as stroke and VCI.41

In experimental animal models and EH patients, vascular

wall hypertrophy leads to thickening of walls of arteries and

arterioles, internal vascular remodeling, and lumen

narrowing.41 Constantly increased hydrostatic blood pressure

contributes to collagen and fibronectin deposition, elastin

fragmentation, and cerebral artery–wall stiffness. BBB dys-

function results in inflammation, ROS generation, and pro-

tease activation.132 Decreased elastic properties of the aorta
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and stiffness of large cerebral arteries are significant predic-

tors of certain cerebrovascular events and VCI.152–154

In summary, oxidative stress and inflammation result-

ing from the influence of various pathological vascular

factors impaired biochemical processes in nervous tissue

and the BBB failure diminish CBF and inhibit the proper

functioning of the NVU components, thus promoting

severe local hypoxia and VCI progression.146

Treatment of VCI and perspectives
of a novel preparation
Due to a wide diversity of vascular factors contributing to

VCI, basic antihypertensive, anticoagulant/antiaggregant,

and antihyperlipidemic therapies are primal to cognitive

impairment prevention. Nevertheless, these types of basic

treatment do not significantly affect the already-existing cog-

nitive deficits nor are directly related to restoration of bio-

chemical processes in neurons and glia. The usage of

acetylcholinesterase inhibitors in VCI is not a proper choice

either, because of the lack of benefit in global functioning

seen in patients with VCI and vascular dementia.155

Consequently, attention is drawn to neurotrophic prepara-

tions with antioxidant and neuroprotective action.

The combination of released–active antibodies (RAF

Abs) to S100 and RAF Abs to eNOS is a novel nootropic

preparation for VCI treatment with antioxidant and neuro-

protective properties. Released activity is a combination of

new properties that forms in an intact solvent during its

processing in the presence of the original substance. The

technological process is the multiple transfer of a part of

the treated solution into an intact solvent accompanied by

an external physical action.156 It has been shown that

drugs of this class have a fundamentally novel modifying

action, since the RAF Abs alter the interaction of the

specific antigen (molecule) with its target by

a mechanism of conformation modification.156 Compared

to other nootropic drugs, the combination of RAF Abs to

S100 and RAF Abs to eNOS exerts not only nootropic

action but also positively impacts vascular homeostasis

and endothelial function, due to RAF Abs to eNOS. The

combination of endotheliotropic and neurotropic effects

provides new opportunities for VCI treatment.

Treatment perspectives: preclinical trials

of novel preparation
Development of the combination preparation RAF Abs to

S100 and RAF Abs to eNOS was based on previously

discovered pharmacological effects of each separate compo-

nent (including their different technological versions).

A number of studies on in vivo, ex vivo, and in vitro models

(Table 1) not only elucidated the pharmacodynamics of RAF

Abs to S100, RAFAbs to eNOS and its combination but also

provided insight into its mode of action.

RAF Abs to S100 modifies the effects of Abs to S100 ex

vivo.157 In vitro and in vivo, RAFAbs to S100 has been shown

tomodify synaptic plasticity and electrical properties of plasma

membranes prepared from isolated neurons,158 and exhibited

GABA-modulating activity159–161 and effects on the

serotonergic,161,162 dopaminergic161 and glutamatergic163

systems.

In addition, RAF Abs to S100 in vitro influence on

ligand–receptor interaction of pentazocine (standard) with

the σ1 receptor161 might indicate its ability to interfere

with other mediator systems that cooperate with these

receptors. For example, it is already known that σ1 recep-
tors interact with noradrenergic182 and cholinergic

systems.183,184 Also, σ1 receptors exert neuroprotective

action,185 and influencing their activity can be considered

one of the possible mechanisms of RAF Abs to S100

nootropic effects.

RAF Abs to S100 anti-amnesic activity has been

demonstrated in vivo in models of amnesia induced

by electric shock164 or scopolamine164,165 and on amo-

del of incompletely conditioned passive-avoidance

reflex.166 RAF Abs to S100 effects were comparable

in strength to those of the conventional nootropic drug

piracetam.

Neuroprotectivе effects of RAF Abs to S100 have been

identified in in vivo models of brain injury: ischemic (photo-

thrombosis-induced)167 and hemorrhagic stroke168 models.

The observed effects of RAFAbs to S100 did not differ from

those of piracetam, cavinton, or nimodipine.

RAF Abs to S100 psychotropic activity (anxiolytic and

antidepressant effects) has been observed in both healthy

animals exposed to stress conditions159,162,169–172 and var-

ious disease models, eg, cholinergic deficit.165 The anxiolytic

and antidepressant activities of RAFAbs to S100 were simi-

lar to the effects of diazepam and amitriptyline.169,170,172,186

Noteworthily, RAFAbs to S100 did not cause sedation and/

or muscle relaxation.171

Therefore, results of experimental studies of RAF Abs

to S100 demonstrate that the drug has neurotropic activity

and is able to improve CNS functions under brain injury,

as well as in the absence of pathology but under stressful

conditions.

