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Abstract: In the human intestinal tract, there are more than 100 trillion symbiotic bacteria,

which form the gut microbiota. Approximately 70% of the human immune system is in the

intestinal tract, which prevents infection by pathogenic bacteria. When the intestinal microbiota

is disturbed, causing dysbiosis, it can lead to obesity, diabetes mellitus, inflammatory bowel

disease, rheumatoid arthritis, multiple sclerosis, autism spectrum disorder and cancer. Recent

metabolomics analyses have also made the association between the microbiota and carcinogen-

esis clear. Here, we review the current evidence on the association between the microbiota and

gastric, bladder, hepatobiliary, pancreatic, lung and colorectal cancer. Moreover, several animal

studies have revealed that probiotics seem to be effective for the prevention of carcinogenesis to

some extent. In this review, we focused on this relationship between the microbiota and cancer,

and considered how to prevent cancer using strategies involving the gut microbiota.

Keywords: dysbiosis, prebiotics, probiotics, antibiotics

Introduction
Gut microbiota
The human microbiota is a complex ecosystem of bacteria, viruses and fungi

resident on or in the skin, oral cavity, lungs, intestines and vagina.1 The human

gastrointestinal tract is colonized by a complex and abundant microbial community

of 1013 to 1014 microorganisms in the colon.2,3 Firmicutes, Proteobacteria,

Bacteroidetes and Acinetobacteria are major residents in normal bowels.

The commensal microbiota is a major regulator of the host immune system.

Indeed, early innate immunity to Klebsiella pneumoniae in the lungs is regulated

systemically by the commensal gut microbiota via Nod-like receptor (NLR)

ligands.3 Segmented filamentous bacteria (SFB) not only induce cells that produce

immunoglobulin A (IgA) and intraepithelial lymphocytes (IELs), but also promote

host defense reactions and the accumulation of T helper type 17 (Th17) cells, which

produce interleukin (IL)-17.4,5 Moreover, Clostridium enhances the differentiation

and proliferation of regulatory T (Treg) cells.6,7

In addition to these functions, the microbiota has a role in the synthesis of vitamins

and short-chain fatty acids from dietary fiber such as acetic acid, propionic acid and

butyric acid. Although acetic acid and amino acids do not have a role in the differentiation

and induction of Treg cells, butyric acid has a crucial role.8 Additionally, short-chain fatty

acids bind to G protein-coupled receptors and regulate obesity.9 Numerous clinical

studies have revealed that disruption of host–commensal interactions (dysbiosis) can

lead to a variety of diseases and conditions,10–22 including cancer,16 chronic intestinal

inflammation,20,23 autoimmunity22 and impairment of the self-protection mechanisms

against bacteria, viruses and parasites.10,12,24–32

Correspondence: Tatsuya Nagano
Division of Respiratory Medicine,
Department of Internal Medicine, Kobe
University Graduate School of Medicine,
7-5-1 Kusunoki-cho, Chuo-ku,
Kobe 650-0017, Japan
Tel +81 78 382 5660
Fax +81 78 382 5661
Email tnagano@med.kobe-u.ac.jp

OncoTargets and Therapy Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com OncoTargets and Therapy 2019:12 3619–3624 3619
DovePress © 2019 Nagano et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.

php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the
work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

http://doi.org/10.2147/OTT.S207546

O
nc

oT
ar

ge
ts

 a
nd

 T
he

ra
py

 d
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


Lofgren et al demonstrated that germ-free INS-GAS

mice were slower to develop atrophic gastritis and gastric

cancer than specific pathogen free (SPF) INS-GAS mice.33

This result suggest that the gastric microbiota contributes

to gastric cancer.

Microbiota and cancer
Several studies have shown that the colonic microbiota is

associated with the development of colorectal cancer. In

a chemically induced mouse model of colorectal cancer,

transplantation of the fecal microbiota from colorectal

cancer patients to germ-free mice increased susceptibility

to colonic tumorigenesis.34

The hypotheses regarding the microbiota-related

mechanisms of carcinogenesis in colorectal cancer include

the following: the alpha-bug hypothesis, driver-passenger

hypothesis, biofilm hypothesis and bystander effect

hypothesis.35 The alpha-bug hypothesis posits that specific

pathogenic bacteria induce colorectal cancer. For example,

enterotoxigenic Bacteroides fragilis (ETBF) secretes

Bacteroides fragilis toxin (BFT), which decreases

E-cadherin levels. This loosens the attachments between

intestinal epithelial cells and results in exposure to many

antigens.36 Moreover, decreased E-cadherin promotes

intracellular migration of β-catenin and accelerates carci-

nogenic-related signaling such as Wnt signaling. The dri-

ver-passenger hypothesis postulates that other bacteria,

that is, passenger bacteria that adapt to the tumor environ-

ment produced by the driver bacteria, proliferate, leading

to carcinogenesis. Fusobacterium nucleatum has an antag-

onistic effect against probiotics and has a role as a tumor-

associated bacterium or oncobacterium.37,38 The biofilm

hypothesis suggests that biofilm, produced by the gut

microbiota, is associated with colorectal cancer carcino-

genesis, which involves lack of E-cadherin or activation of

signal transducers and activator of transcription (STAT)-3.