Dovepress Parfenov et al

Neuropsychiatric Disease and Treatment 2019:15 submit your manuscript | www.dovepress.com

DovePress
1389

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


T
ab

le
1
E
x
p
e
ri
m
e
n
ta
l
st
u
d
ie
s
o
f
m
e
ch
an
is
m
s
o
f
ac
ti
o
n
an
d
p
h
ar
m
ac
o
lo
gi
ca
l
ac
ti
vi
ty

o
f
R
A
F
A
b
s
to

S
1
0
0
,
R
A
F
A
b
s
to

e
N
O
S
an
d
co
m
b
in
at
io
n
d
ru
g
D
iv
az
a

D
ru

g/
ty
p
e
o
f
st
u
d
y

Te
st

sy
st
em

R
es
u
lt
s

R
ef
er
en

ce

R
A
F
A
b
s
to

S
10

0

M
ec

h
an

is
m
s
o
f
ac

ti
o
n

In
fl
u
e
n
ce

o
n
L
P
T

H
ip
p
o
ca
m
p
al
sl
ic
e
s
(4
0
0
μm

)
o
f
m
at
u
re

W
is
ta
r

ra
ts

e
x
vi
vo

A
n
ti
-S
1
0
0
(fi
n
al
d
ilu
ti
o
n
1
:5
0
)
in
h
ib
it
e
d
th
e
in
d
u
ct
io
n
o
f
L
P
T
,
w
h
e
re
as

R
A
F
A
b
s
to

S
1
0
0

ad
d
e
d
to

an
ti
-S
1
0
0
(fi
n
al
d
ilu
ti
o
n
1
:5
0
)
ca
n
ce
le
d
in
h
ib
it
in
g
ac
ti
vi
ty

o
f
th
e
la
tt
e
r

1
5
7

In
fl
u
e
n
ce

o
n
e
le
ct
ri
ca
l
p
ro
p
e
rt
ie
s
o
f

ce
ll
m
e
m
b
ra
n
e
s

Is
o
la
te
d
n
e
u
ro
n
s
o
f
H
el
ix
po
m
at
ia
in

vi
tr
o

R
A
F
A
b
s
to

S
1
0
0
su
p
p
re
ss
e
d
ge
n
e
ra
ti
o
n
o
f
ac
ti
o
n
p
o
te
n
ti
al
in
a
d
o
se
-d
e
p
e
n
d
e
n
t
m
an
n
e
r
an
d

in
cr
e
as
e
d
th
e
m
ax
im
al
sp
e
e
d
o
f
it
s
gr
o
w
th

vi
a
ch
an
gi
n
g
th
e
vo
lt
–
am

p
e
re

ch
ar
ac
te
ri
st
ic
s
o
f

th
e
in
co
m
in
g
cu
rr
e
n
t
ch
an
n
e
ls

1
5
8

In
vo
lv
e
m
e
n
t
o
f
G
A
B
A
A
-e
rg
ic
sy
st
e
m

in
th
e
re
al
iz
at
io
n
o
f
R
A
F
A
b
s
to

S
1
0
0

e
ff
e
ct
s

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts
,
in

vi
vo

B
ic
u
cu
lli
n
e
an
d
p
ic
ro
to
x
in

(G
A
B
A
A
-r
e
ce
p
to
rs

an
ta
go
n
is
ts
)
d
e
cr
e
as
e
d
th
e
an
x
io
ly
ti
c
e
ff
e
ct

o
f

R
A
F
A
b
s
to

S
1
0
0
in

V
o
ge
l
co
n
fl
ic
t
te
st

b
y
1
.8
-
an
d
1
.6
-t
im
e
s,
re
sp
e
ct
iv
e
ly

1
5
9

In
vo
lv
e
m
e
n
t
o
f
G
A
B
A
B
-e
rg
ic
sy
st
e
m

in
th
e
re
al
iz
at
io
n
o
f
R
A
F
A
b
s
to

S
1
0
0

e
ff
e
ct
s

A
d
u
lt
o
u
tb
re
d
m
al
e
ra
ts

in
vi
vo

B
ac
lo
fe
n
(G

A
B
A
B
-r
e
ce
p
to
r
ag
o
n
is
t)
d
e
cr
e
as
e
d
th
e
an
x
io
ly
ti
c
e
ff
e
ct

o
f
R
A
F
A
b
s
to

S
1
0
0
in

V
o
ge
l
co
n
fl
ic
t
te
st

2
.2
-f
o
ld
,
w
h
e
re
as

p
h
ac
lo
fe
n
(G

A
B
A
B
-r
e
ce
p
to
r
an
ta
go
n
is
t)
in
cr
e
as
e
d
it

1
.4
-f
o
ld
;
b
o
th

b
ac
lo
fe
n
an
d
p
h
ac
lo
fe
n
d
e
cr
e
as
e
d
an
ti
d
e
p
re
ss
iv
e
e
ff
e
ct

o
f
R
A
F
A
b
s
to

S
1
0
0
in

N
o
m
u
ra
’s
fo
rc
e
d
sw

im
m
in
g
te
st

1
.5
-
an
d
1
.7
-f
o
ld
,
re
sp
e
ct
iv
e
ly

1
6
0

C
H
O

ce
lls

e
x
p
re
ss
in
g
h
u
m
an

G
A
B
A

re
ce
p
to
rs

in
vi
tr
o

R
A
F
A
b
s
to

S
1
0
0
e
x
e
rt
e
d
an
ta
go
n
is
m

o
n
G
A
B
A
B
1
A
/B
2
re
ce
p
to
rs

in
h
ib
it
in
g
ag
o
n
is
t-
in
d
u
ce
d

re
sp
o
n
se
s
b
y
3
0
.2
%

an
d
al
so

in
h
ib
it
e
d
sp
e
ci
fi
c
b
in
d
in
g
o
f
([
3
,4
-3
H
]-
cy
cl
o
h
e
x
yl
m
e
th
yl
)p
h
o
s-

p
h
in
ic
ac
id

([
3
H
]-
C
G
P
5
4
6
2
6
)
to

G
A
B
A
B
1
A
/B
2
-r
e
ce
p
to
rs

b
y
2
5
.8
%

1
6
1

In
vo
lv
e
m
e
n
t
o
f
se
ro
to
n
e
rg
ic
sy
st
e
m

in
th
e
re
al
iz
at
io
n
o
f
R
A
F
A
b
s
to

S
1
0
0

e
ff
e
ct
s

A
d
u
lt
o
u
tb
re
d
m
al
e
ra
ts

in
vi
vo

K
e
ta
n
se
ri
n
(5
-Н

Т
2
re
ce
p
to
rs

an
ta
go
n
is
t)
d
e
cr
e
as
e
d
b
o
th

th
e
an
x
io
ly
ti
c
e
ff
e
ct

o
f
R
A
F
A
b
s
to

S
1
0
0
in

V
o
ge
l
co
n
fl
ic
t
te
st

an
d
an
ti
d
e
p
re
ss
iv
e
e
ff
e
ct

o
f
R
A
F
A
b
s
to

S
1
0
0
in

N
o
m
u
ra

fo
rc
e
d

sw
im
m
in
g
te
st

1
.9
-
an
d
tw

o
fo
ld
,
re
sp
e
ct
iv
e
ly

1
6
2

C
H
O

an
d
C
H
O
K
1
ce
lls

in
vi
tr
o

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
sp
e
ci
fi
c
ra
d
io
lig
an
d
s
b
in
d
in
g
to

5
H
T
1
F
-,
5
H
T
2
B
-,
5
H
T
2
C
-,
an
d

5
H
T
3
-r
e
ce
p
to
rs

1
4
2
.0
%
,
1
3
1
.9
%
,
1
4
9
.3
%
,
an
d
1
2
0
.7
%
,
re
sp
e
ct
iv
e
ly
;
al
so

R
A
F
A
b
s
to

S
1
0
0

e
x
e
rt
e
d
an
ta
go
n
is
t
e
ff
e
ct

o
n
5
H
T
1
B
re
ce
p
to
rs
,
in
h
ib
it
in
g
th
e
ir
fu
n
ct
io
n
al
ac
ti
vi
ty

b
y
2
3
.2
%
,

an
d
ag
o
n
is
t
e
ff
e
ct

o
n
5
H
T
1
A
re
ce
p
to
rs
,
e
n
h
an
ci
n
g
th
e
ir
fu
n
ct
io
n
al
ac
ti
vi
ty

b
y
2
8
.0
%

1
6
1

In
vo
lv
e
m
e
n
t
o
f
d
o
p
am

in
e
rg
ic
sy
st
e
m

in
th
e
re
al
iz
at
io
n
o
f
R
A
F
A
b
s
to

S
1
0
0

e
ff
e
ct
s

C
H
O

an
d
C
H
O
-K
1
ce
lls

in
vi
tr
o

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
sp
e
ci
fi
c
ra
d
io
lig
an
d
b
in
d
in
g
to

D
3
re
ce
p
to
rs

b
y
1
2
6
.3
%

an
d

e
x
e
rt
e
d
an
ta
go
n
is
m

at
D

3
re
ce
p
to
rs

in
h
ib
it
in
g
th
e
ir
fu
n
ct
io
n
al
ac
ti
vi
ty

b
y
3
2
.8
%

1
6
1

In
vo
lv
e
m
e
n
t
o
f
gl
u
ta
m
at
e
rg
ic
sy
st
e
m

in
th
e
re
al
iz
at
io
n
o
f
R
A
F
A
b
s
to

S
1
0
0

e
ff
e
ct
s

R
at

b
ra
in

co
rt
e
x
n
e
u
ro
n
al
ce
lls

in
vi
tr
o

R
A
F
A
b
s
to

S
1
0
0
d
e
cr
e
as
e
d
sp
e
ci
fi
c
ra
d
io
lig
an
d
b
in
d
in
g
to

N
M
D
A
re
ce
p
to
rs

b
y
3
9
.1
%

1
6
3 (C
on
tin
ue
d)

Parfenov et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Neuropsychiatric Disease and Treatment 2019:151390

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


T
ab

le
1
(C

o
n
ti
n
u
e
d
).