Lastly, the bystander effect hypothesis involves gut micro-

biota-produced metabolites that induce colorectal cancer

carcinogenesis.

Deoxycholic acid and lithocholic acid, secondary bile

acids produced from bile acids by intestinal bacteria, induce

DNA damage and contribute to carcinogenesis.39 In mice

that are prone to developing cancer, mice with diet-induced

and hereditary obesity develop significantly more liver can-

cer than mice on a normal diet.40 Moreover, deoxycholic

acid-induced DNA damage in hepatic stellate cells in the

liver interstitium become senescent and secrete many inflam-

matory cytokines and proteases (senescence-associated

secretory phenotype, SASP). These promote carcinogenesis

and form a microenvironment that further promotes carcino-

genesis. IL-1β promotes liver cancer carcinogenesis.

Intriguingly, in obese mice administered oligosaccharides

that inhibit deoxycholic acid and ursodeoxycholic acid pro-

duction (which promotes external release of bile acids), the

incidence of liver cancer and hepatic stellate cell senescence

are remarkably decreased. Moreover, lipoteichoic acid,

which is a component of Gram-positive bacterial walls and

a ligand of Toll-like receptor 2 (Tlr2), increases in liver

cancer and upregulates cyclooxygenase-2 (Cox-2)

expression.41 Increased Cox-2 expression induces the over-

production of prostaglandins. An antagonist of prostaglandin

E2 receptor 4 (EP4) has been shown to decrease liver tumors

in obese mice.42 In addition, the EP4 antagonist also

decreases programmed death-1 (PD-1)-positive CD8-

positive T and Treg cells.

Several studies showed that bladder microbiome was

related to urothelial cell carcinoma pathogenesis or

progression.43 Bladder microbiome act as a noninvasive

biomarker and can be a target of immunotherapy agents

such as intravesical bacillus Calmette-Guerin.

Oral microbiota and pancreatic
cancer
The human oral cavity is colonized by many bacteria,

including about 600 prevalent taxa at the species level.44

Indeed, the Human Oral Microbiome Database (HOMD)

includes 619 taxa in the following 13 phyla:

Actinobacteria, Bacteroidetes, Chlamydiae, Chloroflexi,

Euryarchaeota, Firmicutes, Fusobacteria, Proteobacteria,

Spirochaetes, SR1, Synergistetes, Tenericutes and TM7.

The association between the salivary microbiota and pan-

creatic cancer has been analyzed using the Human Oral

Microbe Identification Microarray,45 and two out of six

bacterial candidates (Neisseria elongate and Streptococcus

mitis) had significantly lower levels in pancreatic cancer

patients than in the control group (P<0.05). Another pro-

spective cohort study analyzed 361 patients with incident

pancreatic cancer and 371 matched controls and revealed

that Porphyromonas gingivalis and Aggregatibacter acti-

nomycetemcomitans were associated with a higher risk of

pancreatic cancer (odds ratio: 2.20, 95% confidence inter-

val: 1.16 to 4.18). In contrast, the genus Leptotrichia and

its phylum Fusobacteria were associated with a lower risk

of pancreatic cancer (odds ratio: 0.87, 95% confidence

interval: 0.79 to 0.95).46
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Gut–lung axis and lung microbiota
Lung cancer is a disease with poor prognosis, and the

development of further preventive strategies is important.

The concept of the “gut–lung axis” involves immune cells

(such as T and B cells) that are activated by the gut

microbiota, carried to the lungs by lymphatic or hemato-

genous spread, activate lung immune cells, and induce

respiratory diseases such as asthma, chronic obstructive

pulmonary disease (COPD), cystic fibrosis and respiratory

infection.47–50

It has been reported that the lung microbiota and oral

microbiota are involved in lung carcinogenesis.51–53

Salivary Capnocytophaga, Selenomonas, Veillonella and

Neisseria were significantly altered in patients with squa-

mous cell carcinoma (n=10) and adenocarcinoma (n=10)

compared with control subjects (n=10).52 In another study,

although the sample size was small (n=8/group), the bac-

terial diversity in sputum samples was significantly differ-

ent between lung cancer patients and control subjects

(P=0.038).54 Lung cancer cases had more Granulicatella

(6.1% vs 2.0%; P=0.0016), Abiotrophia (1.5% vs 0.085%;