D
ru

g/
ty
p
e
o
f
st
u
d
y

Te
st

sy
st
em

R
es
u
lt
s

R
ef
er
en

ce

In
vo
lv
e
m
e
n
t
o
f
σ1

-r
e
ce
p
to
r
in

th
e

re
al
iz
at
io
n
o
f
R
A
F
A
b
s
to

S
1
0
0

e
ff
e
ct
s

H
u
m
an

le
u
ke
m
ic
Т
ly
m
p
h
o
cy
te
s
(J
u
rk
at

lin
e
),

M
C
F
-7

ce
lls
,
in

vi
tr
o

R
A
F
A
b
s
to

S
1
0
0
d
e
cr
e
as
e
d
sp
e
ci
fi
c
ra
d
io
lig
an
d
b
in
d
in
g
to

n
at
iv
e
an
d
re
co
m
b
in
an
t
h
u
m
an

σ 1
re
ce
p
to
rs

b
y
7
5
.3
%

an
d
4
0
.3
%
,
re
sp
e
ct
iv
e
ly

1
6
1

P
h
ar
m
ac

o
d
yn

am
ic
s

A
n
ti
-a
m
n
es
ic

ac
ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

w
it
h
am

n
e
si
a

in
d
u
ce
d
b
y
e
le
ct
ri
c
sh
o
ck

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
th
e
la
te
n
cy

o
f
C
PA

R
an
d
th
e
n
u
m
b
e
r
o
f
an
im
al
s
w
it
h
C
PA

R
b
y

1
.2
-
an
d
1
.6
-f
o
ld
,
re
sp
e
ct
iv
e
ly

1
6
4

A
d
u
lt
o
u
tb
re
d
m
al
e
ra
ts

w
it
h
sc
o
p
o
la
m
in
e
-

in
d
u
ce
d
am

n
e
si
a
in

vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
th
e
la
te
n
tc
y
o
f
C
PA

R
an
d
th
e
n
u
m
b
e
r
o
f
an
im
al
s
w
it
h
C
PA

R
1
.5
-

an
d
1
.8
-f
o
ld
,
re
sp
e
ct
iv
e
ly

1
6
5

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
ac
ti
ve

av
o
id
an
ce

re
sp
o
n
se
s
2
.4
-f
o
ld
(u
p
to

le
ve
l
o
f

h
e
al
th
y
an
im
al
s)

1
6
6

Im
m
at
u
re

o
u
tb
re
d
al
b
in
o
m
al
e
an
d
fe
m
al
e
ra
ts

w
it
h
in
co
m
p
le
te
ly
co
n
d
it
io
n
e
d
p
as
si
ve
-a
vo
id
an
ce

re
fl
e
x
in

vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
th
e
la
te
n
t
p
e
ri
o
d
o
f
C
PA

R
1
.7
-f
o
ld

1
6
7

N
eu

ro
p
ro

te
ct
iv
e
ac

ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

w
it
h
e
x
p
e
ri
m
e
n
ta
l

is
ch
e
m
ic
st
ro
ke

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
re
d
u
ce
d
th
e
ar
e
a
o
f
st
ro
ke

p
e
n
u
m
b
ra

b
y
4
0
%

an
d
im
p
ro
ve
d
C
PA

R

p
e
rf
o
rm

an
ce

2
.2
-f
o
ld

1
6
8

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

w
it
h
e
x
p
e
ri
m
e
n
ta
l

h
e
m
o
rr
h
ag
ic
st
ro
k
e
in

vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
ra
t
su
rv
iv
ab
ili
ty

2
0
%
;
d
e
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
ra
ts
w
it
h
m
ild

an
d

se
ve
re

n
e
u
ro
lo
gi
ca
l
d
is
o
rd
e
rs
,
m
o
to
r
co
o
rd
in
at
io
n
d
is
o
rd
e
rs
,
an
d
m
yo
re
la
x
at
io
n
1
.4
-,
1
.5
-,

1
.7
-,
an
d
tw

o
fo
ld
,
re
sp
e
ct
iv
e
ly
;
im
p
ro
ve
d
th
e
C
PA

R
p
e
rf
o
rm

an
ce

tw
o
fo
ld
;
in
cr
e
as
e
d
th
e

ti
m
e
sp
e
n
t
in

o
p
e
n
ar
m
s
o
f
E
P
M

1
.6
-f
o
ld

1
7
6

A
n
xi
o
ly
ti
c
ac

ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
p
u
n
is
h
e
d
w
at
e
r
in
ta
k
e
in

V
o
ge
l
co
n
fl
ic
t
te
st

1
.4
–
3
.2
-f
o
ld

1
5
9
,1
6
2
,1
6
9
–

1
7
1

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
e
n
tr
ie
s
in
to

o
p
e
n
ar
m
s
o
f
E
P
M
,
ti
m
e
sp
e
n
t
in

o
p
e
n
ar
m
s,
an
d
le
an
in
g
o
ve
r
th
e
e
d
ge

o
f
th
e
m
az
e
1
.9
-,
5
.4
-,
an
d
4
.9
-f
o
ld
,
re
sp
e
ct
iv
e
ly

1
6
9
,1
7
1

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
e
n
tr
ie
s
in
to

th
e
ce
n
te
r
o
f
th
e
o
p
e
n
fi
e
ld

to
2
.4

±
0
.7

vs
0
±
0
in

co
n
tr
o
l
gr
o
u
p

1
6
9
,1
7
1

A
d
u
lt
R
j:W

is
ta
r
(H

an
)
m
al
e
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
p
u
n
is
h
e
d
w
at
e
r
in
ta
k
e
in

V
o
ge
l
co
n
fl
ic
t
te
st

b
y
1
.5
-t
im
e
s

1
7
0 (C
on
tin
ue
d)

Dovepress Parfenov et al

Neuropsychiatric Disease and Treatment 2019:15 submit your manuscript | www.dovepress.com

DovePress
1391

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


T
ab

le
1
(C

o
n
ti
n
u
e
d
).

D
ru

g/
ty
p
e
o
f
st
u
d
y

Te
st

sy
st
em

R
es
u
lt
s

R
ef
er
en

ce

A
n
ti
d
ep

re
ss
iv
e
ac

ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
in
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
w
h
e
e
l
tu
rn
s
in

N
o
m
u
ra

fo
rc
e
d
-s
w
im
m
in
g
te
st

1
.8
–
2
.2
-f
o
ld

2
0
,1
6
2
,1
6
9

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
d
e
cr
e
as
e
d
th
e
d
u
ra
ti
o
n
o
f
im
m
o
b
ili
ty

in
P
o
rs
o
lt
fo
rc
e
d
sw

im
m
in
g
te
st

b
y

1
.6
-t
im
e
s

1
7
2

S
ed

at
iv
e
ac

ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
d
id

n
o
t
d
e
cr
e
as
e
h
o
ri
zo
n
ta
l
ac
ti
vi
ty

in
o
p
e
n
-fi
e
ld

te
st

1
7
1

M
yo

re
la
xa

n
t
ac

ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
al
b
in
o
ra
ts

in
vi
vo

R
A
F
A
b
s
to

S
1
0
0
d
id

n
o
t
re
d
u
ce

th
e
ab
ili
ty

o
f
ra
ts

to
ke
e
p
b
al
an
ce

in
th
e
ro
ta
ro
d
te
st

1
7
1

R
A
F
A
b
s
to

eN
O
S

M
ec

h
an

is
m
s
o
f
ac

ti
o
n

E
ff
e
ct
s
o
n
va
sc
u
la
r
e
n
d
o
th
e
lia
l

fu
n
ct
io
n

C
av
e
rn
o
u
s
b
o
d
ie
s
o
f
ad
u
lt
W

is
ta
r
m
al
e
ra
ts

in
vi
vo

R
A
F
A
b
s
to

e
N
O
S
in
cr
e
as
e
d
e
N
O
S
ac
ti
vi
ty
,
co
n
te
n
t
o
f
N
O

d
e
ri
va
te
s,
an
d
co
n
te
n
t
o
f
cG

M
P

2
.4
-,
1
.3
-,
an
d
fo
u
rf
o
ld
,
re
sp
e
ct
iv
e
ly

1
7
3

P
h
ar
m
ac

o
d
yn

am
ic
s

E
n
d
o
th
el
io
p
ro

te
ct
iv
e
ac

ti
vi
ty

A
d
u
lt
W

is
ta
r
m
al
e
ra
ts

w
it
h
N
O

d
e
fi
ci
e
n
cy

in
d
u
ce
d
b
y
L
-N

A
M
E
in

vi
vo

R
A
F
A
b
s
to

e
N
O
S
re
d
u
ce
d
ar
te
ri
al
b
lo
o
d
p
re
ss
u
re

(1
8
4
.3
±
7
0
m
m
H
g
vs

1
9
0
.3
±
6
.7

in

L
-N

A
M
E
gr
o
u
p
)
an
d
e
x
h
au
st
io
n
o
f
m
yo
ca
rd
ia
l
fr
ac
ti
o
n
al
fl
o
w

re
se
rv
e
b
y
1
1
%

1
7
4

A
d
u
lt
W

is
ta
r
m
al
e
ra
ts

w
it
h
N
O

d
e
fi
ci
e
n
cy

in
d
u
ce
d
b
y
L
-N

A
M
E
in

vi
vo

R
A
F
A
b
s
to

e
N
O
S
im
p
ro
ve
d
m
ic
ro
ci
rc
u
la
ti
o
n
in

th
e
is
ch
e
m
ic
ar
e
a,
st
im
u
la
te
d
n
e
o
an
gi
o
-

ge
n
e
si
s,
an
d
p
ro
m
o
te
d
in
cl
u
si
o
n
o
f
ad
d
it
io
n
al
ca
p
ill
ar
ie
s
in
to

ge
n
e
ra
l
ci
rc
u
la
ti
o
n
;

R
A
F
A
b
s
to

e
N
O
S
im
p
ro
ve
d
th
e
m
e
ta
b
o
lis
m

o
f
e
n
d
o
th
e
lia
l
ca
p
ill
ar
ie
s
an
d
si
gn
ifi
ca
n
tl
y

d
e
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
d
e
sq
u
am

at
e
d
e
n
d
o
th
e
lio
cy
te
s,
w
h
ic
h
w
as

th
e
u
n
iq
u
e
m
o
rp
h
o
lo
-

gi
ca
l
cr
it
e
ri
o
n
fo
r
e
n
d
o
th
e
liu
m
-d
am

ag
e
d
e
gr
e
e

1
7
5

A
d
u
lt
W

is
ta
r
m
al
e
ra
ts

w
it
h
h
yp
o
e
st
ro
ge
n
-

in
d
u
ce
d
N
O

d
e
fi
ci
e
n
cy

in
vi
vo

R
A
F
A
b
s
to

e
N
O
S
re
d
u
ce
d
ar
te
ri
al
b
lo
o
d
p
re
ss
u
re

(1
5
8
.5
±
1
5
.0

m
m
H
g
vs

1
6
0
.3
±
0
.2

in

h
yp
o
e
st
ro
ge
n
gr
o
u
p
)
an
d
th
e
e
x
h
au
st
io
n
o
f
m
yo
ca
rd
ia
l
fr
ac
ti
o
n
al
fl
o
w