P=0.0036) and Streptococcus (40.1 vs 19.8%; P=0.0142)

than the control subjects.54 Another study revealed that

Granulicatella adiacens had a higher abundance in sputum

samples of four patients with lung cancer compared to six

control subjects.55 Analysis of bronchoalveolar lavage

fluid (BALF) from 20 patients with lung cancer and

eight control subjects revealed that the levels of two

phyla (Firmicutes and TM7) were significantly increased

in the patients with lung cancer (P=0.037 and 0.035,

respectively).56 Moreover, a study analyzed bronchoscopic

specimens from 24 patients with lung cancer and 18

healthy controls and revealed that the genus

Streptococcus was significantly more abundant in the

lung cancer patients and, for predicting lung cancer, the

area under the curve (AUC) of Streptococcus was 0.693

(sensitivity =87.5%, specificity =55.6%).51

Cancer prevention
The following treatment methods are being studied for

controlling intestinal bacteria: improvement of gut micro-

biota dysbiosis, administration of prebiotics, which regu-

late the gut microbiota, administration of probiotics, which

activate T cells, and administration of antibiotics.57 When

high-fat diets were administered to K-rasG12Dint mice,

tumors were formed in the small intestine, which was

due to dysbiosis rather than obesity.58 B. fragilis-specific

CD4-positive Th1 cells enhanced the anti-tumor effect of

cytotoxic T-lymphocyte antigen (CTLA)-4 antibody.59 In

addition, Bifidobacterium spp. increased the expression of

immune-associated genes on spleen or lymph node den-

dritic cells and induced anti-tumor CD8-positive cells.60

Bifidobacterium lactis decreased the incidence of color-

ectal tumor in a mouse model61 and rat model62 of azox-

ymethane (AOM)-induced colorectal cancer, by inducing

apoptosis or suppressing NF-κB signaling. Probiotics con-

sisting of a mixture of Lactobacillus rhamnosus GG and

Lactobacillus casei Shirota suppress the development of

aflatoxin-induced liver cancer in rats.63 The probiotic pro-

duct VSL#3, which is composed of L. casei, Lactobacillus

acidophilus, Lactobacillus plantarum, Lactobacillus del-

brueckii subsp. bulgaricus, Bifidobacterium breve,

Bifidobacterium longum, Bifidobacterium infantis and

Streptococcus salivarius subsp. thermophilus, suppressed

trinitrobenzene sulfonic acid (TNBS)-induced colitis-

related colorectal cancer in rats.64 VSL#3 also suppressed

the development of diethylnitrosamine (DEN)-induced

liver cancer by improving the gut microbiota and suppres-

sing the release of endotoxin from the intestines to the

blood.65 Probiotics consisting of a mixture of VSL#3,

L. rhamnosus GG and Escherichia coli Nissle 1917 sup-

pressed the growth of a xenograft of the liver cancer cell

line Hepa1-6 by decreasing Th17 cells and suppressing

cytokine production.66 When antibiotics were adminis-

tered to ApcMin/+Msh2−/- mice, the development of color-

ectal cancer was significantly suppressed.67

Clinical trials of probiotics
A prospective cohort study that followed 45,241 participants

for 12 years revealed that participants who ingested yoghurt

produced by Streptococcus thermophilus and Lactobacillus

delbrueckii subsp. bulgaricus had a lower risk of developing

colorectal cancer than participants who did not ingest the

yoghurt (hazard ratio: 0.62, 95% confidence interval: 0.46 to

0.83).68 A case-control study comparing 304 female breast

cancer patients aged 40–55 years old with 662 subjects

matched for age and residential area revealed that those who

drank beverages containing L. casei Shirota >4 times/week

were less likely to experience breast cancer relapse than those

who did not (odds ratio: 0.65).69 Moreover, a randomized

controlled trial of postoperative bladder cancer patients

showed a significantly higher 3-year relapse-free survival

rate in the epirubicin plus L. casei Shirota group than the

epirubicin-only group (74.6% vs 59.9%, P=0.0234).70

Patients with colon cancer that received probiotics,
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Bifidobacterium lactis Bl-04 and Lactobacillus acidophilus

NCFM had an increased abundance of butyrate-producing

bacteria, especially Faecalibacterium and Clostridiales spp

in the tumour, non-tumour mucosa and faecal microbiota,

resulting in the reduction of colorectal cancer-associated gen-

era such as Fusobacterium and Peptostreptococcus.71 Recent

study showed that a probiotic combination containing

Bifidobacterium infantis, Lactobacillus acidophilus,

Enterococcus faecalis and Bacillus cereus reduced the physio-

logical disorders induced by gastrectomy.72 Another rando-

mized, double-blind, placebo-controlled trial showed that

probiotics reduced the severity of oral mucositis induced by

chemoradiotherapy for patients with nasopharyngeal

carcinoma.73 However, in cancer patients and immunosup-

pressed patients, caution is required because probiotic admin-

istration may lead to bacteremia directly caused by the

probiotic bacteria.74

Observations and conclusions
Based on the results of animal experiments, probiotics

seem to be effective for the prevention of carcinogenesis

to some extent. However, there are few randomized con-

trolled trials in humans, and further studies are necessary.
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