re
se
rv
e
b
y
2
6
.9
%

1
7
4

In
fl
u
en

ce
o
n
th
e
ca

rd
io
va

sc
u
la
r

sy
st
em

N
o
rm

o
te
n
si
ve

ad
u
lt
W

is
ta
r
m
al
e
ra
ts

in
vi
vo

R
A
F
A
b
s
to

e
N
O
S
d
id

n
o
t
af
fe
ct

sy
st
e
m
ic
h
e
m
o
d
yn
am

ic
s,
d
id

n
o
t
au
gm

e
n
t
n
it
ro
gl
yc
e
ri
n
e

e
ff
e
ct
s

1
7
6

H
yp
e
rt
e
n
si
ve

ad
u
lt
N
IS
A
G

m
al
e
ra
ts

in
vi
vo

R
A
F
A
b
s
to

e
N
O
S
re
d
u
ce
d
ar
te
ri
al
b
lo
o
d
p
re
ss
u
re

b
y
5
.7
%

1
7
7

D
iv
az

a

M
ec

h
an

is
m
s
o
f
ac

ti
o
n

In
vo
lv
e
m
e
n
t
o
f
σ1

-r
e
ce
p
to
r
in

th
e

re
al
iz
at
io
n
o
f
D
iv
az
a
e
ff
e
ct
s

S
e
gm

e
n
ts

o
f
va
s
d
e
fe
re
n
s
o
f
m
al
e
al
b
in
o
D
u
n
k
in

H
ar
tl
e
y
gu
in
e
a-
p
ig
s
e
x
vi
vo

D
iv
az
a
d
o
u
b
le
d
th
e
am

p
lit
u
d
e
o
f
ti
ss
u
e
co
n
tr
ac
ti
o
n
in
d
u
ce
d
b
y
st
an
d
ar
d
ag
o
n
is
t

1
7
8 (C
on
tin
ue
d)

Parfenov et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Neuropsychiatric Disease and Treatment 2019:151392

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


T
ab

le
1
(C

o
n
ti
n
u
e
d
).

D
ru

g/
ty
p
e
o
f
st
u
d
y

Te
st

sy
st
em

R
es
u
lt
s

R
ef
er
en

ce

P
h
ar
m
ac

o
d
yn

am
ic
s

A
n
ti
am

n
es
ic

ac
ti
vi
ty

A
d
u
lt
W

is
ta
r
m
al
e
ra
ts

w
it
h
β-
am

yl
o
id
-i
n
d
u
ce
d

am
n
e
si
a
in

vi
vo

D
iv
az
a
tr
ip
le
d
th
e
la
te
n
cy

o
f
e
n
tr
y
in
to

th
e
d
ar
k
co
m
p
ar
tm

e
n
t
o
f
th
e
C
PA

R
e
x
p
e
ri
m
e
n
ta
l

ch
am

b
e
r

1
7
9

N
eu

ro
p
ro

te
ct
iv
e
(a
n
ti
o
xi
d
an

t)

ac
ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
ra
ts

w
it
h
e
x
p
e
ri
m
e
n
ta
l
ac
u
te

h
e
m
ic
h
yp
o
x
ia
in

vi
vo

D
iv
az
a
d
e
cr
e
as
e
d
th
e
co
n
te
n
t
o
f
d
ie
n
e
co
n
ju
ga
te
s
in

th
e
ce
re
b
ra
l
h
e
m
is
p
h
e
re
s
b
y
9
.7
%
–

2
7
.8
%
in

th
e
h
e
p
ta
n
e
fr
ac
ti
o
n
an
d
7
.5
%
–
4
7
.4
%
in

is
o
p
ro
p
an
o
l
fr
ac
ti
o
n
.
T
h
e
ac
cu
m
u
la
ti
o
n
o
f

2
-t
h
io
b
ar
b
it
u
ri
c
ac
id
–
re
ac
ti
ve

p
ro
d
u
ct
s
w
as

re
d
u
ce
d
b
y
2
0
.1
–
2
7
.5
%

1
8
0

A
n
xi
o
ly
ti
c
ac

ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
ra
ts

in
vi
vo

D
iv
az
a
in
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
p
u
n
is
h
e
d
w
at
e
r
in
ta
k
e
s
in

V
o
ge
l
co
n
fl
ic
t
te
st

b
y
2
.5
-t
im
e
s

1
8
1

A
n
ti
d
ep

re
ss
iv
e
ac

ti
vi
ty

A
d
u
lt
o
u
tb
re
d
m
al
e
ra
ts

in
vi
vo

D
iv
az
a
in
cr
e
as
e
d
th
e
n
u
m
b
e
r
o
f
th
e
w
h
e
e
l
tu
rn
s
in

N
o
m
u
ra

fo
rc
e
d
-s
w
im
m
in
g
te
st

1
.8
-f
o
ld

1
8
1

A
b
b
re
vi
at
io
n
s:

C
PA

R
,
co
n
d
it
io
n
e
d
p
as
si
ve
-a
vo
id
an
ce

re
fl
e
x
;
e
N
O
S
,
e
n
d
o
th
e
lia
l
N
O

sy
n
th
as
e
;
E
P
M
,
e
le
va
te
d
p
lu
s
m
az
e
;
L
P
T
,
lo
n
g-
te
rm

p
o
te
n
ti
at
io
n
;
R
A
F,
re
le
as
e
d
-a
ct
iv
e
fo
rm

.

Dovepress Parfenov et al

Neuropsychiatric Disease and Treatment 2019:15 submit your manuscript | www.dovepress.com

DovePress
1393

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Effects of RAF Abs to eNOS
In in vitro biochemical studies, RAF Abs to eNOS stimu-

lated the eNOS–NO–GC–cGMP cascade,173,187 which is

responsible for relaxation of vascular smooth muscles and

regulation of regional blood flow.

The ability of RAFAbs to eNOS to prevent endothelial

damage (endothelioprotective effect) has been observed in

in vivo NO deficiency models induced by L-N-nitroarginine

methyl ester or hypoestrogen conditions.174,175

A study on RAF Abs to eNOS influence on the cardi-

ovascular system in rats showed that the drug's adminis-

tration did not affect main hemodynamic parameters in

normotensive rats,176 but added to losartan, it decreased

arterial pressure in hypertensive rats,177 which makes the

use of RAF Abs to eNOS for treatment of cardiovascular

diseases promising. Also, RAFAbs to eNOS was shown to

cause no additional blood-pressure decrease when com-

bined with nitroglycerin.176

Effects of combination of RAF Abs to

eNOS and RAF Abs to S100
The combination of RAF Abs to S100 and RAF Abs to

eNOS synthase along with memantine demonstrated anti-

amnesic effects in a model of Aβ-induced amnesia.179 The

drug’s neuroprotective effect, similar to that of RAF Abs

to S100 and might be linked to its influence on σ1
receptors,180 was demonstrated in an in vivo model of

sodium nitrite–induced acute hypoxia: the combination of

RAF Abs to S100 and RAF Abs to eNOS, as well as the

reference compound mexidol, prevented or reduced acti-

vation of lipid peroxidation in the brains of experimental

animals, suggesting an antioxidant-like effect.180

Anxiolytic and antidepressant effects of the combina-

tion of RAFAbs to S100 and RAFAbs to eNOS have been

demonstrated in healthy animals using the Vogel conflict

test and Nomura forced-swim test,181 and were similar to

amitriptyline activity.

Safety
Toxicological studies of RAF Abs to S100, RAF Abs to

eNOS, and their combination were conducted in accor-

dance with national188,189 and international (ICH M3R2)

Guidance on Nonclinical Safety Studies for the Conduct of

Human Clinical Trials and Marketing Authorization for

Pharmaceuticals, 2009) guidelines.

The following assessments were performed: single-

dose (acute) toxicity, chronic toxicity, reproductive

toxicity, genotoxicity, immunotoxicity, local tolerance,

and allergenicity. Additionally, local tolerability studies

were performed.

Safety studies did not reveal any toxic effects (even

with doses >100 times recommended human doses;

unpublished data). Based on these results, RAF Abs to

S100, RAF Abs to eNOS, and their combination can be

considered class 4 low-hazard substances (according to the

Russian GOST 12.1.007-76).

Treatment perspectives: clinical trials of

novel preparation
Clinical studies of the combination of RAF Abs to S100 and

RAF Abs to eNOS – were conducted in accordance with the

principles of good clinical practice andDeclaration of Helsinki

requirements. The total number of participants in all studies

was 696, and 545 of them received the combination RAFAbs

to S100 and RAF Abs to eNOS. The purpose of the clinical

trials was to evaluate the efficacy and safety of preparation for

CBVD and cognitive impairment treatment.

In the study of the combination of RAF Abs to S100 and

RAF Abs to eNOS in patients with CBVD, the 1.9-fold

decrease ineNOS (927.5±11.2 to 478.6±13.4 pg/mL, P<0.05

compared to baseline [reference value 450 pg/mL]) and the

1.5–fold decrease in number of circulating (desquamated)

endothelial cells (6.98±0.52 to 4.62±0.75 cells/100 μL,
P<0.05 compared to baseline [reference value two to four

cells/100 μL]) were shown after 12 weeks of therapy. These

results indicated that the preparation exerts endothelioprotec-

tive action.190

Administration of the combination of RAF Abs to S100

and RAFAbs to eNOS in patients with chronic CBVD led to

normalization of ischemia and inflammation biomarkers, such

as fibrinogen (–1.6 g/L, P<0.01 compared to baseline) and

VWF in plasma (1.5 g/L,P<0.01 compared to baseline) after 3

months of therapy. In addition, statistically significant

decreases in CRP (1.7 mg/L; P<0.05 compared to baseline)

and the ED biomarker MCP1 (30.1 pg/mL) concentrations

were shown, suggesting the endothelioprotective effect of the

preparation and the ability of RAFAbs to eNOS +RAFAbs to

S100 to reduce the severity of the inflammatory process in

vessel walls. No significant fluctuations in VEGF or ET1

concentrations were found, indicating the ability of the com-

bination of RAFAbs to S100 and RAFAbs to eNOS to affect

angiogenesis and prevent the progression of CBVD. In addi-

tion, the 31.3% decrease in S100 level was found, suggesting

the deceleration of neurodegeneration.
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Several clinical trials in patients with asthenia and mild

cognitive impairment have provided evidence of the noo-

tropic effect of the combination of RAF Abs to S100 and

RAF Abs to eNOS. The cognitive improvement mani-

fested in average MMSE-score increase, clock–drawing

test, and verbal association test performance. Significant

improvement in cognitive functions (according to the

MMSE) was shown by the end of the 3-month treatment

course with the combination of RAFAbs to S100 and RAF

Abs to eNOS.191

Neuroprotective action of the combination of RAF Abs

to S100 and RAF Abs to eNOS was shown in a trial,

conducted by Parfenov et al: a 10% decrease in asthenia

severity in 61% of patients, threefold decrease in 25% of

patients, and improvement in sleep and quality of life

(according to the SF36 questionnaire) were shown.192

A study on the effect of the combination of RAF Abs to

S100 and RAF Abs to eNOS on potentially reversible vas-

cular factors, which play one of the leading roles in the

development of cognitive impairment, was performed in

the course of the noninterventional observational program

Diamant.193 The program was conducted in 30 cities in

Russia between 2016 and 2017. Patients with CBVD attend-

ing outpatient clinics were treated with the combination of

RAFAbs to S100 and RAFAbs to eNOS (two tablets, three

times per day). TheMontreal Cognitive Assessment (MoCA)

scale was used for cognitive ability analysis in patients before

and after 3 months of therapy. The study included 2,583

participants with CBVD, and the majority of them (90.7%)

experienced symptoms of cognitive impairment (<26 MoCA

score). At the end of treatment with the combination RAF

Abs to S100 and RAFAbs to eNOS, the mean MoCA score

improved from 19.58±5.13 to 23.99±4.21 (P<0.0001). The

percentage of patients with normal cognitive function (≥26
MoCA score) increased by 32%. Older and senile patients

tolerated the treatment well: <0.6% of adverse events (AEs).

The vast majority of doctors (88.4%) noted the effect of the

drug as a significant improvement or improvement, and

89.6% of patients evaluated the effect of treatment as excel-

lent or good. The authors concluded that use of the combina-

tion of RAF Abs to S100 and RAFAbs to eNOS in patients

with CBVD and cognitive impairment was substantiated and

promising.

The safety of the combination of RAF Abs to S100 and

RAF Abs to eNOS was also evaluated. In total, investiga-

tors detected 48 AEs in 43 patients. All of them, according

to World Health Organization guidelines, were rare. AEs

were not severe, and were related to different organ

systems.194 All patients with AEs were monitored until

complete resolution (patient recovery). No AEs have been

determined to have a certain or probable relationship to the

study drug. There were no serious AEs.

A new multicenter, double-blind, placebo-controlled

randomized clinical trial of the efficacy and safety of the

combination of RAF Abs to S100 and RAF Abs to eNOS

in the correction of oxidant disorders in patients with

cerebral atherosclerosis (resolution 42 of the Ministry of

Health of the Russian Federation, February 5, 2018) has

been proposed. The inclusion of at least 124 outpatients

(32 in each group) with mild cognitive impairment (MoCA

score <26) taking antihypertensive and hypolipidemic

therapy at a constant dose and without significant disabil-

ity (modified Rankin Scale score ≤1) is planned. Within 12

weeks, evaluation of cognitive impairment severity

(MoCA scale), oxidative and antioxidant–system labora-

tory tests, and compensatory endothelial capacity and its

ability to regulate vascular tone are going to be performed.

Resistance capacity to lipid peroxidation, concentration of

lipid peroxidation products (mainly lipid hydroperoxides)

and the ability of lipoproteins to be oxidized will be

assessed using Fe2+-induced chemiluminescence. Using

standard laboratory techniques, the concentration of NO

products in serum, platelet aggregation, and thickness of

the intima–media complex will be measured. The safety of

the combination RAF Abs to S100 and RAF Abs to eNOS

will be assessed by the severity of AEs and their relation-

ship to the study drug. Study results will be available at

ClinicalTrials.gov (NCT03485495).

Conclusion
In this review, we have considered the wide range of

pathophysiological VCI mechanisms. Changes in cerebral

vessels in the form of cerebral SVD, ED, a decrease in

cerebral capillary-network density, increased stiffness of

arterial walls mediated by aging processes, oxidative

stress, impact of the RAAS. and systemic blood pressure

are the main causes of VCI. We emphasized that VCI, with

the advent of the NVU concept, should be considered not

only a vascular disorder but also a result of failed interac-

tion between vascular and cellular (primarily neuronal)

factors leading to impaired cerebral function. This view

is certainly more rational and more correct, since the CNS

is an extremely complex structure and its normal function-

ing is provided by the integrative interaction of vascular

and cellular components. It should be mentioned again that

one of the important factors associated with the neuronal
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causes of VCI is S100B, which can affect the expression

of cytokines in the brain, support homeostasis, and regu-

late the processes of differentiation, repair, and apoptosis

of nervous tissue.

Since the pathological basis of VCI is complex and

diverse and specifically targeted treatment has not yet been

found, new methods of treatment affecting all mechanisms

of cognitive disorders should be developed.

Highlights
● VCI refers to all forms of cognitive disorder associated

with cerebrovascular disease, and its pathogenetic

mechanisms are complex and diverse.
● VCI should be considered a result of failed interaction

between vascular and cellular (primarily neurotropic)

factors leading to impaired cerebral function.
● S100B is an important neurotropic factor associated with

VCI.
● The combination of RAF Abs to S100B protein and

RAF Abs to eNOS is a safe novel preparation with

endotheliotropic and neurotropic effects, providing

new opportunities for VCI treatment.
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